Citation for this page in APA citation style.           Close


Philosophers

Mortimer Adler
Rogers Albritton
Alexander of Aphrodisias
Samuel Alexander
William Alston
Anaximander
G.E.M.Anscombe
Anselm
Louise Antony
Thomas Aquinas
Aristotle
David Armstrong
Harald Atmanspacher
Robert Audi
Augustine
J.L.Austin
A.J.Ayer
Alexander Bain
Mark Balaguer
Jeffrey Barrett
William Barrett
William Belsham
Henri Bergson
George Berkeley
Isaiah Berlin
Richard J. Bernstein
Bernard Berofsky
Robert Bishop
Max Black
Susanne Bobzien
Emil du Bois-Reymond
Hilary Bok
Laurence BonJour
George Boole
Émile Boutroux
Daniel Boyd
F.H.Bradley
C.D.Broad
Michael Burke
Lawrence Cahoone
C.A.Campbell
Joseph Keim Campbell
Rudolf Carnap
Carneades
Nancy Cartwright
Gregg Caruso
Ernst Cassirer
David Chalmers
Roderick Chisholm
Chrysippus
Cicero
Tom Clark
Randolph Clarke
Samuel Clarke
Anthony Collins
Antonella Corradini
Diodorus Cronus
Jonathan Dancy
Donald Davidson
Mario De Caro
Democritus
Daniel Dennett
Jacques Derrida
René Descartes
Richard Double
Fred Dretske
John Dupré
John Earman
Laura Waddell Ekstrom
Epictetus
Epicurus
Austin Farrer
Herbert Feigl
Arthur Fine
John Martin Fischer
Frederic Fitch
Owen Flanagan
Luciano Floridi
Philippa Foot
Alfred Fouilleé
Harry Frankfurt
Richard L. Franklin
Bas van Fraassen
Michael Frede
Gottlob Frege
Peter Geach
Edmund Gettier
Carl Ginet
Alvin Goldman
Gorgias
Nicholas St. John Green
H.Paul Grice
Ian Hacking
Ishtiyaque Haji
Stuart Hampshire
W.F.R.Hardie
Sam Harris
William Hasker
R.M.Hare
Georg W.F. Hegel
Martin Heidegger
Heraclitus
R.E.Hobart
Thomas Hobbes
David Hodgson
Shadsworth Hodgson
Baron d'Holbach
Ted Honderich
Pamela Huby
David Hume
Ferenc Huoranszki
Frank Jackson
William James
Lord Kames
Robert Kane
Immanuel Kant
Tomis Kapitan
Walter Kaufmann
Jaegwon Kim
William King
Hilary Kornblith
Christine Korsgaard
Saul Kripke
Thomas Kuhn
Andrea Lavazza
Christoph Lehner
Keith Lehrer
Gottfried Leibniz
Jules Lequyer
Leucippus
Michael Levin
Joseph Levine
George Henry Lewes
C.I.Lewis
David Lewis
Peter Lipton
C. Lloyd Morgan
John Locke
Michael Lockwood
Arthur O. Lovejoy
E. Jonathan Lowe
John R. Lucas
Lucretius
Alasdair MacIntyre
Ruth Barcan Marcus
Tim Maudlin
James Martineau
Nicholas Maxwell
Storrs McCall
Hugh McCann
Colin McGinn
Michael McKenna
Brian McLaughlin
John McTaggart
Paul E. Meehl
Uwe Meixner
Alfred Mele
Trenton Merricks
John Stuart Mill
Dickinson Miller
G.E.Moore
Thomas Nagel
Otto Neurath
Friedrich Nietzsche
John Norton
P.H.Nowell-Smith
Robert Nozick
William of Ockham
Timothy O'Connor
Parmenides
David F. Pears
Charles Sanders Peirce
Derk Pereboom
Steven Pinker
U.T.Place
Plato
Karl Popper
Porphyry
Huw Price
H.A.Prichard
Protagoras
Hilary Putnam
Willard van Orman Quine
Frank Ramsey
Ayn Rand
Michael Rea
Thomas Reid
Charles Renouvier
Nicholas Rescher
C.W.Rietdijk
Richard Rorty
Josiah Royce
Bertrand Russell
Paul Russell
Gilbert Ryle
Jean-Paul Sartre
Kenneth Sayre
T.M.Scanlon
Moritz Schlick
John Duns Scotus
Arthur Schopenhauer
John Searle
Wilfrid Sellars
David Shiang
Alan Sidelle
Ted Sider
Henry Sidgwick
Walter Sinnott-Armstrong
Peter Slezak
J.J.C.Smart
Saul Smilansky
Michael Smith
Baruch Spinoza
L. Susan Stebbing
Isabelle Stengers
George F. Stout
Galen Strawson
Peter Strawson
Eleonore Stump
Francisco Suárez
Richard Taylor
Kevin Timpe
Mark Twain
Peter Unger
Peter van Inwagen
Manuel Vargas
John Venn
Kadri Vihvelin
Voltaire
G.H. von Wright
David Foster Wallace
R. Jay Wallace
W.G.Ward
Ted Warfield
Roy Weatherford
C.F. von Weizsäcker
William Whewell
Alfred North Whitehead
David Widerker
David Wiggins
Bernard Williams
Timothy Williamson
Ludwig Wittgenstein
Susan Wolf

Scientists

David Albert
Michael Arbib
Walter Baade
Bernard Baars
Jeffrey Bada
Leslie Ballentine
Marcello Barbieri
Gregory Bateson
Horace Barlow
John S. Bell
Mara Beller
Charles Bennett
Ludwig von Bertalanffy
Susan Blackmore
Margaret Boden
David Bohm
Niels Bohr
Ludwig Boltzmann
Emile Borel
Max Born
Satyendra Nath Bose
Walther Bothe
Jean Bricmont
Hans Briegel
Leon Brillouin
Stephen Brush
Henry Thomas Buckle
S. H. Burbury
Melvin Calvin
Donald Campbell
Sadi Carnot
Anthony Cashmore
Eric Chaisson
Gregory Chaitin
Jean-Pierre Changeux
Rudolf Clausius
Arthur Holly Compton
John Conway
Jerry Coyne
John Cramer
Francis Crick
E. P. Culverwell
Antonio Damasio
Olivier Darrigol
Charles Darwin
Richard Dawkins
Terrence Deacon
Lüder Deecke
Richard Dedekind
Louis de Broglie
Stanislas Dehaene
Max Delbrück
Abraham de Moivre
Bernard d'Espagnat
Paul Dirac
Hans Driesch
John Eccles
Arthur Stanley Eddington
Gerald Edelman
Paul Ehrenfest
Manfred Eigen
Albert Einstein
George F. R. Ellis
Hugh Everett, III
Franz Exner
Richard Feynman
R. A. Fisher
David Foster
Joseph Fourier
Philipp Frank
Steven Frautschi
Edward Fredkin
Benjamin Gal-Or
Howard Gardner
Lila Gatlin
Michael Gazzaniga
Nicholas Georgescu-Roegen
GianCarlo Ghirardi
J. Willard Gibbs
James J. Gibson
Nicolas Gisin
Paul Glimcher
Thomas Gold
A. O. Gomes
Brian Goodwin
Joshua Greene
Dirk ter Haar
Jacques Hadamard
Mark Hadley
Patrick Haggard
J. B. S. Haldane
Stuart Hameroff
Augustin Hamon
Sam Harris
Ralph Hartley
Hyman Hartman
Jeff Hawkins
John-Dylan Haynes
Donald Hebb
Martin Heisenberg
Werner Heisenberg
John Herschel
Basil Hiley
Art Hobson
Jesper Hoffmeyer
Don Howard
John H. Jackson
William Stanley Jevons
Roman Jakobson
E. T. Jaynes
Pascual Jordan
Eric Kandel
Ruth E. Kastner
Stuart Kauffman
Martin J. Klein
William R. Klemm
Christof Koch
Simon Kochen
Hans Kornhuber
Stephen Kosslyn
Daniel Koshland
Ladislav Kovàč
Leopold Kronecker
Rolf Landauer
Alfred Landé
Pierre-Simon Laplace
Karl Lashley
David Layzer
Joseph LeDoux
Gerald Lettvin
Gilbert Lewis
Benjamin Libet
David Lindley
Seth Lloyd
Werner Loewenstein
Hendrik Lorentz
Josef Loschmidt
Alfred Lotka
Ernst Mach
Donald MacKay
Henry Margenau
Owen Maroney
David Marr
Humberto Maturana
James Clerk Maxwell
Ernst Mayr
John McCarthy
Warren McCulloch
N. David Mermin
George Miller
Stanley Miller
Ulrich Mohrhoff
Jacques Monod
Vernon Mountcastle
Emmy Noether
Donald Norman
Alexander Oparin
Abraham Pais
Howard Pattee
Wolfgang Pauli
Massimo Pauri
Wilder Penfield
Roger Penrose
Steven Pinker
Colin Pittendrigh
Walter Pitts
Max Planck
Susan Pockett
Henri Poincaré
Daniel Pollen
Ilya Prigogine
Hans Primas
Zenon Pylyshyn
Henry Quastler
Adolphe Quételet
Pasco Rakic
Nicolas Rashevsky
Lord Rayleigh
Frederick Reif
Jürgen Renn
Giacomo Rizzolati
A.A. Roback
Emil Roduner
Juan Roederer
Jerome Rothstein
David Ruelle
David Rumelhart
Robert Sapolsky
Tilman Sauer
Ferdinand de Saussure
Jürgen Schmidhuber
Erwin Schrödinger
Aaron Schurger
Sebastian Seung
Thomas Sebeok
Franco Selleri
Claude Shannon
Charles Sherrington
Abner Shimony
Herbert Simon
Dean Keith Simonton
Edmund Sinnott
B. F. Skinner
Lee Smolin
Ray Solomonoff
Roger Sperry
John Stachel
Henry Stapp
Tom Stonier
Antoine Suarez
Leo Szilard
Max Tegmark
Teilhard de Chardin
Libb Thims
William Thomson (Kelvin)
Richard Tolman
Giulio Tononi
Peter Tse
Alan Turing
C. S. Unnikrishnan
Francisco Varela
Vlatko Vedral
Vladimir Vernadsky
Mikhail Volkenstein
Heinz von Foerster
Richard von Mises
John von Neumann
Jakob von Uexküll
C. H. Waddington
John B. Watson
Daniel Wegner
Steven Weinberg
Paul A. Weiss
Herman Weyl
John Wheeler
Jeffrey Wicken
Wilhelm Wien
Norbert Wiener
Eugene Wigner
E. O. Wilson
Günther Witzany
Stephen Wolfram
H. Dieter Zeh
Semir Zeki
Ernst Zermelo
Wojciech Zurek
Konrad Zuse
Fritz Zwicky

Presentations

Biosemiotics
Free Will
Mental Causation
James Symposium
 
Quantum Weirdness

A number of philosophers of science and science writers have written books and articles on quantum entanglement describing it as weird, impossible, illogical, and unreal.

Physicists too have described quantum phenomena as unreal, as defining a new "quantum reality," and as simply impossible to understand in terms of pre-quantum classical physics.

We review ten recent books by philosophers of science and prominent science writers along with key arguments from physicists back in the 1950's and 1960's. We discuss a few insights into quantum phenomena that may be gained by examining the information that is available about quantum states before and after a quantum measurement, especially when total momentum is conserved.

The founders of quantum mechanics themselves held some extreme views that quantum phenomena might be beyond human understanding.

Niels Bohr, "There is no quantum world."

Werner Heisenberg, "We cannot find how nature really is, only what we can know about it."

Albert Einstein, "Spooky action-at-a-distance."

Richard Feynman, "Nobody understands quantum mechanics." "The two-slit experiment is the [central] mystery of quantum mechanics." Feynman called it the one and only mystery, and we now know it explains entanglement as well.

Only one person explicitly says that conservation of angular momentum (spin) can explain the perfect correlations between entangled distant particles. It was Eugene Wigner in 1963, after the work of David Bohm (1952) but just before John Bell (1964). Bell, and Bohm, and Einstein before them, all used conservation of momentum implicitly to know about properties of the widely separated particle.

The criticism is correct that the particular z-spin (or x-spin or y-spin) that we measure did not exist before we measure, because we know that definite spins in all directions cannot exist simultaneously, and we can choose to measure in a random direction. But it is also correct that if we measure either particle, and find ("create the reality") that z-spin is up, then because the total z-spin must remain zero by conservation of angular (spin) momentum, the other article's z-spin will be found to be down, as long as the measurement is made in the (previously agreed upon) same direction.

Before measurement the spin state of the two particles (total zero spin with no preferred direction is called a singlet state) is rotationally symmetric, the same in all directions. Whichever direction we choose to measure, the two spins we find in that direction will necessarily be opposite to satisfy the conservation of angular momentum. It is not because we measure one or the other particle first, then that particle causes the other to line up. It is because the collapsing two-particle wave function Ψ12 is a shared property of both particles, as Erwin Schrödinger showed in 1935 when he defined entanglement.

The two-particle wave function Ψ12 collapses to the product of disentangled single-particle wave functions Ψ1 Ψ2. Together they still satisfy the conservation of angular momentum. If Ψ1 is spin up, Ψ2 will be spin down. This is not because one acts on the other.

It is a measurement that disentangles (or decoheres) the two-particle wave function, causing the "collapse of the wave function" that separates the two particles. Einstein hoped the entangled particles could separate simply by moving far enough apart, but Schrödinger explained to Einstein that is not the case, and Schrödinger has been shown correct by entanglement experiments over vast distances. Only a measurement that collapses the wave function can disentangle the particles.

Note that Niels Bohr's Copenhagen Interpretation that the value of spin measured "did not exist" before the measurement is correct. The measurement direction was chosen by the experimenter. Werner Heisenberg called this the "free choice? of the experimenter. Whether spin is found to be up or down was not determined, but random. Paul Dirac called this "Nature's choice."

The spin and its direction certainly were not determined back at the time of the initial entanglement as some have suggested. Nor were they predetermined at the beginning of the universe as determinist mathematical physicists sometimes claim. These properties both come into existence (emerge) perfectly correlated at the first measurement, caused by (Heisenberg and Bohr might say "created" by) the measurement.

References
Aczel, A. D. (2002). Entanglement: the greatest mystery in physics. Raincoast Books.

Ananthaswamy, A. (2019). Through two doors at once: The elegant experiment that captures the enigma of our quantum reality. Dutton.

Ball, P. (2020). Beyond weird. University of Chicago Press.

Becker, A. (2018). What is Real? New York: Basic Books.

Brody, J. (2020). Quantum entanglement. MIT Press.

Herbert, N. (2011). Quantum reality: Beyond the new physics. Anchor.

Kaiser, D. (2011). How the Hippies Saved Physics, Counterculture, and the Quantum Revival. Norton.

Kumar, M. (2008). Quantum: Einstein, Bohr and the great debate about the nature of reality. Icon Books Ltd.

Lindley, D. (2008). Where does the weirdness go?: why quantum mechanics is strange, but not as strange as you think. Basic books.

Maudlin, T. (2011). Quantum Non-Locality and Relativity: Metaphysical Intimations of Modern Physics. Wiley-Blackwell; 3rd edition

Musser, G. (2015). Spooky Action at a Distance: The Phenomenon that Reimagines Space and Time--and what it Means for Black Holes, the Big Bang, and Theories of Everything. Macmillan.

Normal | Teacher | Scholar