Philosophers
Mortimer Adler Rogers Albritton Alexander of Aphrodisias Samuel Alexander William Alston Anaximander G.E.M.Anscombe Anselm Louise Antony Thomas Aquinas Aristotle David Armstrong Harald Atmanspacher Robert Audi Augustine J.L.Austin A.J.Ayer Alexander Bain Mark Balaguer Jeffrey Barrett William Barrett William Belsham Henri Bergson George Berkeley Isaiah Berlin Richard J. Bernstein Bernard Berofsky Robert Bishop Max Black Susanne Bobzien Emil du Bois-Reymond Hilary Bok Laurence BonJour George Boole Émile Boutroux Daniel Boyd F.H.Bradley C.D.Broad Michael Burke Lawrence Cahoone C.A.Campbell Joseph Keim Campbell Rudolf Carnap Carneades Nancy Cartwright Gregg Caruso Ernst Cassirer David Chalmers Roderick Chisholm Chrysippus Cicero Tom Clark Randolph Clarke Samuel Clarke Anthony Collins Antonella Corradini Diodorus Cronus Jonathan Dancy Donald Davidson Mario De Caro Democritus Daniel Dennett Jacques Derrida René Descartes Richard Double Fred Dretske John Dupré John Earman Laura Waddell Ekstrom Epictetus Epicurus Austin Farrer Herbert Feigl Arthur Fine John Martin Fischer Frederic Fitch Owen Flanagan Luciano Floridi Philippa Foot Alfred Fouilleé Harry Frankfurt Richard L. Franklin Bas van Fraassen Michael Frede Gottlob Frege Peter Geach Edmund Gettier Carl Ginet Alvin Goldman Gorgias Nicholas St. John Green H.Paul Grice Ian Hacking Ishtiyaque Haji Stuart Hampshire W.F.R.Hardie Sam Harris William Hasker R.M.Hare Georg W.F. Hegel Martin Heidegger Heraclitus R.E.Hobart Thomas Hobbes David Hodgson Shadsworth Hodgson Baron d'Holbach Ted Honderich Pamela Huby David Hume Ferenc Huoranszki Frank Jackson William James Lord Kames Robert Kane Immanuel Kant Tomis Kapitan Walter Kaufmann Jaegwon Kim William King Hilary Kornblith Christine Korsgaard Saul Kripke Thomas Kuhn Andrea Lavazza Christoph Lehner Keith Lehrer Gottfried Leibniz Jules Lequyer Leucippus Michael Levin Joseph Levine George Henry Lewes C.I.Lewis David Lewis Peter Lipton C. Lloyd Morgan John Locke Michael Lockwood Arthur O. Lovejoy E. Jonathan Lowe John R. Lucas Lucretius Alasdair MacIntyre Ruth Barcan Marcus Tim Maudlin James Martineau Nicholas Maxwell Storrs McCall Hugh McCann Colin McGinn Michael McKenna Brian McLaughlin John McTaggart Paul E. Meehl Uwe Meixner Alfred Mele Trenton Merricks John Stuart Mill Dickinson Miller G.E.Moore Thomas Nagel Otto Neurath Friedrich Nietzsche John Norton P.H.Nowell-Smith Robert Nozick William of Ockham Timothy O'Connor Parmenides David F. Pears Charles Sanders Peirce Derk Pereboom Steven Pinker U.T.Place Plato Karl Popper Porphyry Huw Price H.A.Prichard Protagoras Hilary Putnam Willard van Orman Quine Frank Ramsey Ayn Rand Michael Rea Thomas Reid Charles Renouvier Nicholas Rescher C.W.Rietdijk Richard Rorty Josiah Royce Bertrand Russell Paul Russell Gilbert Ryle Jean-Paul Sartre Kenneth Sayre T.M.Scanlon Moritz Schlick John Duns Scotus Arthur Schopenhauer John Searle Wilfrid Sellars David Shiang Alan Sidelle Ted Sider Henry Sidgwick Walter Sinnott-Armstrong Peter Slezak J.J.C.Smart Saul Smilansky Michael Smith Baruch Spinoza L. Susan Stebbing Isabelle Stengers George F. Stout Galen Strawson Peter Strawson Eleonore Stump Francisco Suárez Richard Taylor Kevin Timpe Mark Twain Peter Unger Peter van Inwagen Manuel Vargas John Venn Kadri Vihvelin Voltaire G.H. von Wright David Foster Wallace R. Jay Wallace W.G.Ward Ted Warfield Roy Weatherford C.F. von Weizsäcker William Whewell Alfred North Whitehead David Widerker David Wiggins Bernard Williams Timothy Williamson Ludwig Wittgenstein Susan Wolf Scientists David Albert Michael Arbib Walter Baade Bernard Baars Jeffrey Bada Leslie Ballentine Marcello Barbieri Gregory Bateson Horace Barlow John S. Bell Mara Beller Charles Bennett Ludwig von Bertalanffy Susan Blackmore Margaret Boden David Bohm Niels Bohr Ludwig Boltzmann Emile Borel Max Born Satyendra Nath Bose Walther Bothe Jean Bricmont Hans Briegel Leon Brillouin Stephen Brush Henry Thomas Buckle S. H. Burbury Melvin Calvin Donald Campbell Sadi Carnot Anthony Cashmore Eric Chaisson Gregory Chaitin Jean-Pierre Changeux Rudolf Clausius Arthur Holly Compton John Conway Jerry Coyne John Cramer Francis Crick E. P. Culverwell Antonio Damasio Olivier Darrigol Charles Darwin Richard Dawkins Terrence Deacon Lüder Deecke Richard Dedekind Louis de Broglie Stanislas Dehaene Max Delbrück Abraham de Moivre Bernard d'Espagnat Paul Dirac Hans Driesch John Eccles Arthur Stanley Eddington Gerald Edelman Paul Ehrenfest Manfred Eigen Albert Einstein George F. R. Ellis Hugh Everett, III Franz Exner Richard Feynman R. A. Fisher David Foster Joseph Fourier Philipp Frank Steven Frautschi Edward Fredkin Benjamin Gal-Or Howard Gardner Lila Gatlin Michael Gazzaniga Nicholas Georgescu-Roegen GianCarlo Ghirardi J. Willard Gibbs James J. Gibson Nicolas Gisin Paul Glimcher Thomas Gold A. O. Gomes Brian Goodwin Joshua Greene Dirk ter Haar Jacques Hadamard Mark Hadley Patrick Haggard J. B. S. Haldane Stuart Hameroff Augustin Hamon Sam Harris Ralph Hartley Hyman Hartman Jeff Hawkins John-Dylan Haynes Donald Hebb Martin Heisenberg Werner Heisenberg John Herschel Basil Hiley Art Hobson Jesper Hoffmeyer Don Howard John H. Jackson William Stanley Jevons Roman Jakobson E. T. Jaynes Pascual Jordan Eric Kandel Ruth E. Kastner Stuart Kauffman Martin J. Klein William R. Klemm Christof Koch Simon Kochen Hans Kornhuber Stephen Kosslyn Daniel Koshland Ladislav Kovàč Leopold Kronecker Rolf Landauer Alfred Landé Pierre-Simon Laplace Karl Lashley David Layzer Joseph LeDoux Gerald Lettvin Gilbert Lewis Benjamin Libet David Lindley Seth Lloyd Werner Loewenstein Hendrik Lorentz Josef Loschmidt Alfred Lotka Ernst Mach Donald MacKay Henry Margenau Owen Maroney David Marr Humberto Maturana James Clerk Maxwell Ernst Mayr John McCarthy Warren McCulloch N. David Mermin George Miller Stanley Miller Ulrich Mohrhoff Jacques Monod Vernon Mountcastle Emmy Noether Donald Norman Alexander Oparin Abraham Pais Howard Pattee Wolfgang Pauli Massimo Pauri Wilder Penfield Roger Penrose Steven Pinker Colin Pittendrigh Walter Pitts Max Planck Susan Pockett Henri Poincaré Daniel Pollen Ilya Prigogine Hans Primas Zenon Pylyshyn Henry Quastler Adolphe Quételet Pasco Rakic Nicolas Rashevsky Lord Rayleigh Frederick Reif Jürgen Renn Giacomo Rizzolati A.A. Roback Emil Roduner Juan Roederer Jerome Rothstein David Ruelle David Rumelhart Robert Sapolsky Tilman Sauer Ferdinand de Saussure Jürgen Schmidhuber Erwin Schrödinger Aaron Schurger Sebastian Seung Thomas Sebeok Franco Selleri Claude Shannon Charles Sherrington Abner Shimony Herbert Simon Dean Keith Simonton Edmund Sinnott B. F. Skinner Lee Smolin Ray Solomonoff Roger Sperry John Stachel Henry Stapp Tom Stonier Antoine Suarez Leo Szilard Max Tegmark Teilhard de Chardin Libb Thims William Thomson (Kelvin) Richard Tolman Giulio Tononi Peter Tse Alan Turing C. S. Unnikrishnan Francisco Varela Vlatko Vedral Vladimir Vernadsky Mikhail Volkenstein Heinz von Foerster Richard von Mises John von Neumann Jakob von Uexküll C. H. Waddington John B. Watson Daniel Wegner Steven Weinberg Paul A. Weiss Herman Weyl John Wheeler Jeffrey Wicken Wilhelm Wien Norbert Wiener Eugene Wigner E. O. Wilson Günther Witzany Stephen Wolfram H. Dieter Zeh Semir Zeki Ernst Zermelo Wojciech Zurek Konrad Zuse Fritz Zwicky Presentations Biosemiotics Free Will Mental Causation James Symposium |
The Recurrence Problem
The idea that the macroscopic conditions in the world will repeat after some interval of time is an ancient idea, but it plays a vital role in modern physics as well.
Ancient middle eastern civilizations called it the Great Year. They calculated it as the time after which the planets would realign themselves in identical positions in the sky.
The Great Year should not be confused with the time that the precession of the equinoxes takes to return the equinoxes to the same position along the Zodiac - although this time (about 26,000 years) is of the same order of magnitude as one famous number given by Babylonian astronomers for the Great Year (36,000 years).
Many societies have the concept of the Great Year, but none did calculations as carefully as the Babylonians. But since the planets orbital periods are not really commensurate, they kept increasing the time for the Great Year in the search for a better recurrence time.
The Greek and Roman Stoics thought the Great Year was a sign of the rule of law in nature and the God of reason that lay behind nature.
Nietsche's Eternal Return
In modern philosophy, Friedrich Nietzsche described an eternal return in his Also Sprach Zarathustra.
Zermelo's Paradox
Zermelo's paradox was a criticism of Ludwig Boltzmann's H-Theorem, the attempt to derive the increasing entropy required by the second law of thermodynamics from basic classical dynamics.
It was the second "paradox" attack on Boltzmann. The first was Josef Loschmidt's claim that entropy would be reduced if time were reversed. This is the problem of microscopic reversibility.
Ernst Zermelo was an extraordinary mathematician. He was (in 1908) the founder of axiomatic set theory, which with the addition of the axiom of choice (also by Zermelo, in 1904) is the most common foundation of mathematics. The axiom of choice says that given any collection of sets, one can find a way to unambiguously select one object from each set, even if the number of sets is infinite.
Before this amazing work, Zermelo was a young associate of Max Planck in Berlin, one of many German physicists who opposed the work of Boltzmann to establish the existence of atoms.
Zermelo's criticism was based on the work of Henri Poincaré, an expert in the three-body problem, which, unlike the problem of two particles, has no exact analytic solution. Where two-bodies can move in paths that may repeat exactly after a certain time, three bodies may only come arbitrarily close to an initial configuration, given enough time.
Poincaré had been able to establish limits or bounds on the possible configurations of the three bodies from conservation laws. Planck and Zermelo applied some of Poincaré's thinking to the n particles in a gas. They argued that given a long enough time, the particles would return to a distribution in "phase space" (a 6n dimensional space of possible velocities and positions) that would be indistinguishable from the original distribution. This is called the Poincaré "recurrence time."
Thus, they argued, Boltzmann's formula for the entropy would at some future time go back down, vitiating Boltzmann's claim that his measure of entropy always increases - as the second law of thermodynamics requires. Poincaré' described his view in 1890.
A theorem, easy to prove, tells us that a bounded world, governed only by the laws of mechanics, will always pass through a state very close to its initial state. On the other hand, according to accepted experimental laws (if one attributes absolute validity to them, and if one is willing to press their consequences to the extreme), the universe tends toward a certain final state, from which it will never depart. In this final state, which will be a kind of death, all bodies will be at rest at the same temperature. I do not know if it has been remarked that the English kinetic theories can extricate themselves from this contradiction. The world, according to them, tends at first toward a state where it remains for a long time without apparent change; and this is consistent with experience; but it does not remain that way forever, if the theorem cited above is not violated; it merely stays there for an enormously long time, a time which is longer the more numerous are the molecules. This state will not be the final death of the universe, but a sort of slumber, from which it will awake after millions of millions of centuries.Boltzmann replied that his argument was statistical. He only claimed that entropy increase was overwhelmingly more probable than Zermelo's predicted decrease. Boltzmann calculated the probability of a decrease of a very small gas of only a few hundred particles and found the time needed to realize such a decrease was many orders of magnitude larger than the presumed age of the universe. The idea that a macroscopic system can return to exactly the same physical conditions is closely related to the idea that an agent may face "exactly the same circumstances" in making a decision. Determinists maintain that given the "fixed past" and the "laws of nature" that the agent would have to make exactly the same decision again.
The Extreme Improbability of Perfect Recurrence
In a classical deterministic universe, such as that of Laplace, where information is constant, Zermelo's recurrence is mathematically possible. Given enough time, the universe can return to the exact circumstance of any earlier instant of time, because it contains the same amount of matter, energy, and information.
But, in the real universe, David Layzer has argued that information (and the material content of the universe) expands from a minimum at the origin, to ever larger amounts of information. Consequently, it is statistically and realistically improbable (if not impossible) for the universe as a whole to return to exactly the same circumstance of any earlier time.
By accepting the theory of the expanding universe we are relieved of one conclusion which we had felt to be intrinsically absurd. It was argued that every possible configuration of atoms must repeat itself at some distant date. But that was on the assumption that the atoms will have only the same choice of configurations in the future that they have now. In an expanding space any particular congruence becomes more and more improbable. The expansion of the universe creates new possibilities of distribution faster than the atoms can work through them, and there is no longer any likelihood of a particular distribution being repeated. If we continue shuffling a pack of cards we are bound sometime to bring them into their standard order — but not if the conditions are that every morning one more card is added to the pack.H. Dieter Zeh also sees that the age of the universe being much less than the Poincaré recurrence time may invalidate the recurrence objection. Another argument against the statistical interpretation of irreversibility, the recurrence objection (or Wiederkehreinwand), was raised much later by Ernst Friedrich Zermelo, a collaborator of Max Planck at a time when the latter still opposed atomism, and instead supported the 'energeticists', who attempted to understand energy and entropy as fundamental 'substances'. This argument is based on a mathematical theorem due to Henri Poincaré, which states that every bounded mechanical system will return as close as one wishes to its initial state within a sufficiently large time. The entropy of a closed system would therefore have to return to its former value, provided only the function F(z) is continuous. This is a special case of the quasiergodic theorem which asserts that every system will corne arbitrarily close to any point on the hypersurface of fixed energy (and possibly with other fixed analytical constants of the motion) within finite time. While all these theorems are mathematically correct, the recurrence objection fails to apply to reality for quantitative reasons. The age of our Universe is much smaller than the Poincaré recurrence times even for a gas consisting of no more than a few tens of particles. Their recurrence to the vicinity of their initial states (or their coming close to any other similarly specific state) can therefore be excluded in practice. Nonetheless, some 'foundations' of irreversible thermodynamics in the literature rely on formal idealizations that would lead to strictly infinite Poincaré recurrence times (for example the 'thermodynamical limit' of infinite particle number). Such assumptions are not required in our Universe of finite age, and they would not invalidate the reversibility objection (or the equilibrium expectation, mentioned above). However, all foundations of irreversible behavior have to presume some very improbable initial conditions...In order to reverse the thermodynamical arrow of time in a bounded system, it would not therefore suffice to "go ahead and reverse all momenta" in the system itself, as ironically suggested by Boltzmann as an answer to Loschmidt. In an interacting Laplacean universe, the Poincaré cycles of its subsystems could in general only be those of the whole Universe, since their exact Hamiltonians must always depend on their time-dependent environment.
|