Citation for this page in APA citation style.           Close


Philosophers

Mortimer Adler
Rogers Albritton
Alexander of Aphrodisias
Samuel Alexander
William Alston
Anaximander
G.E.M.Anscombe
Anselm
Louise Antony
Thomas Aquinas
Aristotle
David Armstrong
Harald Atmanspacher
Robert Audi
Augustine
J.L.Austin
A.J.Ayer
Alexander Bain
Mark Balaguer
Jeffrey Barrett
William Barrett
William Belsham
Henri Bergson
George Berkeley
Isaiah Berlin
Richard J. Bernstein
Bernard Berofsky
Robert Bishop
Max Black
Susanne Bobzien
Emil du Bois-Reymond
Hilary Bok
Laurence BonJour
George Boole
Émile Boutroux
Daniel Boyd
F.H.Bradley
C.D.Broad
Michael Burke
Jeremy Butterfield
Lawrence Cahoone
C.A.Campbell
Joseph Keim Campbell
Rudolf Carnap
Carneades
Nancy Cartwright
Gregg Caruso
Ernst Cassirer
David Chalmers
Roderick Chisholm
Chrysippus
Cicero
Tom Clark
Randolph Clarke
Samuel Clarke
Anthony Collins
August Compte
Antonella Corradini
Diodorus Cronus
Jonathan Dancy
Donald Davidson
Mario De Caro
Democritus
Daniel Dennett
Jacques Derrida
René Descartes
Richard Double
Fred Dretske
John Earman
Laura Waddell Ekstrom
Epictetus
Epicurus
Austin Farrer
Herbert Feigl
Arthur Fine
John Martin Fischer
Frederic Fitch
Owen Flanagan
Luciano Floridi
Philippa Foot
Alfred Fouilleé
Harry Frankfurt
Richard L. Franklin
Bas van Fraassen
Michael Frede
Gottlob Frege
Peter Geach
Edmund Gettier
Carl Ginet
Alvin Goldman
Gorgias
Nicholas St. John Green
Niels Henrik Gregersen
H.Paul Grice
Ian Hacking
Ishtiyaque Haji
Stuart Hampshire
W.F.R.Hardie
Sam Harris
William Hasker
R.M.Hare
Georg W.F. Hegel
Martin Heidegger
Heraclitus
R.E.Hobart
Thomas Hobbes
David Hodgson
Shadsworth Hodgson
Baron d'Holbach
Ted Honderich
Pamela Huby
David Hume
Ferenc Huoranszki
Frank Jackson
William James
Lord Kames
Robert Kane
Immanuel Kant
Tomis Kapitan
Walter Kaufmann
Jaegwon Kim
William King
Hilary Kornblith
Christine Korsgaard
Saul Kripke
Thomas Kuhn
Andrea Lavazza
James Ladyman
Christoph Lehner
Keith Lehrer
Gottfried Leibniz
Jules Lequyer
Leucippus
Michael Levin
Joseph Levine
George Henry Lewes
C.I.Lewis
David Lewis
Peter Lipton
C. Lloyd Morgan
John Locke
Michael Lockwood
Arthur O. Lovejoy
E. Jonathan Lowe
John R. Lucas
Lucretius
Alasdair MacIntyre
Ruth Barcan Marcus
Tim Maudlin
James Martineau
Nicholas Maxwell
Storrs McCall
Hugh McCann
Colin McGinn
Michael McKenna
Brian McLaughlin
John McTaggart
Paul E. Meehl
Uwe Meixner
Alfred Mele
Trenton Merricks
John Stuart Mill
Dickinson Miller
G.E.Moore
Ernest Nagel
Thomas Nagel
Otto Neurath
Friedrich Nietzsche
John Norton
P.H.Nowell-Smith
Robert Nozick
William of Ockham
Timothy O'Connor
Parmenides
David F. Pears
Charles Sanders Peirce
Derk Pereboom
Steven Pinker
U.T.Place
Plato
Karl Popper
Porphyry
Huw Price
H.A.Prichard
Protagoras
Hilary Putnam
Willard van Orman Quine
Frank Ramsey
Ayn Rand
Michael Rea
Thomas Reid
Charles Renouvier
Nicholas Rescher
C.W.Rietdijk
Richard Rorty
Josiah Royce
Bertrand Russell
Paul Russell
Gilbert Ryle
Jean-Paul Sartre
Kenneth Sayre
T.M.Scanlon
Moritz Schlick
John Duns Scotus
Arthur Schopenhauer
John Searle
Wilfrid Sellars
David Shiang
Alan Sidelle
Ted Sider
Henry Sidgwick
Walter Sinnott-Armstrong
Peter Slezak
J.J.C.Smart
Saul Smilansky
Michael Smith
Baruch Spinoza
L. Susan Stebbing
Isabelle Stengers
George F. Stout
Galen Strawson
Peter Strawson
Eleonore Stump
Francisco Suárez
Richard Taylor
Kevin Timpe
Mark Twain
Peter Unger
Peter van Inwagen
Manuel Vargas
John Venn
Kadri Vihvelin
Voltaire
G.H. von Wright
David Foster Wallace
R. Jay Wallace
W.G.Ward
Ted Warfield
Roy Weatherford
C.F. von Weizsäcker
William Whewell
Alfred North Whitehead
David Widerker
David Wiggins
Bernard Williams
Timothy Williamson
Ludwig Wittgenstein
Susan Wolf
Xenophon

Scientists

David Albert
Michael Arbib
Walter Baade
Bernard Baars
Jeffrey Bada
Leslie Ballentine
Marcello Barbieri
Jacob Barandes
Julian Barbour
Horace Barlow
Gregory Bateson
John S. Bell
Mara Beller
Charles Bennett
Ludwig von Bertalanffy
Susan Blackmore
Margaret Boden
David Bohm
Niels Bohr
Ludwig Boltzmann
John Tyler Bonner
Emile Borel
Max Born
Satyendra Nath Bose
Walther Bothe
Jean Bricmont
Hans Briegel
Leon Brillouin
Daniel Brooks
Stephen Brush
Henry Thomas Buckle
S. H. Burbury
Melvin Calvin
William Calvin
Donald Campbell
Sadi Carnot
Anthony Cashmore
Eric Chaisson
Gregory Chaitin
Jean-Pierre Changeux
Rudolf Clausius
Arthur Holly Compton
John Conway
Simon Conway-Morris
Peter Corning
George Cowan
Jerry Coyne
John Cramer
Francis Crick
E. P. Culverwell
Antonio Damasio
Olivier Darrigol
Charles Darwin
Paul Davies
Richard Dawkins
Terrence Deacon
Lüder Deecke
Richard Dedekind
Louis de Broglie
Stanislas Dehaene
Max Delbrück
Abraham de Moivre
David Depew
Bernard d'Espagnat
Paul Dirac
Theodosius Dobzhansky
Hans Driesch
John Dupré
John Eccles
Arthur Stanley Eddington
Gerald Edelman
Paul Ehrenfest
Manfred Eigen
Albert Einstein
George F. R. Ellis
Walter Elsasser
Hugh Everett, III
Franz Exner
Richard Feynman
R. A. Fisher
David Foster
Joseph Fourier
George Fox
Philipp Frank
Steven Frautschi
Edward Fredkin
Augustin-Jean Fresnel
Karl Friston
Benjamin Gal-Or
Howard Gardner
Lila Gatlin
Michael Gazzaniga
Nicholas Georgescu-Roegen
GianCarlo Ghirardi
J. Willard Gibbs
James J. Gibson
Nicolas Gisin
Paul Glimcher
Thomas Gold
A. O. Gomes
Brian Goodwin
Joshua Greene
Dirk ter Haar
Jacques Hadamard
Mark Hadley
Ernst Haeckel
Patrick Haggard
J. B. S. Haldane
Stuart Hameroff
Augustin Hamon
Sam Harris
Ralph Hartley
Hyman Hartman
Jeff Hawkins
John-Dylan Haynes
Donald Hebb
Martin Heisenberg
Werner Heisenberg
Hermann von Helmholtz
Grete Hermann
John Herschel
Basil Hiley
Art Hobson
Jesper Hoffmeyer
Don Howard
John H. Jackson
Ray Jackendoff
Roman Jakobson
E. T. Jaynes
William Stanley Jevons
Pascual Jordan
Eric Kandel
Ruth E. Kastner
Stuart Kauffman
Martin J. Klein
William R. Klemm
Christof Koch
Simon Kochen
Hans Kornhuber
Stephen Kosslyn
Daniel Koshland
Ladislav Kovàč
Leopold Kronecker
Bernd-Olaf Küppers
Rolf Landauer
Alfred Landé
Pierre-Simon Laplace
Karl Lashley
David Layzer
Joseph LeDoux
Gerald Lettvin
Michael Levin
Gilbert Lewis
Benjamin Libet
David Lindley
Seth Lloyd
Werner Loewenstein
Hendrik Lorentz
Josef Loschmidt
Alfred Lotka
Ernst Mach
Donald MacKay
Henry Margenau
Lynn Margulis
Owen Maroney
David Marr
Humberto Maturana
James Clerk Maxwell
John Maynard Smith
Ernst Mayr
John McCarthy
Barabara McClintock
Warren McCulloch
N. David Mermin
George Miller
Stanley Miller
Ulrich Mohrhoff
Jacques Monod
Vernon Mountcastle
Emmy Noether
Donald Norman
Travis Norsen
Howard T. Odum
Alexander Oparin
Abraham Pais
Howard Pattee
Wolfgang Pauli
Massimo Pauri
Wilder Penfield
Roger Penrose
Steven Pinker
Colin Pittendrigh
Walter Pitts
Max Planck
Susan Pockett
Henri Poincaré
Daniel Pollen
Ilya Prigogine
Hans Primas
Zenon Pylyshyn
Henry Quastler
Adolphe Quételet
Pasco Rakic
Nicolas Rashevsky
Lord Rayleigh
Frederick Reif
Jürgen Renn
Giacomo Rizzolati
A.A. Roback
Emil Roduner
Juan Roederer
Robert Rosen
Frank Rosenblatt
Jerome Rothstein
David Ruelle
David Rumelhart
Stanley Salthe
Robert Sapolsky
Tilman Sauer
Ferdinand de Saussure
Jürgen Schmidhuber
Erwin Schrödinger
Aaron Schurger
Sebastian Seung
Thomas Sebeok
Franco Selleri
Claude Shannon
Charles Sherrington
Abner Shimony
Herbert Simon
Dean Keith Simonton
Edmund Sinnott
B. F. Skinner
Lee Smolin
Ray Solomonoff
Herbert Spencer
Roger Sperry
John Stachel
Kenneth Stanley
Henry Stapp
Ian Stewart
Tom Stonier
Antoine Suarez
Leo Szilard
Max Tegmark
Teilhard de Chardin
Libb Thims
William Thomson (Kelvin)
Richard Tolman
Giulio Tononi
Peter Tse
Alan Turing
Robert Ulanowicz
C. S. Unnikrishnan
Nico van Kampen
Francisco Varela
Vlatko Vedral
Vladimir Vernadsky
Clément Vidal
Mikhail Volkenstein
Heinz von Foerster
Richard von Mises
John von Neumann
Jakob von Uexküll
C. H. Waddington
James D. Watson
John B. Watson
Daniel Wegner
Steven Weinberg
August Weismann
Paul A. Weiss
Herman Weyl
John Wheeler
Jeffrey Wicken
Wilhelm Wien
Norbert Wiener
Eugene Wigner
E. O. Wiley
E. O. Wilson
Günther Witzany
Carl Woese
Stephen Wolfram
H. Dieter Zeh
Semir Zeki
Ernst Zermelo
Wojciech Zurek
Konrad Zuse
Fritz Zwicky

Presentations

Biosemiotics
Free Will
Mental Causation
James Symposium
Evo Devo Scholar Talk
CCS25 Talk
 
Stanley Salthe
Salthe described himself as having worked in evolutionary biology,  systems  science  (hierarchy  theory) and, semiotics. His interests included thermodynamics and internalism.

In the inaugural issue of the new journal, Cosmos and History: The Journal of Natural and Social Philosophy vol.1, no.1 (2005), Stanley Salthe wrote the article "Energy and Semiotics: The Second Law and The Origin of Life."

He starts (p.128) by "deconstructing the thermodynamic concepts of work and waste." He then identifies "meaning" in Nature with energy dissipation processes, which Ilya Prigogine claimed bring "order out of chaos."

ABSTRACT: After deconstructing the thermodynamic concepts of work and waste, I take up Howard Odum’s idea of energy quality, which tallies the overall amount of energy needed to be dissipated in order to accomplish some work of interest. This was developed from economic considerations that give obvious meaning to the work accomplished. But the energy quality idea can be used to import meaning more generally into Nature. It could be viewed as projecting meaning back from any marked work into preceding energy gradient dissipations that immediately paved the way for it. But any work done by an abiotic dissipative structure, since it would be without positive economic significance, would also be difficult to mark as a starting point for the energy quality calculation. Furthermore, any (for humans) destructive work as by hurricanes or floods, with negative economic significance, would not seem to merit the quality calculation either. But there has been abiotic work of keen interest to us—that which mediated the origin of life. Some kind(s) of abiotic dissipative structures had to have been the framework(s) that fostered this process, regardless of how it might come to be understood in detail. Since all dissipative structures have the same thermodynamic and informational organization in common, any of them might provide the material context for the origin of something. So we can pick any starting point we wish, and calculate backward what sequence of energy usages would have been necessary to set it up. Given such an open ended project, we could not find an obvious place in any sequence to stop and start the forward the calculation, and so we would need to take it right back to an ultimate beginning, like the insolation of some area, or the outpouring of Earth’s thermal energy. Any energy dissipation might be the beginning of something of importance, and so Nature is as replete with potential meanings as it is with energy gradients.

KEYWORDS: Dissipative structures; Energy dissipation; Energy quality; Entropy production; Final cause; Meaning; Origin of life; Scale; Semiotics

Here we need to confront a common objection to this theoretical orientation—that if a system were to maximize its entropy production rate it would thereby likely disrupt its own organization. The critical point is to distinguish energy supplies making up a system’s own material embodiment from the external energy gradients that it is capable of consuming. If a system increases the entropy production of its locale, this does not necessarily mean that it will consume or disrupt itself. The basic thermodynamic fact about living systems is that they consume external energy gradients, thereby (because of generic poor energy efficiency) producing entropy into their immediate environment, and, as well, that they ship outside any entropy produced internally, thereby preserving their own form (Schroedinger, 1956).

Energy and Semiotics, p.128

In his final summary, Salthe says...

Potential energy exists in orderly forms of many sizes, and work takes place at all scales, but thermodynamic order is calculated at the molecular level. Odum’s energy quality can be used to scale energy dissipation. The thermodynamic need to specify work implies semiotics, and energy quality is inherently semiotic. Work requires information, which varies with kinds of energy consumers. The meaning of high quality energy dissipation is the support of particular systems, and this meaning is reflected back to all prior energy dissipations (including abiotic ones) from the same basic gradient that helped to raise its quality. These considerations lead us to final causality. The major physical effect of evolutionary / semiosic processes is delay in the reradiation of solar energy from the earth by its being captured in configurations that impose friction on its dissipation. These frictional activities dissipate energy gradients not otherwise accessible to derogation. A plenitude of exergy extractions have evolved on Earth to dissipate a plethora of energy gradients, thereby furthering the equilibration of the Universe.

The problem of the origin of life requires the pansemiotic view that meaning is present throughout Nature. Life, fostered by macroscopic dissipative structures, was interpolated into prior abiotic ecologies. Since this could occur only under certain conditions, it is premature to conclude that only entropy production in the service of the Second Law can be the final cause of abiotic dissipation. This view allows meaning to be present, however vaguely, in prebiotic systems, and so can be allocated to abiotic systems generally. The origin of life is viewed as having been a way to increase the entropy production of the earth’s surface. Since natural systems actively strive for survival, their entropy production tends to be maximized by way of maximizing the rates of dissipation of their energy supplies. We can postulate a protobiotic dissipative system that could accept the interpolation of, and takeover by, a genetic system. As microscopic, this latter would become a locus of meaning, with associated macro and mega levels deriving their meanings from there by way of Odum’s energy quality concept. Meaning at these larger scales would have eventually been codified and sharpened by the evolution of biofilms, organisms and populations.

Energy and Semiotics, p.142

In his contribution to Clément Vidal's The Evolution and Development of the Universe, a Special Issue of the First International Conference on the Evolution and Development of the Universe, 8-9 October 2008, Ecole Normale Supérieure, Salthe wrote an article titled Development (and Evolution) of the Universe (getting Development properly before Evolution).

Salthe writes...

I  distinguish  Nature  from  the  World.  I  also  distinguish  development  from  evolution. Development is progressive change and can be modeled as part of Nature, using a specification hierarchy. I have proposed a ‘canonical developmental trajectory’ of dissipative structures with the stages defined thermodynamically and informationally. I consider some thermodynamic aspects of the Big Bang, leading to a proposal for reviving final cause. This model imposes a ‘hylozooic’ kind of interpretation upon Nature, as all emergent features at higher levels would have been vaguely and episodically present primitively in the lower integrative levels, and were stabilized materially with the developmental emergence of new levels. The specification hierarchy’s form is that of a tree, with its trunk in its lowest level, and so this hierarchy is appropriate for modeling an expanding system like the Universe. It is consistent with this model of differentiation during Big Bang development to view emerging branch tips as having been entrained by multiple finalities because of the top­down integration of the various levels of organization by the higher levels.

KEYWORDS:  Big  Bang,  causality,  development,  multiple  worlds,  Nature,  specification hierarchy, thermodynamics, vagueness

The Evolution and Development of the Universe, p 248

He also writes an Introduction...

INTRODUCTION

In this paper I attempt a summary of a developmental perspective I have been constructing for two decades as a kind of ‘treaty’ among several disciplines. Beginning with some conceptual clarifications, I distinguish ‘Nature’, our scientific construct, from the World. Nature is our map or operating manual for the World. Nature embodies logic as its basic framework, and its embodiments are typically found in, e.g., inscriptions, diagrams, tables, models, equations, laws, universal constants and classifications. Nature is the subject of studies in the philosophy of nature (natural philosophy), as in this paper. It is mediated by languages, while the World is mediated to us through (what in Nature we know as) our biology (Uexküll, 1926). The World is experienced and phenomenal, but is not ‘known’ (Snowdon, 2008). My favorite example of this is that, while we may ride a bicycle, we do not ‘know’ (cannot describe) how we do it. I will as well propose a logically founded model in set theory format of ‘general development’, which is posited to be universal for dissipative structures as they are conceived in Nature. Of course, set theory cannot model dynamical change. I use this format to parse sequences of developmental stages, following the usage (as Normentafeln) in biology. I will also, in this way of describing stages of development, outline a ‘canonical developmental trajectory’ characteristic of dissipative structures. I acknowledge evolution in passing. As a cue to the reader, I note that my perspective is that of natural philosophy as developed out of beginnings made by the early Friedrich Wilhelm Joseph Schelling (e.g., Esposito, 1977; Salthe, 1993). What is relevant here is that Schelling first proposed a developmental view of the natural world.

The Evolution and Development of the Universe, p 249

Salthe's extensive references are very interesting...

REFERENCES J.T. Bonner: 2006, Why Size Matters. Princeton University Press, Princeton.
D.R.  Brooks  and  E.O.  Wiley:  1988,  Evolution  As  Entropy:  Toward  A  Unified  Theory  Of Biology (2nd. ed.) University of Chicago Press, Chicago.
J.H. Brown and  G.B.  West (eds.): 2000,  Scaling in Biology.   Oxford University Press,  New York.
S. Carnot:  1824  /  1960,  Reflections  on  the  motive  power  of  fire,  and  on  machines  fitted  to develop that power. In E. Mendoza (ed.), Reflections on the Motive Power of Fire and Other Papers. Dover Pubs., New York, pp. 3­22.
E.J. Chaisson: 2001, Cosmic Evolution: The Rise of Complexity in Nature. Harvard University Press, Cambridge, MA.
J.Damuth: 1985,  Selection among species: a reformulation in terms of natural functional units. Evolution 39: pp. 1132-­1146.
Deleuze, G . and F. Guattari, 1996, What is Philosophy, New York, Columbia University Press,
A. Einstein: 1907 / 1989,  On the relativity principle and the conclusions to be drawn from it. In The Collected Papers of Albert Einstein, Vol. 2: The Swiss Years: Writings, 1900­1909. Princeton University Press, Princeton. (Translated by Anna Beck)
W.M.  Elsasser:  1969,    Acausal phenomena  in physics  and biology:  a  case  for  reconstruction. American Scientist 57: pp. 502-­516.
J.L. Esposito: 1977, Schelling’s Idealism and Philosophy of Nature. Bucknell University Press, Lewisburg.
W.J. Ewens: 2004, Mathematical Population Genetics: Theoretical Introduction. Springer, New York.
N. Goodman:  1976,  Languages  of  Art:  An  Approach  to  a  Theory  of  Symbols.  Hackett, Indianapolis, In.
G. Greenberg and E. Tobach (eds.): 1988,  Evolution of Social Behavior and Integrative Levels. Lawrence Erlbaum, Hillsdale, N. J.
C.S. Holling: 1986, The resilience of terrestrial ecosystems. In W.C. Clark and R.E. Munn (eds.) Sustainable Development of the Biosphere. Cambridge University Press, Cambridge, UK. pp. 292-­320.
E. Husserl:  1970.  The Crisis  of  European  Sciences  and  Transcendental  Phenomenology  –  An Introduction to Phenomenological Philosophy, trans. David Carr, Evanston: Northwestern University Press, 1970).
I. Kant:  (1997).  Critique  of  Pure  Reason  (P.  Guyer  and  A.  W.  Wood,  Trans.)  Cambridge University Press, Cambridge, UK. (First published 1787)
C.H.  Lineweaver  and  C.A.  Egan:  2008,  Life,  gravity  and  the  second  law  of  thermodynamics. Physics of Life Reviews 5: pp. 225-­242.
M. Matthen: 1989,  The four causes in Aristotle’s embryology.  In R. Kraut and T. Penner (eds.) Nature, Knowledge and Virtue. Apeiron: Special Issue 22.4: pp. 159­-180.
O. Neurath, R. Carnap and C. Morris (eds.): 1955­1969,  Foundations of the Unity of Science: Toward an Ecyclopedia of Unified Science. University of Chicago Press, Chicago.
G. Nicolis:  1986,    Dynamics of  Hierarchical  Systems:  An  Evolutionary  Approach.    Springer­Verlag, Berlin.
H.T. Odum: 1983,  Systems Ecology:  An  Introduction. Wiley Interscience, New York pp.102-116.
C.S.  Peirce:  1931­1958,    Collected  Papers,  Vols.  I  ­  VIII.  C.  Hartshorne  and  P.  Weiss  (eds.) Harvard Univrsity Press, Cambridge, MA.
M. Polanyi: 1968,  Life’s irreducible structure.  Science 160: pp. 1308-­1312.
R. Poli: 1998,  Levels.  Axiomanthes Nos. 1­2: pp. 197-­211.
K.R. Popper: 1990, A world of Propensities. Bristol: Thoemmes.
I. Prigogine:  1955  /  1961,    Introduction  to  Thermodynamics  of  Irreversible  Processes.  Wiley Interscience, New York.
R.G.B.  Reid:  2007,  Biological  Emergences:  Evolution  by  Natural  Experiment.    MIT  Press, Cambridge, MA.
S.N.  Salthe:  1985,  Evolving  Hierarchical  Systems:  Their  Structure  and  Representation. Columbia University Press, New York.
S.N. Salthe: 1988, Notes toward a formal history of the levels concept. In G. Greenberg and E. Tobach (eds.) Evolution of Social Behavior and Integrative Levels. L. Erlbaum Associates, Hillside, N.J.
S.N. Salthe: 1989, Self­organization of/in hierarchically structured systems. Systems Research 6: pp. 199-­208.
S.N. Salthe: 1993, Development and Evolution: Complexity and Change In Biology. MIT Press, Cambridge, MA.
S.N. Salthe: 2000, Translation into and out of language. Athanor X, n.s. No. 2 : pp. 167­177. S.N. Salthe: 2002, Summary of the principles of hierarchy theory. General Systems Bulletin 31: pp. 13-­17.
S.N.  Salthe:  2004,  The  natural  philosophy  of  ecology:  developmental  systems  ecology. Ecological Complexity 2: pp. 1­ 19.
S.N. Salthe: 2005, An approach to causality in organized complexity: the role of management. In K.Richardson (ed.) Managing the Complex: Philosophy, Theory, Practice. I.A.P./I.S.C.E. Managing the Complex Book Series, Vol. 1: pp. 81­-94.
S.N. Salthe: 2006, a, On Aristotle’s conception of causality. General Systems Bulletin 35: p. 11. S.N. Salthe: 2006, b, Two frameworks for complexity generation in biological systems. Evolution of Complexity. ALifeX Proceedings. C. Gershenson and T. Lenaerts (eds). Indiana University Press, Bloomington, IN. http://ecco.vub.be/EDO/Salthe.pdf
S.N. Salthe: 2008, The system of interpretance, naturalizing meaning as finality. Biosemiotics http://dx.doi.org/10.1007/s12304­008­9023­3
S.N.  Salthe:  2009,  A  hierarchical  framework  for  levels  of  reality:  understanding  through representation. Axiomathes 19: 87­-95.
S.N.  Salthe  and  G.  Fuhrman:  2005,  The  cosmic  bellows:  the  Big  Bang  and  the  Second  Law. Cosmos and History 1: pp. 295-­318. http://www.cosmosandhistory.org
E.D. Schneider  and J.J. Kay:  1994,  Life as a manifestation of the Second Law of thermodynamics. Mathematical and Computer Modelling 19: pp. 25­-48.
G.G. Simpson: 1953, The Major Feartues of Evolution. Columbia University Press, New York. D.W. Sims et al.: 2008, Scaling laws of marine predator search behavior. Nature 451: pp. 1098­-1102.
P.Snowdon: 2008,  Knowing how and knowing that: a distinction reconsidered.  Proceedings of the Aristotelian Society 104: pp. 1­29.
J.S.  Turner:  2000,    The  Extended  Origanism:  The  Physiology  of  Animal­Built  Structures. Harvard University Press, Cambridge, MA. p. 31.
M.S. Turner: 2007, Quarks and the cosmos. Science 315: pp. 59­-61.
J. von Uexküll: 1926,  Theoretical Biology.  Harcourt, Brace, London.
R.E. Ulanowicz: 1997, Ecology, The Ascendent Perspective. New Columbia University Press, New York.
R.E. Ulanowicz: 2007, Emergence, naturally! Zygon 42: pp. 945­-969.
V.I. Vernadsky: 1944, Problems of biogeochemistry II. Transactions of the Connecticut Academy of Arts and Sciences 35: pp. 483-­517.
V.I.  Vernadsky:  1986,   The  Biosphere.    Synergetic  Press,  London.    (Original  work published 1929).
A. Weber: 1908,  History of Philosophy.  Charles Scribner’s Sons, New York.
http://www.uidaho.edu/Mickelsen/texts/Weber%20­%20History/bacon.htm.
G.B. West, J.H. Brown and B.J. Enquist: 2001, A general model for ontogenetic growth. Nature 413: pp. 628-­631.
A.N. Whitehead: 1929, Process and Reality: An Essay in Cosmology. Macmillan, New York.

Normal | Teacher | Scholar