Citation for this page in APA citation style.           Close


Philosophers

Mortimer Adler
Rogers Albritton
Alexander of Aphrodisias
Samuel Alexander
William Alston
Anaximander
G.E.M.Anscombe
Anselm
Louise Antony
Thomas Aquinas
Aristotle
David Armstrong
Harald Atmanspacher
Robert Audi
Augustine
J.L.Austin
A.J.Ayer
Alexander Bain
Mark Balaguer
Jeffrey Barrett
William Barrett
William Belsham
Henri Bergson
George Berkeley
Isaiah Berlin
Richard J. Bernstein
Bernard Berofsky
Robert Bishop
Max Black
Susanne Bobzien
Emil du Bois-Reymond
Hilary Bok
Laurence BonJour
George Boole
Émile Boutroux
Daniel Boyd
F.H.Bradley
C.D.Broad
Michael Burke
Lawrence Cahoone
C.A.Campbell
Joseph Keim Campbell
Rudolf Carnap
Carneades
Nancy Cartwright
Gregg Caruso
Ernst Cassirer
David Chalmers
Roderick Chisholm
Chrysippus
Cicero
Tom Clark
Randolph Clarke
Samuel Clarke
Anthony Collins
Antonella Corradini
Diodorus Cronus
Jonathan Dancy
Donald Davidson
Mario De Caro
Democritus
Daniel Dennett
Jacques Derrida
René Descartes
Richard Double
Fred Dretske
John Dupré
John Earman
Laura Waddell Ekstrom
Epictetus
Epicurus
Austin Farrer
Herbert Feigl
Arthur Fine
John Martin Fischer
Frederic Fitch
Owen Flanagan
Luciano Floridi
Philippa Foot
Alfred Fouilleé
Harry Frankfurt
Richard L. Franklin
Bas van Fraassen
Michael Frede
Gottlob Frege
Peter Geach
Edmund Gettier
Carl Ginet
Alvin Goldman
Gorgias
Nicholas St. John Green
H.Paul Grice
Ian Hacking
Ishtiyaque Haji
Stuart Hampshire
W.F.R.Hardie
Sam Harris
William Hasker
R.M.Hare
Georg W.F. Hegel
Martin Heidegger
Heraclitus
R.E.Hobart
Thomas Hobbes
David Hodgson
Shadsworth Hodgson
Baron d'Holbach
Ted Honderich
Pamela Huby
David Hume
Ferenc Huoranszki
Frank Jackson
William James
Lord Kames
Robert Kane
Immanuel Kant
Tomis Kapitan
Walter Kaufmann
Jaegwon Kim
William King
Hilary Kornblith
Christine Korsgaard
Saul Kripke
Thomas Kuhn
Andrea Lavazza
Christoph Lehner
Keith Lehrer
Gottfried Leibniz
Jules Lequyer
Leucippus
Michael Levin
Joseph Levine
George Henry Lewes
C.I.Lewis
David Lewis
Peter Lipton
C. Lloyd Morgan
John Locke
Michael Lockwood
Arthur O. Lovejoy
E. Jonathan Lowe
John R. Lucas
Lucretius
Alasdair MacIntyre
Ruth Barcan Marcus
Tim Maudlin
James Martineau
Nicholas Maxwell
Storrs McCall
Hugh McCann
Colin McGinn
Michael McKenna
Brian McLaughlin
John McTaggart
Paul E. Meehl
Uwe Meixner
Alfred Mele
Trenton Merricks
John Stuart Mill
Dickinson Miller
G.E.Moore
Thomas Nagel
Otto Neurath
Friedrich Nietzsche
John Norton
P.H.Nowell-Smith
Robert Nozick
William of Ockham
Timothy O'Connor
Parmenides
David F. Pears
Charles Sanders Peirce
Derk Pereboom
Steven Pinker
Plato
Karl Popper
Porphyry
Huw Price
H.A.Prichard
Protagoras
Hilary Putnam
Willard van Orman Quine
Frank Ramsey
Ayn Rand
Michael Rea
Thomas Reid
Charles Renouvier
Nicholas Rescher
C.W.Rietdijk
Richard Rorty
Josiah Royce
Bertrand Russell
Paul Russell
Gilbert Ryle
Jean-Paul Sartre
Kenneth Sayre
T.M.Scanlon
Moritz Schlick
John Duns Scotus
Arthur Schopenhauer
John Searle
Wilfrid Sellars
Alan Sidelle
Ted Sider
Henry Sidgwick
Walter Sinnott-Armstrong
J.J.C.Smart
Saul Smilansky
Michael Smith
Baruch Spinoza
L. Susan Stebbing
Isabelle Stengers
George F. Stout
Galen Strawson
Peter Strawson
Eleonore Stump
Francisco Suárez
Richard Taylor
Kevin Timpe
Mark Twain
Peter Unger
Peter van Inwagen
Manuel Vargas
John Venn
Kadri Vihvelin
Voltaire
G.H. von Wright
David Foster Wallace
R. Jay Wallace
W.G.Ward
Ted Warfield
Roy Weatherford
C.F. von Weizsäcker
William Whewell
Alfred North Whitehead
David Widerker
David Wiggins
Bernard Williams
Timothy Williamson
Ludwig Wittgenstein
Susan Wolf

Scientists

David Albert
Michael Arbib
Walter Baade
Bernard Baars
Jeffrey Bada
Leslie Ballentine
Marcello Barbieri
Gregory Bateson
Horace Barlow
John S. Bell
Mara Beller
Charles Bennett
Ludwig von Bertalanffy
Susan Blackmore
Margaret Boden
David Bohm
Niels Bohr
Ludwig Boltzmann
Emile Borel
Max Born
Satyendra Nath Bose
Walther Bothe
Jean Bricmont
Hans Briegel
Leon Brillouin
Stephen Brush
Henry Thomas Buckle
S. H. Burbury
Melvin Calvin
Donald Campbell
Sadi Carnot
Anthony Cashmore
Eric Chaisson
Gregory Chaitin
Jean-Pierre Changeux
Rudolf Clausius
Arthur Holly Compton
John Conway
Jerry Coyne
John Cramer
Francis Crick
E. P. Culverwell
Antonio Damasio
Olivier Darrigol
Charles Darwin
Richard Dawkins
Terrence Deacon
Lüder Deecke
Richard Dedekind
Louis de Broglie
Stanislas Dehaene
Max Delbrück
Abraham de Moivre
Bernard d'Espagnat
Paul Dirac
Hans Driesch
John Eccles
Arthur Stanley Eddington
Gerald Edelman
Paul Ehrenfest
Manfred Eigen
Albert Einstein
George F. R. Ellis
Hugh Everett, III
Franz Exner
Richard Feynman
R. A. Fisher
David Foster
Joseph Fourier
Philipp Frank
Steven Frautschi
Edward Fredkin
Benjamin Gal-Or
Howard Gardner
Lila Gatlin
Michael Gazzaniga
Nicholas Georgescu-Roegen
GianCarlo Ghirardi
J. Willard Gibbs
James J. Gibson
Nicolas Gisin
Paul Glimcher
Thomas Gold
A. O. Gomes
Brian Goodwin
Joshua Greene
Dirk ter Haar
Jacques Hadamard
Mark Hadley
Patrick Haggard
J. B. S. Haldane
Stuart Hameroff
Augustin Hamon
Sam Harris
Ralph Hartley
Hyman Hartman
Jeff Hawkins
John-Dylan Haynes
Donald Hebb
Martin Heisenberg
Werner Heisenberg
John Herschel
Basil Hiley
Art Hobson
Jesper Hoffmeyer
Don Howard
John H. Jackson
William Stanley Jevons
Roman Jakobson
E. T. Jaynes
Pascual Jordan
Eric Kandel
Ruth E. Kastner
Stuart Kauffman
Martin J. Klein
William R. Klemm
Christof Koch
Simon Kochen
Hans Kornhuber
Stephen Kosslyn
Daniel Koshland
Ladislav Kovàč
Leopold Kronecker
Rolf Landauer
Alfred Landé
Pierre-Simon Laplace
Karl Lashley
David Layzer
Joseph LeDoux
Gerald Lettvin
Gilbert Lewis
Benjamin Libet
David Lindley
Seth Lloyd
Werner Loewenstein
Hendrik Lorentz
Josef Loschmidt
Alfred Lotka
Ernst Mach
Donald MacKay
Henry Margenau
Owen Maroney
David Marr
Humberto Maturana
James Clerk Maxwell
Ernst Mayr
John McCarthy
Warren McCulloch
N. David Mermin
George Miller
Stanley Miller
Ulrich Mohrhoff
Jacques Monod
Vernon Mountcastle
Emmy Noether
Donald Norman
Alexander Oparin
Abraham Pais
Howard Pattee
Wolfgang Pauli
Massimo Pauri
Wilder Penfield
Roger Penrose
Steven Pinker
Colin Pittendrigh
Walter Pitts
Max Planck
Susan Pockett
Henri Poincaré
Daniel Pollen
Ilya Prigogine
Hans Primas
Zenon Pylyshyn
Henry Quastler
Adolphe Quételet
Pasco Rakic
Nicolas Rashevsky
Lord Rayleigh
Frederick Reif
Jürgen Renn
Giacomo Rizzolati
A.A. Roback
Emil Roduner
Juan Roederer
Jerome Rothstein
David Ruelle
David Rumelhart
Robert Sapolsky
Tilman Sauer
Ferdinand de Saussure
Jürgen Schmidhuber
Erwin Schrödinger
Aaron Schurger
Sebastian Seung
Thomas Sebeok
Franco Selleri
Claude Shannon
Charles Sherrington
David Shiang
Abner Shimony
Herbert Simon
Dean Keith Simonton
Edmund Sinnott
B. F. Skinner
Lee Smolin
Ray Solomonoff
Roger Sperry
John Stachel
Henry Stapp
Tom Stonier
Antoine Suarez
Leo Szilard
Max Tegmark
Teilhard de Chardin
Libb Thims
William Thomson (Kelvin)
Richard Tolman
Giulio Tononi
Peter Tse
Alan Turing
C. S. Unnikrishnan
Francisco Varela
Vlatko Vedral
Vladimir Vernadsky
Mikhail Volkenstein
Heinz von Foerster
Richard von Mises
John von Neumann
Jakob von Uexküll
C. H. Waddington
John B. Watson
Daniel Wegner
Steven Weinberg
Paul A. Weiss
Herman Weyl
John Wheeler
Jeffrey Wicken
Wilhelm Wien
Norbert Wiener
Eugene Wigner
E. O. Wilson
Günther Witzany
Stephen Wolfram
H. Dieter Zeh
Semir Zeki
Ernst Zermelo
Wojciech Zurek
Konrad Zuse
Fritz Zwicky

Presentations

Biosemiotics
Free Will
Mental Causation
James Symposium
 
Nancy Cartwright

Cartwright is a member of the "Stanford School" of the philosophy of science, including John Dupré, Peter Galison, Ian Hacking, and Patrick Suppes. They are polemicists against the "unity of science," a notion that goes back to the Vienna Circle. Following Dupré, they defend the "Disunity of Science." Members of the Vienna Circle powerfully attacked metaphysics. Dupré's book The Disorder of Things is subtitled "Metaphysical Foundations of the Disunity of Science."

Cartwright is perhaps best known for her provocative book How the Laws of Physics Lie."

She writes...

Philosophers distinguish phenomenological from theoretical laws. Phenomenological laws are about appearances; theoretical ones are about the reality behind the appearances. The distinction is rooted in epistemology. Phenomenological laws are about things we can at least in principle observe directly, whereas theoretical laws can be known only by inference. Normally for philosophers ‘phenomenologlcal and ‘theoretical’ mark the distinction between the observable and the unobservable.

Physicists also use the terms 'theoretical’ and ‘phenomenological’. But their usage makes a different distinction. Physicists contrast ‘phenomenological’ with ‘fundamental’.

Cartwright says phenomenological laws describe what happens. The terms 'theoretical’ and ‘phenomenological’ separate laws which are fundamental and explanatory from those that merely describe.

She writes...

The divide between theoretical and phenomenological ^ commonly separates realists from anti-realists. I argue in these essays for a kind of anti-realism, and typically it is an antirealism that accepts the phenomenological and rejects the theoretical. But it is not theory versus observation that I reject. Rather it is the theoretical as opposed to the phenomenological.

In modern physics, and I think in other exact sciences as well, phenomenological laws are meant to describe, and they often succeed reasonably well. But fundamental equations are meant to explain, and paradoxically enough the cost of explanatory power is descriptive adequacy. Really powerful explanatory laws of the sort found in theoretical physics do not state the truth.

Cartwright says laws of physics are not true, particularly compared with the phenomenological laws they are meant to explain.

I will argue that the accounts [laws of physics} give are generally not true, patently not true by the same practical standards that admit an indefinite number of commonplace phenomenological laws. We have detailed expertise for testing the claim of physics about what happens in concrete situations. When we look to the real implications of our fundamental laws, they do not meet these ordinary standards. Realists are inclined to believe that if theoretical laws are false and inaccurate, then phenomenological laws are more so. I urge just the reverse. When it comes to the test, fundamental laws are far worse off than the phenomenological laws they are supposed to explain.

She offers three arguments...

(1) The manifest explanatory power of fundamental laws does not argue for their truth.

(2) In fact the way they are used in explanation argues for their falsehood. We explain by ceteris paribus laws, by composition of causes, and by approximations that improve on what the fundamental laws dictate. In all of these cases the fundamental laws patently do not get the facts right.

(3) The appearance of truth comes from a bad model of explanation, a model that ties laws directly to reality. As an alternative to the conventional picture I propose a simulacrum account of explanation. The route from theory to reality is from theory to model, and then from model to phenomenological law. The phenomenological laws are indeed true of the objects in reality—or might be; but the fundamental laws are true only of objects in the model.

Cartwright's work builds on the claims of Bas van Fraasen that truth has nothing to do with explanatory power.

She writes...

I will argue that the falsehood of fundamental laws is a consequence of their great explanatory power. This is the exact opposite of what is assumed by a well-known and widely discussed argument form—inference to the best explanation. The basic idea of this argument is: if a hypothesis explains a sufficiently wide variety of phenomena well enough, we can infer that the hypothesis is true. Advocates of this argument form may disagree about what counts as well enough, or how much variety is necessary. ( But they all think that explanatory power, far from being at odds with truth, leads us to it. My first line of argument in these essays denies that explanation is a guide to truth...

Numerous traditional philosophical positions bar inferences to best explanations. Scepticism, idealism, and positivism are examples. But the most powerful argument I know is found in Pierre Duhem’s Aim and Structure of Physical Theory, reformulated in a particularly pointed way by Bas van Fraassen in his recent book The Scientific Image. Van Fraassen asks, what has explanatory power to do with ' truth? He offers more a challenge than an argument: show exactly what about the explanatory relationship tends to guarantee that if x explains y and y is true, then x should be true as well. This challenge has an answer in the case of causal explanation, but only in the case of causal explanation...

Causal reasoning provides good grounds for our beliefs in theoretical entities. Given our general knowledge about what kinds of conditions and happenings are possible in the circumstances, we reason backwards from the detailed structure of the effects to exactly what characteristics the causes must have in order to bring them about. I have sometimes summarized my view about explanation this way: no inference to best explanation; only inference to most likely cause. But that is right only if we are very careful about what makes a cause ‘likely’. We must have reason to think that this cause, and no other, is the only practical possibility, and it should take a good deal of critical experience to convince us of this.

We make our best causal inferences in very special situations—situations where our general view of the world makes us insist that a known phenomenon has a cause; where the cause we cite is the kind of thing that could bring about the effect and there is an appropriate process connecting the cause and the effect; and where the likelihood of other causes is ruled out. This is why controlled experiments are so important in finding out about entities and processes which we cannot observe. Seldom outside of the controlled conditions of an experiment are we in a situation where a cause can legitimately be inferred...

Explanatory power is no guarantee of truth, unless van Fraassen’s challenge can be met. I argue that, in the very special case of causal explanation, the challenge is met. In causal explanations truth is essential to explanatory success. But it is only the truth of low-level causal principles and concrete phenomenological laws. Is there no further account that secures the truth of abstract laws as well; no story of 'explanation that shows that abstract laws must be tr.ue if they are to explain?

Cartwright on Russell

In her well known essay Causal Laws and Effective Strategies, Cartwright argued for two kinds of physical laws, laws of nature and causal laws

Normal | Teacher | Scholar