Citation for this page in APA citation style.           Close


Topics

Introduction
Problems
Freedom
Knowledge
Mind
Life
Chance
Quantum
Entanglement
Scandals

Philosophers

Mortimer Adler
Rogers Albritton
Alexander of Aphrodisias
Samuel Alexander
William Alston
Anaximander
G.E.M.Anscombe
Anselm
Louise Antony
Thomas Aquinas
Aristotle
David Armstrong
Harald Atmanspacher
Robert Audi
Augustine
J.L.Austin
A.J.Ayer
Alexander Bain
Mark Balaguer
Jeffrey Barrett
William Barrett
William Belsham
Henri Bergson
George Berkeley
Isaiah Berlin
Richard J. Bernstein
Bernard Berofsky
Robert Bishop
Max Black
Susan Blackmore
Susanne Bobzien
Emil du Bois-Reymond
Hilary Bok
Laurence BonJour
George Boole
Émile Boutroux
Daniel Boyd
F.H.Bradley
C.D.Broad
Michael Burke
Jeremy Butterfield
Lawrence Cahoone
C.A.Campbell
Joseph Keim Campbell
Rudolf Carnap
Carneades
Nancy Cartwright
Gregg Caruso
Ernst Cassirer
David Chalmers
Roderick Chisholm
Chrysippus
Cicero
Tom Clark
Randolph Clarke
Samuel Clarke
Anthony Collins
August Compte
Antonella Corradini
Diodorus Cronus
Jonathan Dancy
Donald Davidson
Mario De Caro
Democritus
Daniel Dennett
Jacques Derrida
René Descartes
Richard Double
Fred Dretske
Curt Ducasse
John Earman
Laura Waddell Ekstrom
Epictetus
Epicurus
Austin Farrer
Herbert Feigl
Arthur Fine
John Martin Fischer
Frederic Fitch
Owen Flanagan
Luciano Floridi
Philippa Foot
Alfred Fouilleé
Harry Frankfurt
Richard L. Franklin
Bas van Fraassen
Michael Frede
Gottlob Frege
Peter Geach
Edmund Gettier
Carl Ginet
Alvin Goldman
Gorgias
Nicholas St. John Green
Niels Henrik Gregersen
H.Paul Grice
Ian Hacking
Ishtiyaque Haji
Stuart Hampshire
W.F.R.Hardie
Sam Harris
William Hasker
R.M.Hare
Georg W.F. Hegel
Martin Heidegger
Heraclitus
R.E.Hobart
Thomas Hobbes
David Hodgson
Shadsworth Hodgson
Baron d'Holbach
Ted Honderich
Pamela Huby
David Hume
Ferenc Huoranszki
Frank Jackson
William James
Lord Kames
Robert Kane
Immanuel Kant
Tomis Kapitan
Walter Kaufmann
Jaegwon Kim
William King
Hilary Kornblith
Christine Korsgaard
Saul Kripke
Thomas Kuhn
Andrea Lavazza
James Ladyman
Christoph Lehner
Keith Lehrer
Gottfried Leibniz
Jules Lequyer
Leucippus
Michael Levin
Joseph Levine
George Henry Lewes
C.I.Lewis
David Lewis
Peter Lipton
C. Lloyd Morgan
John Locke
Michael Lockwood
Arthur O. Lovejoy
E. Jonathan Lowe
John R. Lucas
Lucretius
Alasdair MacIntyre
Ruth Barcan Marcus
Tim Maudlin
James Martineau
Nicholas Maxwell
Storrs McCall
Hugh McCann
Colin McGinn
Michael McKenna
Brian McLaughlin
John McTaggart
Paul E. Meehl
Uwe Meixner
Alfred Mele
Trenton Merricks
John Stuart Mill
Dickinson Miller
G.E.Moore
Ernest Nagel
Thomas Nagel
Otto Neurath
Friedrich Nietzsche
John Norton
P.H.Nowell-Smith
Robert Nozick
William of Ockham
Timothy O'Connor
Parmenides
David F. Pears
Charles Sanders Peirce
Derk Pereboom
Steven Pinker
U.T.Place
Plato
Karl Popper
Porphyry
Huw Price
H.A.Prichard
Protagoras
Hilary Putnam
Willard van Orman Quine
Frank Ramsey
Ayn Rand
Michael Rea
Thomas Reid
Charles Renouvier
Nicholas Rescher
C.W.Rietdijk
Richard Rorty
Josiah Royce
Bertrand Russell
Paul Russell
Gilbert Ryle
Jean-Paul Sartre
Kenneth Sayre
T.M.Scanlon
Moritz Schlick
John Duns Scotus
Albert Schweitzer
Arthur Schopenhauer
John Searle
Wilfrid Sellars
David Shiang
Alan Sidelle
Ted Sider
Henry Sidgwick
Walter Sinnott-Armstrong
Peter Slezak
J.J.C.Smart
Saul Smilansky
Michael Smith
Baruch Spinoza
L. Susan Stebbing
Isabelle Stengers
George F. Stout
Galen Strawson
Peter Strawson
Eleonore Stump
Francisco Suárez
Richard Taylor
Kevin Timpe
Mark Twain
Peter Unger
Peter van Inwagen
Manuel Vargas
John Venn
Kadri Vihvelin
Voltaire
G.H. von Wright
David Foster Wallace
R. Jay Wallace
W.G.Ward
Ted Warfield
Roy Weatherford
C.F. von Weizsäcker
William Whewell
Alfred North Whitehead
David Widerker
David Wiggins
Bernard Williams
Timothy Williamson
Ludwig Wittgenstein
Susan Wolf
Xenophon

Scientists

David Albert
Philip W. Anderson
Michael Arbib
Walter Baade
Bernard Baars
Jeffrey Bada
Leslie Ballentine
Marcello Barbieri
Jacob Barandes
Julian Barbour
Horace Barlow
Gregory Bateson
John S. Bell
Mara Beller
Charles Bennett
Ludwig von Bertalanffy
Susan Blackmore
Margaret Boden
David Bohm
Niels Bohr
Ludwig Boltzmann
John Tyler Bonner
Emile Borel
Max Born
Satyendra Nath Bose
Walther Bothe
Jean Bricmont
Hans Briegel
Leon Brillouin
Daniel Brooks
Stephen Brush
Henry Thomas Buckle
S. H. Burbury
Melvin Calvin
William Calvin
Donald Campbell
John O. Campbell
Sadi Carnot
Anthony Cashmore
Eric Chaisson
Gregory Chaitin
Jean-Pierre Changeux
Rudolf Clausius
Arthur Holly Compton
John Conway
Simon Conway-Morris
Peter Corning
George Cowan
Jerry Coyne
John Cramer
Francis Crick
E. P. Culverwell
Antonio Damasio
Olivier Darrigol
Charles Darwin
Paul Davies
Richard Dawkins
Terrence Deacon
Lüder Deecke
Richard Dedekind
Louis de Broglie
Stanislas Dehaene
Max Delbrück
Abraham de Moivre
David Depew
Bernard d'Espagnat
Paul Dirac
Theodosius Dobzhansky
Hans Driesch
John Dupré
John Eccles
Arthur Stanley Eddington
Gerald Edelman
Paul Ehrenfest
Manfred Eigen
Albert Einstein
George F. R. Ellis
Walter Elsasser
Hugh Everett, III
Franz Exner
Richard Feynman
R. A. Fisher
David Foster
Joseph Fourier
George Fox
Philipp Frank
Steven Frautschi
Edward Fredkin
Augustin-Jean Fresnel
Karl Friston
Benjamin Gal-Or
Howard Gardner
Lila Gatlin
Michael Gazzaniga
Nicholas Georgescu-Roegen
GianCarlo Ghirardi
J. Willard Gibbs
James J. Gibson
Nicolas Gisin
Paul Glimcher
Thomas Gold
A. O. Gomes
Brian Goodwin
Joshua Greene
Dirk ter Haar
Jacques Hadamard
Mark Hadley
Ernst Haeckel
Patrick Haggard
J. B. S. Haldane
Stuart Hameroff
Augustin Hamon
Sam Harris
Ralph Hartley
Hyman Hartman
Jeff Hawkins
John-Dylan Haynes
Donald Hebb
Martin Heisenberg
Werner Heisenberg
Hermann von Helmholtz
Grete Hermann
John Herschel
Basil Hiley
Art Hobson
Jesper Hoffmeyer
Don Howard
John H. Jackson
Ray Jackendoff
Roman Jakobson
E. T. Jaynes
William Stanley Jevons
Pascual Jordan
Eric Kandel
Ruth E. Kastner
Stuart Kauffman
Martin J. Klein
William R. Klemm
Christof Koch
Simon Kochen
Hans Kornhuber
Stephen Kosslyn
Daniel Koshland
Ladislav Kovàč
Leopold Kronecker
Bernd-Olaf Küppers
Rolf Landauer
Alfred Landé
Pierre-Simon Laplace
Karl Lashley
David Layzer
Joseph LeDoux
Gerald Lettvin
Michael Levin
Gilbert Lewis
Benjamin Libet
David Lindley
Seth Lloyd
Werner Loewenstein
Hendrik Lorentz
Josef Loschmidt
Alfred Lotka
Ernst Mach
Donald MacKay
Henry Margenau
Lynn Margulis
Owen Maroney
David Marr
Humberto Maturana
James Clerk Maxwell
John Maynard Smith
Ernst Mayr
John McCarthy
Barabara McClintock
Warren McCulloch
N. David Mermin
George Miller
Stanley Miller
Ulrich Mohrhoff
Jacques Monod
Vernon Mountcastle
Emmy Noether
Donald Norman
Travis Norsen
Howard T. Odum
Alexander Oparin
Abraham Pais
Howard Pattee
Wolfgang Pauli
Massimo Pauri
Wilder Penfield
Roger Penrose
Steven Pinker
Colin Pittendrigh
Walter Pitts
Max Planck
Susan Pockett
Henri Poincaré
Michael Polanyi
Daniel Pollen
Ilya Prigogine
Hans Primas
Zenon Pylyshyn
Henry Quastler
Adolphe Quételet
Pasco Rakic
Nicolas Rashevsky
Lord Rayleigh
Frederick Reif
Jürgen Renn
Giacomo Rizzolati
A.A. Roback
Emil Roduner
Juan Roederer
Robert Rosen
Frank Rosenblatt
Jerome Rothstein
David Ruelle
David Rumelhart
Stanley Salthe
Robert Sapolsky
Tilman Sauer
Ferdinand de Saussure
Jürgen Schmidhuber
Erwin Schrödinger
Aaron Schurger
Sebastian Seung
Thomas Sebeok
Franco Selleri
Claude Shannon
Charles Sherrington
Abner Shimony
Herbert Simon
Dean Keith Simonton
Edmund Sinnott
B. F. Skinner
Lee Smolin
Ray Solomonoff
Herbert Spencer
Roger Sperry
John Stachel
Kenneth Stanley
Henry Stapp
Ian Stewart
Tom Stonier
Antoine Suarez
Leonard Susskind
Leo Szilard
Max Tegmark
Teilhard de Chardin
Libb Thims
William Thomson (Kelvin)
Richard Tolman
Giulio Tononi
Peter Tse
Alan Turing
Robert Ulanowicz
C. S. Unnikrishnan
Nico van Kampen
Francisco Varela
Vlatko Vedral
Vladimir Vernadsky
Clément Vidal
Mikhail Volkenstein
Heinz von Foerster
Richard von Mises
John von Neumann
Jakob von Uexküll
C. H. Waddington
Sara Imari Walker
James D. Watson
John B. Watson
Daniel Wegner
Steven Weinberg
August Weismann
Paul A. Weiss
Herman Weyl
John Wheeler
Jeffrey Wicken
Wilhelm Wien
Norbert Wiener
Eugene Wigner
E. O. Wiley
E. O. Wilson
Günther Witzany
Carl Woese
Stephen Wolfram
H. Dieter Zeh
Semir Zeki
Ernst Zermelo
Wojciech Zurek
Konrad Zuse
Fritz Zwicky

Presentations

Biosemiotics
Free Will
Mental Causation
James Symposium
CCS25 Talk
Evo Devo September 12
Evo Devo October 2

 
Theodosius Dobzhansky

Theodosius Dobzhansky was a geneticist and evolutionary biologist. He was a central figure in the field of evolutionary biology for his work in shaping the modern synthesis and also popular for his support and promotion of theistic evolution as a practicing Christian.

His 1937 work Genetics and the Origin of Species became a major influence on the modern synthesis.

He was famous for the quotation "Nothing in Biology Makes Sense Except in the Light of Evolution," the title of his essay in The American Biology Teacher 75(2), 87-91, (1 February 2013). https://doi.org/10.2307/4444260

As RECENTLY AS 1966, sheik Abd el Aziz bin Baz asked the king of Saudi Arabia to suppress a heresy that was spreading in his land. Wrote the sheik:

> “The Holy Koran, the Prophet's teachings, the majority of Islamic scientists, and the actual facts all prove that the sun is running in its orbit… and that the earth is fixed and stable, spread out by God for his mankind. … Anyone who professed otherwise would utter a charge of falsehood toward God, the Koran, and the Prophet.”
>

The good sheik evidently holds the Copernican theory to be a “mere theory,” not a “fact.” In this he is technically correct. A theory can be verified by a mass of facts, but it becomes a proven theory, not a fact. The sheik was perhaps unaware that the Space Age had begun before he asked the king to suppress the Copernican heresy. The sphericity of the earth had been seen by astronauts, and even by many earth-bound people on their television screens. Perhaps the sheik could retort that those who venture beyond the confines of God's earth suffer hallucinations, and that the earth is really fiat.

Parts of the Copernican world model, such as the contention that the earth rotates around the sun, and not vice versa, have not been verified by direct observations even to the extent the sphericity of the earth has been. Yet scientists accept the model as an accurate representation of reality. Why? Because it makes sense of a multitude of facts which are otherwise meaningless or extravagant. To nonspecialists most of these facts are unfamiliar. Why then do we accept the “mere theory” that the earth is a sphere revolving around a spherical sun? Are we simply submitting to authority? Not quite: we know that those who took time to study the evidence found it convincing.

One of the world's leading geneticists, Theo-dosius Dobzhansky is professor emeritus, Rockefeller University, and adjunct professor of genetics, University of California, Davis 95616. Born in Russia, in 1900, he is a graduate of the University of Kiev and taught (with J. Philipchenko) at the University of Leningrad before coming to the U.S., in 1927; thereafter he taught at Colum- bia University and the California Institute of Technology before joining the Rockefeller faculty, in 1962. He has been president of the Genetics Society of America, the American Society of Naturalists, the Society for the Study of Evolution, the American Society of Zoologists, and the American Teil-hard de Chardin Association. Among his many honors are the National Medal of Science (1964) and the Gold Medal Award for Distinguished Achievement in Science (1969). He holds 18 honorary doctorates from universities in this country and abroad. Among his well-known books are The Biological Basis of Human Freedom (1956) and Mankind Evolving (1963). The present paper was presented at the 1972 NABT convention.

f01_125.jpgThe good sheik is probably ignorant of the evidence. Even more likely, he is so hopelessly biased that no amount of evidence would impress him. Anyway, it would be sheer waste of time to attempt to convince him. The Koran and the Bible do not contradict Copernicus, nor does Copernicus contradict them. It is ludicrous to mistake the Bible and the Koran for primers of natural science. They treat of matters even more important: the meaning of man and his relations to God. They are written in poetic symbols that were understandable to people of the age when they were written, as well as to peoples of all other ages. The king of Arabia did not comply with the sheik's demand. He knew that some people fear enlightenment, because enlightenment threatens their vested interests. Education is not to be used to promote obscurantism.

The earth is not the geometric center of the universe, although it may be its spiritual center. It is a mere speck of dust in cosmic spaces. Contrary to Bishop Ussher's calculations, the world did not appear in approximately its present state in 4004 B.C. The estimates of the age of the universe given by modern cosmologists are still only rough approximations, which are revised (usually upward) as the methods of estimation are refined. Some cosmologists take the universe to be about 10 billion years old; others suppose that it may have existed, and will continue to exist, eternally. The origin of life on earth is dated tentatively between 3 and 5 billion years ago; manlike beings appeared relatively quite recently, between 2 and 4 million years ago. The estimates of the age of the earth, of the duration of the geologic and paleontologic eras, and of the antiquity of man's ancestors are now based mainly on radiometric evidence—the proportions of isotopes of certain chemical elements in rocks suitable for such studies.

Sheik bin Baz and his like refuse to accept the radiometric evidence, because it is a “mere theory.” What is the alternative? One can suppose that the Creator saw fit to play deceitful tricks on geologists and biologists. He carefully arranged to have various rocks provided with isotope ratios just right to mislead us into thinking that certain rocks are 2 billion years old, others 2 million, while in fact they are only some 6,000 years old. This kind of pseudo-explanation is not very new. One of the early antievolutionists, P. H. Gosse, published a book entitled Omphalos (“the Navel”). The gist of this amazing book is that Adam, though he had no mother, was created with a navel, and that fossils were placed by the Creator where we find them now—a deliberate act on His part, to give the appearance of great antiquity and geologic upheavals. It is easy to see the fatal flaw in all such notions. They are blasphemies, accusing God of absurd deceitfulness. This is as revolting as it is uncalled for.

Diversity of Living BeingsThe diversity and the unity of life are equally striking and meaningful aspects of the living world. Between 1.5 and 2 million species of animals and plants have been described and studied; the number yet to be described is probably about as great. The diversity of sizes, structures, and ways of life is staggering but fascinating. Here are just a few examples.

The foot-and-mouth disease virus is a sphere 8–12 mµ in diameter. The blue whale reaches 30 m in length and 135 t in weight. The simplest viruses are parasites in cells of other organisms, reduced to barest essentials—minute amounts of DNA or RNA, which subvert the biochemical machinery of the host cells to replicate their genetic information, rather than that of the host.

It is a matter of opinion, or of definition, whether viruses are considered living organisms or peculiar chemical substances. The fact that such differences of opinion can exist is in itself highly significant. It means that the borderline between living and inanimate matter is obliterated. At the opposite end of the simplicity—complexity spectrum you have vertebrate animals, including man. The human brain has some 12 billion neurons; the synapses between the neurons are perhaps a thousand times as numerous.

Some organisms live in a great variety of environments. Man is at the top of the scale in this respect. He is not only a truly cosmopolitan species but, owing to his technologic achievements, can survive for at least a limited time on the surface of the moon and in cosmic spaces. By contrast, some organisms are amazingly specialized. Perhaps the narrowest ecologic niche of all is that of a species of the fungus family Laboulbeniaceae, which grows exclusively on the rear portion of the elytra of the beetle Aphenops cronei, which is found only in some limestone caves in southern France. Larvae of the fly Psilopa petrolei develop in seepages of crude oil in California oil- fields; as far as is known they occur nowhere else. This is the only insect able to live and feed in oil, and its adult can walk on the surface of the oil only as long as no body part other than the tarsi are in contact with the oil. Larvae of the fly Drosophila carcinophila develop only in the nephric grooves beneath the flaps of the third maxilliped of the land crab Geocarcinus ruricola, which is restricted to certain islands in the Caribbean.

Is there an explanation, to make intelligible to reason this colossal diversity of living beings? Whence came these extraordinary, seemingly whimsical and superfluous creatures, like the fungus Laboulbenia, the beetle Aphenops cronei, the flies Psilopa petrolei and Drosophila carcinophila, and many, many more apparent biologic curiosities? The only explanation that makes sense is that the organic diversity has evolved in response to the diversity of environment on the planet earth. No single species, however perfect and however versatile, could exploit all the opportunities for living. Every one of the millions of species has its own way of living and of getting sustenance from the environment. There are doubtless many other possible ways of living as yet unexploited by any existing species; but one thing is clear: with less organic diversity, some opportunities for living would remain unexploited. The evolutionary process tends to fill up the available ecologic niches. It does not do so consciously or deliberately; the relations between evolution and the environment are more subtle and more interesting than that. The environment does not impose evolutionary changes on its inhabitants, as postulated by the now abandoned neo-Lamarckian theories. The best way to envisage the situation is as follows: the environment presents challenges to living species, to which the latter may respond by adaptive genetic changes.

An unoccupied ecologic niche, an unexploited opportunity for living, is a challenge. So is an environmental change, such as the Ice Age climate giving place to a warmer climate. Natural selection may cause a living species to respond to the challenge by adaptive genetic changes. These changes may enable the species to occupy the formerly empty ecologic niche as a new opportunity for living, or to resist the environmental change if it is unfavorable. But the response may or may not be successful. This depends on many factors, the chief of which is the genetic composition of the responding species at the time the response is called for. Lack of successful response may cause the species to become extinct. The evidence of fossils shows clearly that the eventual end of most evolutionary lines is extinction. Organisms now living are successful descendants of only a minority of the species that lived in the past—and of smaller and smaller minorities the farther back you look. Nevertheless, the number of living species has not dwindled; indeed, it has probably grown with time. All this is understandable in the light of evolution theory; but what a senseless operation it would have been, on God's part, to fabricate a multitude of species ex nihilo and then let most of them die out!

There is, of course, nothing conscious or intentional in the action of natural selection. A biologic species does not say to itself, “Let me try tomorrow (or a million years from now) to grow in a different soil, or use a different food, or subsist on a different body part of a different crab.” Only a human being could make such conscious decisions. This is why the species Homo sapiens is the apex of evolution. Natural selection is at one and the same time a blind and a creative process. Only a creative but blind process could produce, on the one hand, the tremendous biologic success that is the human species and, on the other, forms of adaptedness as narrow and as constraining as those of the overspecialized fungus, beetle, and flies mentioned above.

Antievolutionists fail to understand how natural selection operates. They fancy that all existing species were generated by supernatural fiat a few thousand years ago, pretty much as we find them today. But what is the sense of having as many as 2 or 3 million species living on earth? If natural selection is the main factor that brings evolution about, any number of species is understandable: natural selection does not work according to a foreordained plan, and species are produced not because they are needed for some purpose but simply because there is an environmental opportunity and genetic wherewithal to make them possible. Was the Creator in a jocular mood when he made Psilopa petrolei for California oil-fields and species of Drosophila to live exclusively on some body-parts of certain land crabs on only certain islands in the Caribbean? The organic diversity becomes, however, reasonable and understandable if the Creator has created the living world not by caprice but by evolution propelled by natural selection. It is wrong to hold creation and evolution as mutually exclusive alternatives. I am a creationist and an evolutionist. Evolution is God's, or Nature's, method of Creation. Creation is not an event that happened in 4004 B.C.; it is a process that began some 10 billion years ago and is still under way.

Unity of LifeThe unity of life is no less remarkable than its diversity. Most forms of life are similar in many respects. The universal biologic similarities are particularly striking in the biochemical dimension. From viruses to man, heredity is coded in just two, chemically related substances: DNA and RNA. The genetic code is as simple as it is universal. There are only four genetic “letters” in DNA: adenine, guanine, thymine, and cytosine. Uracil replaces thymine in RNA. The entire evolutionary development of the living world has taken place not by invention of new “letters” in the genetic “alphabet” but by elaboration of ever-new combinations of these letters.

Not only is the DNA—RNA genetic code universal, but so is the method of translation of the sequences of the “letters” in DNA—RNA into sequences of amino acids in proteins. The same 20 amino acids compose countless different proteins in all, or at least in most, organisms. Different amino acids are coded by one to six nucleotide triplets in DNA and RNA. And the biochemical universels extend beyond the genetic code and its translation into proteins: striking uniformities prevail in the cellular metabolism of the most diverse living beings. Adenosine triphosphate, biotin, riboflavin, hemes, pyridoxin, vitamins K and B12, and folic acid implement metabolic processes everywhere.

What do these biochemical or biologic universale mean? They suggest that life arose from inanimate matter only once and that all organisms, no matter how diverse in other respects, conserve the basic features of the primordial life. (It is also possible that there were several, or even many, origins of life; if so, the progeny of only one of them has survived and inherited the earth.) But what if there was no evolution, and every one of the millions of species was created by separate fiat? However offensive the notion may be to religious feeling and to reason, the antievolutionists must again accuse the Creator of cheating. They must insist that He deliberately arranged things exactly as if his method of creation was evolution, intentionally to mislead sincere seekers of truth.

The remarkable advances of molecular biology in recent years have made it possible to understand how it is that diverse organisms are constructed from such monotonously similar materials: proteins composed of only 20 kinds of amino acids and coded only by DNA and RNA, each with only four kinds of nucleotides. The method is astonishingly simple. All English words, sentences, chapters, and books are made up of sequences of 26 letters of the alphabet. (They can be represented also by only three signs of the Morse code: dot, dash, and gap.) The meaning of a word or a sentence is defined not so much by what letters it contains as by the sequence of these letters. It is the same with heredity: it is coded by the sequences of the genetic “letters”—the nucleotides—in the DNA. They are translated into the sequences of amino acids in the proteins.

Molecular studies have made possible an approach to exact measurements of degrees of biochemical similarities and differences among organisms. Some kinds of enzymes and other proteins are quasiuniversal, or at any rate widespread, in the living world. They are functionally similar in different living beings, in that they catalyze similar chemical reactions. But when such proteins are isolated and their structures determined chemically, they are often found to contain more or less different sequences of amino acids in different organisms. For example, the socalled alpha chains of hemoglobin have identical sequences of amino acids in man and the chimpanzee, but they differ in a single amino acid (out of 141) in the gorilla. Alpha chains of human hemoglobin differ from cattle hemoglobin in 17 amino acid substitutions, 18 from horse, 20 from donkey, 25 from rabbit, and 71 from fish (carp).

Cytochrome C is an enzyme that plays an important role in the metabolism of aerobic cells. It is found in the most diverse organisms, from man to molds. E. Margoliash, W. M. Fitch, and others have compared the amino acid sequences in cytochrome C in different branches of the living world. Most significant similarities as well as differences have been brought to light. The cytochrome C of different orders of mammals and birds differ in 2 to 17 amino acids, classes of vertebrates in 7 to 38, and vertebrates and insects in 23 to 41; and animals differ from yeasts and molds in 56 to 72 amino acids. Fitch and Margoliash prefer to express their findings in what are called “minimal mutational distances.” It has been mentioned above that different amino acids are coded by different triplets of nucleotides in DNA of the genes; this code is now known. Most mutations involve substitutions of single nucleotides somewhere in the DNA chain coding for a given protein. Therefore, one can calculate the minimum numbers of single mutations needed to change the cytochrome C of one organism into that of another. Minimal mutational distances between human cytochrome C and the cytochrome C of other living beings are as follows:

Monkey 1

Dog 13

Horse 17

Donkey 16

Pig 13

Rabbit 12

Kangaroo 12

Duck 17

Pigeon 16

Chicken 18

Penguin 18

Turtle 19

Rattlesnake 20

Fish (tuna) 31

Fly 33

Moth 36

Mold 63

Yeast 56

It is important to note that amino acid sequences in a given kind of protein vary within a species as well as from species to species. It is evident that the differences among proteins at the levels of species, genus, family, order, class, and phylum are compounded of elements that vary also among individuals within a species. Individual and group differences are only quantitatively, not qualitatively, different. Evidence supporting the above propositions is ample and is growing rapidly. Much work has been done in recent years on individual variations in amino acid sequences of hemoglobins of human blood. More than 100 variants have been detected. Most of them involve substitutions of single amino acids—substitutions that have arisen by genetic mutations in the persons in whom they are discovered or in their ancestors. As expected, some of these mutations are deleterious to their carriers, but others apparently are neutral or even favorable in certain environments. Some mutant hemoglobins have been found only in one person or in one family; others are discovered repeatedly among inhabitants of different parts of the world. I submit that all these remarkable findings make sense in the light of evolution; they are nonsense otherwise.

Comparative Anatomy and EmbryologyThe biochemical universale are the most impressive and the most recently discovered, but certainly they are not the only vestiges of creation by means of evolution. Comparative anatomy and embryology proclaim the evolutionary origins of the present inhabitants of the world. In 1555 Pierre Belon established the presence of homologous bones in the superficially very different skeletons of man and bird. Later anatomists traced the homologies in the skeletons, as well as in other organs, of all vertebrates. Homologies are also traceable in the external skeletons of arthropods as seemingly unlike as a lobster, a fly, and a butterfly. Examples of homologies can be multiplied indefinitely.

Embryos of apparently quite diverse animals often exhibit striking similarities. A century ago these similarities led some biologists (notably the German zoologist Ernst Haeckel) to be carried by their enthusiasm so far as to interpret the embryonic similarities as meaning that the embryo repeats in its development the evolutionary history of its species: it was said to pass through stages in which it resembles its remote ancestors. In other words, earlyday biologists supposed that by studying embryonic development one can, as it were, read off the stages through which the evolutionary development had passed. This so-called biogenetic law is no longer credited in its original form. And yet embryonic similarities are undeniably impressive and significant.

Probably everybody knows the sedentary barnacles which seem to have no similarity to free-swimming crustaceans, such as the copepods. How remarkable that barnacles pass through a free-swimming larval stage, the nauplius! At that stage of its development a barnacle and a Cyclops look unmistakably similar. They are evidently relatives. The presence of gill slits in human embryos and in embryos of other terrestrial vertebrates is another famous example. Of course, at no stage of its development is a human embryo a fish, nor does it ever have functioning gills. But why should it have unmistakable gill slits unless its remote ancestors did respire with the aid of gills? Is the Creator again playing practical jokes?

Adaptive Radiation: Hawaii's FliesThere are about 2,000 species of drosophilid flies in the world as a whole. About a quarter of them occur in Hawaii, although the total area of the archipelago is only about that of the state of New Jersey. All but 17 of the species in Hawaii are endemic (found nowhere else). Furthermore, a great majority of the Hawaiian endemics do not occur throughout the archipelago: they are restricted to single islands or even to a part of an island. What is the explanation of this extraordinary proliferation of drosophilid species in so small a territory? Recent work of H. L. Carson, H. T. Spieth, D. E. Hardy, and others makes the situation understandable.

The Hawaiian islands are of volcanic origin; they were never parts of any continent. Their ages are between 5.6 and 0.7 million years. Before man came their inhabitants were descendants of immigrants that had been transported across the ocean by air currents and other accidental means. A single drosophilid species, which arrived in Hawaii first, before there were numerous competitors, faced the challenge of an abundance of many unoccupied ecologic niches. Its descendants responded to this challenge by evolutionary adaptive radiation, the products of which are the remarkable Hawaiian drosophilids of today. To forestall a possible misunderstanding, let it be made clear that the Hawaiian endemics are by no means so similar to each other that they could be mistaken for variants of the same species; if anything, they are more diversified than are drosophilids elsewhere. The largest and the smallest drosophilid species are both Hawaiian. They exhibit an astonishing variety of behavior patterns. Some of them have become adapted to ways of life quite extraordinary for a drosophilid fly, such as being parasites in egg cocoons of spiders.

Oceanic islands other than Hawaii, scattered over the wide Pacific Ocean, are not conspicuously rich in endemic species of drosophilids. The most probable explanation of this fact is that these other islands were colonized by drosophilids after most ecologic niches had already been filled by earlier arrivals. This surely is a hypothesis, but it is a reasonable one. Antievolutionists might perhaps suggest an alternative hypothesis: in a fit of absentmindedness, the Creator went on manufacturing more and more drosophilid species for Hawaii, until there was an extravagant surfeit of them in this archipelago. I leave it to you to decide which hypothesis makes sense.

Strength and Acceptance of the TheorySeen in the light of evolution, biology is, perhaps, intellectually the most satisfying and inspiring science. Without that light it becomes a pile of sundry facts—some of them interesting or curious but making no meaningful picture as a whole.

This is not to imply that we know everything that can and should be known about biology and about evolution. Any competent biologist is aware of a multitude of problems yet unresolved and of questions yet unanswered. After all, biologic research shows no sign of approaching completion; quite the opposite is true. Disagreements and clashes of opinion are rife among biologists, as they should be in a living and growing science. Antievolutionists mistake, or pretend to mistake, these disagreements as indications of dubiousness of the entire doctrine of evolution. Their favorite sport is stringing together quotations, carefully and sometimes expertly taken out of context, to show that nothing is really established or agreed upon among evolutionists. Some of my colleagues and myself have been amused and amazed to read ourselves quoted in a way showing that we are really antievolutionists under the skin.

Let me try to make crystal clear what is established beyond reasonable doubt, and what needs further study, about evolution. Evolution as a process that has always gone on in the history of the earth can be doubted only by those who are ignorant of the evidence or are resistant to evidence, owing to emotional blocks or to plain bigotry. By contrast, the mechanisms that bring evolution about certainly need study and clarification. There are no alternatives to evolution as history that can withstand critical examination. Yet we are constantly learning new and important facts about evolutionary mechanisms.

It is remarkable that more than a century ago Darwin was able to discern so much about evolution without having available to him the key facts discovered since. The development of genetics after 1900—especially of molecular genetics, in the last two decades—has provided information essential to the understanding of evolutionary mechanisms. But much is in doubt and much remains to be learned. This is heartening and inspiring for any scientist worth his salt. Imagine that everything is completely known and that science has nothing more to discover: what a nightmare!

Does the evolutionary doctrine clash with religious faith? It does not. It is a blunder to mistake the Holy Scriptures for elementary textbooks of astronomy, geology, biology, and anthropology. Only if symbols are construed to mean what they are not intended to mean can there arise imaginary, insoluble conflicts. As pointed out above, the blunder leads to blasphemy: the Creator is accused of systematic deceitfulness.

One of the great thinkers of our age, Pierre Teilhard de Chardin, wrote the following: “Is evolution a theory, a system, or a hypothesis? It is much more —it is a general postulate to which all theories, all hypotheses, all systems must henceforward bow and which they must satisfy in order to be thinkable and true. Evolution is a light which illuminates all facts, a trajectory which all lines of thought must follow—this is what evolution is.” Of course, some scientists, as well as some philosophers and theologians, disagree with some parts of Teilhard's teachings; the acceptance of his world view falls short of universal. But there is no doubt at all that Teilhard was a truly and deeply religious man and that Christianity was the cornerstone of his world view. Moreover, in his world view science and faith were not segregated in watertight compartments, as they are with so many people. They were harmoniously fitting parts of his world view. Teilhard was a creationists, but one who understood that the Creation is realized in this world by means of evolution. □

Normal | Teacher | Scholar