Citation for this page in APA citation style.           Close


Philosophers

Mortimer Adler
Rogers Albritton
Alexander of Aphrodisias
Samuel Alexander
William Alston
Anaximander
G.E.M.Anscombe
Anselm
Louise Antony
Thomas Aquinas
Aristotle
David Armstrong
Harald Atmanspacher
Robert Audi
Augustine
J.L.Austin
A.J.Ayer
Alexander Bain
Mark Balaguer
Jeffrey Barrett
William Barrett
William Belsham
Henri Bergson
George Berkeley
Isaiah Berlin
Richard J. Bernstein
Bernard Berofsky
Robert Bishop
Max Black
Susanne Bobzien
Emil du Bois-Reymond
Hilary Bok
Laurence BonJour
George Boole
Émile Boutroux
Daniel Boyd
F.H.Bradley
C.D.Broad
Michael Burke
Jeremy Butterfield
Lawrence Cahoone
C.A.Campbell
Joseph Keim Campbell
Rudolf Carnap
Carneades
Nancy Cartwright
Gregg Caruso
Ernst Cassirer
David Chalmers
Roderick Chisholm
Chrysippus
Cicero
Tom Clark
Randolph Clarke
Samuel Clarke
Anthony Collins
August Compte
Antonella Corradini
Diodorus Cronus
Jonathan Dancy
Donald Davidson
Mario De Caro
Democritus
Daniel Dennett
Jacques Derrida
René Descartes
Richard Double
Fred Dretske
Curt Ducasse
John Earman
Laura Waddell Ekstrom
Epictetus
Epicurus
Austin Farrer
Herbert Feigl
Arthur Fine
John Martin Fischer
Frederic Fitch
Owen Flanagan
Luciano Floridi
Philippa Foot
Alfred Fouilleé
Harry Frankfurt
Richard L. Franklin
Bas van Fraassen
Michael Frede
Gottlob Frege
Peter Geach
Edmund Gettier
Carl Ginet
Alvin Goldman
Gorgias
Nicholas St. John Green
Niels Henrik Gregersen
H.Paul Grice
Ian Hacking
Ishtiyaque Haji
Stuart Hampshire
W.F.R.Hardie
Sam Harris
William Hasker
R.M.Hare
Georg W.F. Hegel
Martin Heidegger
Heraclitus
R.E.Hobart
Thomas Hobbes
David Hodgson
Shadsworth Hodgson
Baron d'Holbach
Ted Honderich
Pamela Huby
David Hume
Ferenc Huoranszki
Frank Jackson
William James
Lord Kames
Robert Kane
Immanuel Kant
Tomis Kapitan
Walter Kaufmann
Jaegwon Kim
William King
Hilary Kornblith
Christine Korsgaard
Saul Kripke
Thomas Kuhn
Andrea Lavazza
James Ladyman
Christoph Lehner
Keith Lehrer
Gottfried Leibniz
Jules Lequyer
Leucippus
Michael Levin
Joseph Levine
George Henry Lewes
C.I.Lewis
David Lewis
Peter Lipton
C. Lloyd Morgan
John Locke
Michael Lockwood
Arthur O. Lovejoy
E. Jonathan Lowe
John R. Lucas
Lucretius
Alasdair MacIntyre
Ruth Barcan Marcus
Tim Maudlin
James Martineau
Nicholas Maxwell
Storrs McCall
Hugh McCann
Colin McGinn
Michael McKenna
Brian McLaughlin
John McTaggart
Paul E. Meehl
Uwe Meixner
Alfred Mele
Trenton Merricks
John Stuart Mill
Dickinson Miller
G.E.Moore
Ernest Nagel
Thomas Nagel
Otto Neurath
Friedrich Nietzsche
John Norton
P.H.Nowell-Smith
Robert Nozick
William of Ockham
Timothy O'Connor
Parmenides
David F. Pears
Charles Sanders Peirce
Derk Pereboom
Steven Pinker
U.T.Place
Plato
Karl Popper
Porphyry
Huw Price
H.A.Prichard
Protagoras
Hilary Putnam
Willard van Orman Quine
Frank Ramsey
Ayn Rand
Michael Rea
Thomas Reid
Charles Renouvier
Nicholas Rescher
C.W.Rietdijk
Richard Rorty
Josiah Royce
Bertrand Russell
Paul Russell
Gilbert Ryle
Jean-Paul Sartre
Kenneth Sayre
T.M.Scanlon
Moritz Schlick
John Duns Scotus
Albert Schweitzer
Arthur Schopenhauer
John Searle
Wilfrid Sellars
David Shiang
Alan Sidelle
Ted Sider
Henry Sidgwick
Walter Sinnott-Armstrong
Peter Slezak
J.J.C.Smart
Saul Smilansky
Michael Smith
Baruch Spinoza
L. Susan Stebbing
Isabelle Stengers
George F. Stout
Galen Strawson
Peter Strawson
Eleonore Stump
Francisco Suárez
Richard Taylor
Kevin Timpe
Mark Twain
Peter Unger
Peter van Inwagen
Manuel Vargas
John Venn
Kadri Vihvelin
Voltaire
G.H. von Wright
David Foster Wallace
R. Jay Wallace
W.G.Ward
Ted Warfield
Roy Weatherford
C.F. von Weizsäcker
William Whewell
Alfred North Whitehead
David Widerker
David Wiggins
Bernard Williams
Timothy Williamson
Ludwig Wittgenstein
Susan Wolf
Xenophon

Scientists

David Albert
Michael Arbib
Walter Baade
Bernard Baars
Jeffrey Bada
Leslie Ballentine
Marcello Barbieri
Jacob Barandes
Julian Barbour
Horace Barlow
Gregory Bateson
John S. Bell
Mara Beller
Charles Bennett
Ludwig von Bertalanffy
Susan Blackmore
Margaret Boden
David Bohm
Niels Bohr
Ludwig Boltzmann
John Tyler Bonner
Emile Borel
Max Born
Satyendra Nath Bose
Walther Bothe
Jean Bricmont
Hans Briegel
Leon Brillouin
Daniel Brooks
Stephen Brush
Henry Thomas Buckle
S. H. Burbury
Melvin Calvin
William Calvin
Donald Campbell
John O. Campbell
Sadi Carnot
Anthony Cashmore
Eric Chaisson
Gregory Chaitin
Jean-Pierre Changeux
Rudolf Clausius
Arthur Holly Compton
John Conway
Simon Conway-Morris
Peter Corning
George Cowan
Jerry Coyne
John Cramer
Francis Crick
E. P. Culverwell
Antonio Damasio
Olivier Darrigol
Charles Darwin
Paul Davies
Richard Dawkins
Terrence Deacon
Lüder Deecke
Richard Dedekind
Louis de Broglie
Stanislas Dehaene
Max Delbrück
Abraham de Moivre
David Depew
Bernard d'Espagnat
Paul Dirac
Theodosius Dobzhansky
Hans Driesch
John Dupré
John Eccles
Arthur Stanley Eddington
Gerald Edelman
Paul Ehrenfest
Manfred Eigen
Albert Einstein
George F. R. Ellis
Walter Elsasser
Hugh Everett, III
Franz Exner
Richard Feynman
R. A. Fisher
David Foster
Joseph Fourier
George Fox
Philipp Frank
Steven Frautschi
Edward Fredkin
Augustin-Jean Fresnel
Karl Friston
Benjamin Gal-Or
Howard Gardner
Lila Gatlin
Michael Gazzaniga
Nicholas Georgescu-Roegen
GianCarlo Ghirardi
J. Willard Gibbs
James J. Gibson
Nicolas Gisin
Paul Glimcher
Thomas Gold
A. O. Gomes
Brian Goodwin
Joshua Greene
Dirk ter Haar
Jacques Hadamard
Mark Hadley
Ernst Haeckel
Patrick Haggard
J. B. S. Haldane
Stuart Hameroff
Augustin Hamon
Sam Harris
Ralph Hartley
Hyman Hartman
Jeff Hawkins
John-Dylan Haynes
Donald Hebb
Martin Heisenberg
Werner Heisenberg
Hermann von Helmholtz
Grete Hermann
John Herschel
Basil Hiley
Art Hobson
Jesper Hoffmeyer
Don Howard
John H. Jackson
Ray Jackendoff
Roman Jakobson
E. T. Jaynes
William Stanley Jevons
Pascual Jordan
Eric Kandel
Ruth E. Kastner
Stuart Kauffman
Martin J. Klein
William R. Klemm
Christof Koch
Simon Kochen
Hans Kornhuber
Stephen Kosslyn
Daniel Koshland
Ladislav Kovàč
Leopold Kronecker
Bernd-Olaf Küppers
Rolf Landauer
Alfred Landé
Pierre-Simon Laplace
Karl Lashley
David Layzer
Joseph LeDoux
Gerald Lettvin
Michael Levin
Gilbert Lewis
Benjamin Libet
David Lindley
Seth Lloyd
Werner Loewenstein
Hendrik Lorentz
Josef Loschmidt
Alfred Lotka
Ernst Mach
Donald MacKay
Henry Margenau
Lynn Margulis
Owen Maroney
David Marr
Humberto Maturana
James Clerk Maxwell
John Maynard Smith
Ernst Mayr
John McCarthy
Barabara McClintock
Warren McCulloch
N. David Mermin
George Miller
Stanley Miller
Ulrich Mohrhoff
Jacques Monod
Vernon Mountcastle
Emmy Noether
Donald Norman
Travis Norsen
Howard T. Odum
Alexander Oparin
Abraham Pais
Howard Pattee
Wolfgang Pauli
Massimo Pauri
Wilder Penfield
Roger Penrose
Steven Pinker
Colin Pittendrigh
Walter Pitts
Max Planck
Susan Pockett
Henri Poincaré
Daniel Pollen
Ilya Prigogine
Hans Primas
Zenon Pylyshyn
Henry Quastler
Adolphe Quételet
Pasco Rakic
Nicolas Rashevsky
Lord Rayleigh
Frederick Reif
Jürgen Renn
Giacomo Rizzolati
A.A. Roback
Emil Roduner
Juan Roederer
Robert Rosen
Frank Rosenblatt
Jerome Rothstein
David Ruelle
David Rumelhart
Stanley Salthe
Robert Sapolsky
Tilman Sauer
Ferdinand de Saussure
Jürgen Schmidhuber
Erwin Schrödinger
Aaron Schurger
Sebastian Seung
Thomas Sebeok
Franco Selleri
Claude Shannon
Charles Sherrington
Abner Shimony
Herbert Simon
Dean Keith Simonton
Edmund Sinnott
B. F. Skinner
Lee Smolin
Ray Solomonoff
Herbert Spencer
Roger Sperry
John Stachel
Kenneth Stanley
Henry Stapp
Ian Stewart
Tom Stonier
Antoine Suarez
Leo Szilard
Max Tegmark
Teilhard de Chardin
Libb Thims
William Thomson (Kelvin)
Richard Tolman
Giulio Tononi
Peter Tse
Alan Turing
Robert Ulanowicz
C. S. Unnikrishnan
Nico van Kampen
Francisco Varela
Vlatko Vedral
Vladimir Vernadsky
Clément Vidal
Mikhail Volkenstein
Heinz von Foerster
Richard von Mises
John von Neumann
Jakob von Uexküll
C. H. Waddington
James D. Watson
John B. Watson
Daniel Wegner
Steven Weinberg
August Weismann
Paul A. Weiss
Herman Weyl
John Wheeler
Jeffrey Wicken
Wilhelm Wien
Norbert Wiener
Eugene Wigner
E. O. Wiley
E. O. Wilson
Günther Witzany
Carl Woese
Stephen Wolfram
H. Dieter Zeh
Semir Zeki
Ernst Zermelo
Wojciech Zurek
Konrad Zuse
Fritz Zwicky

Presentations

Biosemiotics
Free Will
Mental Causation
James Symposium
Evo Devo Scholar Talk
CCS25 Talk
 
John O. Campbell
John O. Campbell was a Canadian scientist and independent researcher who developed the concept of Universal Darwinism.

In his 2011 book Universal Darwinism: The Path of Knowledge, Campbell wrote...

The Universal Darwinism meta-theory contains the numerous scientific theories which employ a Darwinian process to explain the creation and evolution of their subject matter as well as an exposition of the general principles these theories have in common. The ‘universal’ aspect of this theory is justified by the broad scope of subject matter included under its umbrella. The literature contains numerous scientific theories in quantum physics, atomic and molecular physics, cosmology, biology and culture.

This book will make the argument that Universal Darwinism provides a further advance in the unification of scientific understanding; that Universal Darwinism is a means of consolidating a wide swath of seemingly disparate scientific subject matter within a single theoretical paradigm. The forces and interactions of the micro-world are viewed by modern particle physics in terms of information. John Archibald Wheeler, one of the past century’s most influential physicists, liked to say that his career had moved through three phases, from “Everything is particles” to “Everything is fields” to “Everything is information” (Ford 2010). The concept of information not only has a central explanatory role within particle physics it is also central to explanations of emergent levels of complex reality such as biology and culture. The increased focus of scientific explanation on information holds promise for a single theory with the ability to unite many branches of science within the same theoretical framework. For the past 60 years a single theory that is able to explain all fundamental interaction in terms of information has been physic’s Holy Grail and is often referred to as the Theory of Everything (TOE). The presumptuous title is due to the hope that given a single theory of the building blocks we would be able to explain all the more complex emergent systems, such as chemistry and life, which arise from them.

In his 2016 article, Universal Darwinism As a Process of Bayesian Inference, Campbell wrote...

Many of the mathematical frameworks describing natural selection are equivalent to Bayes' Theorem, also known as Bayesian updating. By definition, a process of Bayesian Inference is one which involves a Bayesian update, so we may conclude that these frameworks describe natural selection as a process of Bayesian inference. Thus, natural selection serves as a counter example to a widely-held interpretation that restricts Bayesian Inference to human mental processes ~ncluding the endeavors of statisticians). As Bayesian inference can always be cast in terms of (variational) free energy minimization, natural selection can be viewed as comprising two components: a generative model of an •experiment" in the external wood environment, and the results of that "experiment" or the "surprise· entailed by predicted and actual outcomes of the "experiment." Minimization of free energy impfies that the implicit measure of •surprise" experienced serves to update the generative model in a Bayesian manner. This description closely accords with the mechanisms of generafized Darwinian process proposed both by Dawkins, in terms of replicators and vehicles, and Campbell, in terms of inferential systems. Bayesian inference is an algorithm for the accumulation of evldenoe-based knowledge. This algorittvn is now seen to operate over a wide range of evolutionary processes, including natural selection, the evolution of mental models and cultural evolutionary processes, notably including science itself. The vanational principle of free energy minimization may thus serve as a unifying mathematical framework for universal Darwinism, the study of evolutionary processes operating throughout nature.

Campbell assumed that Darwinian processes are an implementation of Bayesian inference.
He explored the growth of knowledge and the complexity of internal modeling under selection, beginning with the quantum wave function, as described in Wojciech Zurek's theory of Quantum Darwinism, and extended this information-based model to biological organisms, nervous systems, evolutionary psychology, human culture and scientific knowledge.

Campbell's 2019 paper, with British neuroscientist and active inference theorist Karl Friston marked the beginning of a collaboration between Campbell and Friston.

Campbell's 2021 book, The Knowing Universe further builds on the work of Friston and his Free Energy Principle.

A largely unheralded scientific revolution is sweeping through the research community. One aspect of this revolution is a growing body of research centred on Karl Friston's notions of the Bayesian Brain and the Free Energy Principle and based on this work, Friston is rated the most influential neuroscientist of our day. His research reveals that the computation of Bayesian inferences, or the solving of mathematical relationships between hypotheses and evidence, is the brain's main problem-solving mechanism. As documented in the flood of research papers currently published at a rate of over one thousand a year referring to the free energy principle, it appears the brain uses Bayesian inference over and over again to solve the many puzzles confronting it.
Normal | Teacher | Scholar