Citation for this page in APA citation style.           Close


Topics

Introduction
Problems
Freedom
Knowledge
Mind
Life
Chance
Quantum
Entanglement
Scandals

Philosophers

Mortimer Adler
Rogers Albritton
Alexander of Aphrodisias
Samuel Alexander
William Alston
Anaximander
G.E.M.Anscombe
Anselm
Louise Antony
Thomas Aquinas
Aristotle
David Armstrong
Harald Atmanspacher
Robert Audi
Augustine
J.L.Austin
A.J.Ayer
Alexander Bain
Mark Balaguer
Jeffrey Barrett
William Barrett
William Belsham
Henri Bergson
George Berkeley
Isaiah Berlin
Richard J. Bernstein
Bernard Berofsky
Robert Bishop
Max Black
Susan Blackmore
Susanne Bobzien
Emil du Bois-Reymond
Hilary Bok
Laurence BonJour
George Boole
Émile Boutroux
Daniel Boyd
F.H.Bradley
C.D.Broad
Michael Burke
Jeremy Butterfield
Lawrence Cahoone
C.A.Campbell
Joseph Keim Campbell
Rudolf Carnap
Carneades
Nancy Cartwright
Gregg Caruso
Ernst Cassirer
David Chalmers
Roderick Chisholm
Chrysippus
Cicero
Tom Clark
Randolph Clarke
Samuel Clarke
Anthony Collins
August Compte
Antonella Corradini
Diodorus Cronus
Jonathan Dancy
Donald Davidson
Mario De Caro
Democritus
William Dembski
Brendan Dempsey
Daniel Dennett
Jacques Derrida
René Descartes
Richard Double
Fred Dretske
Curt Ducasse
John Earman
Laura Waddell Ekstrom
Epictetus
Epicurus
Austin Farrer
Herbert Feigl
Arthur Fine
John Martin Fischer
Frederic Fitch
Owen Flanagan
Luciano Floridi
Philippa Foot
Alfred Fouilleé
Harry Frankfurt
Richard L. Franklin
Bas van Fraassen
Michael Frede
Gottlob Frege
Peter Geach
Edmund Gettier
Carl Ginet
Alvin Goldman
Gorgias
Nicholas St. John Green
Niels Henrik Gregersen
H.Paul Grice
Ian Hacking
Ishtiyaque Haji
Stuart Hampshire
W.F.R.Hardie
Sam Harris
William Hasker
R.M.Hare
Georg W.F. Hegel
Martin Heidegger
Heraclitus
R.E.Hobart
Thomas Hobbes
David Hodgson
Shadsworth Hodgson
Baron d'Holbach
Ted Honderich
Pamela Huby
David Hume
Ferenc Huoranszki
Frank Jackson
William James
Lord Kames
Robert Kane
Immanuel Kant
Tomis Kapitan
Walter Kaufmann
Jaegwon Kim
William King
Hilary Kornblith
Christine Korsgaard
Saul Kripke
Thomas Kuhn
Andrea Lavazza
James Ladyman
Christoph Lehner
Keith Lehrer
Gottfried Leibniz
Jules Lequyer
Leucippus
Michael Levin
Joseph Levine
George Henry Lewes
C.I.Lewis
David Lewis
Peter Lipton
C. Lloyd Morgan
John Locke
Michael Lockwood
Arthur O. Lovejoy
E. Jonathan Lowe
John R. Lucas
Lucretius
Alasdair MacIntyre
Ruth Barcan Marcus
Tim Maudlin
James Martineau
Nicholas Maxwell
Storrs McCall
Hugh McCann
Colin McGinn
Michael McKenna
Brian McLaughlin
John McTaggart
Paul E. Meehl
Uwe Meixner
Alfred Mele
Trenton Merricks
John Stuart Mill
Dickinson Miller
G.E.Moore
Ernest Nagel
Thomas Nagel
Otto Neurath
Friedrich Nietzsche
John Norton
P.H.Nowell-Smith
Robert Nozick
William of Ockham
Timothy O'Connor
Parmenides
David F. Pears
Charles Sanders Peirce
Derk Pereboom
Steven Pinker
U.T.Place
Plato
Karl Popper
Porphyry
Huw Price
H.A.Prichard
Protagoras
Hilary Putnam
Willard van Orman Quine
Frank Ramsey
Ayn Rand
Michael Rea
Thomas Reid
Charles Renouvier
Nicholas Rescher
C.W.Rietdijk
Richard Rorty
Josiah Royce
Bertrand Russell
Paul Russell
Gilbert Ryle
Jean-Paul Sartre
Kenneth Sayre
T.M.Scanlon
Moritz Schlick
John Duns Scotus
Albert Schweitzer
Arthur Schopenhauer
John Searle
Wilfrid Sellars
David Shiang
Alan Sidelle
Ted Sider
Henry Sidgwick
Walter Sinnott-Armstrong
Peter Slezak
J.J.C.Smart
Saul Smilansky
Michael Smith
Baruch Spinoza
L. Susan Stebbing
Isabelle Stengers
George F. Stout
Galen Strawson
Peter Strawson
Eleonore Stump
Francisco Suárez
Richard Taylor
Kevin Timpe
Mark Twain
Peter Unger
Peter van Inwagen
Manuel Vargas
John Venn
Kadri Vihvelin
Voltaire
G.H. von Wright
David Foster Wallace
R. Jay Wallace
W.G.Ward
Ted Warfield
Roy Weatherford
C.F. von Weizsäcker
William Whewell
Alfred North Whitehead
David Widerker
David Wiggins
Bernard Williams
Timothy Williamson
Ludwig Wittgenstein
Susan Wolf
Xenophon

Scientists

David Albert
Philip W. Anderson
Michael Arbib
Bobby Azarian
Walter Baade
Bernard Baars
Jeffrey Bada
Leslie Ballentine
Marcello Barbieri
Jacob Barandes
Julian Barbour
Horace Barlow
Gregory Bateson
Jakob Bekenstein
John S. Bell
Mara Beller
Charles Bennett
Ludwig von Bertalanffy
Susan Blackmore
Margaret Boden
David Bohm
Niels Bohr
Ludwig Boltzmann
John Tyler Bonner
Emile Borel
Max Born
Satyendra Nath Bose
Walther Bothe
Jean Bricmont
Hans Briegel
Leon Brillouin
Daniel Brooks
Stephen Brush
Henry Thomas Buckle
S. H. Burbury
Melvin Calvin
William Calvin
Donald Campbell
John O. Campbell
Sadi Carnot
Sean B. Carroll
Anthony Cashmore
Eric Chaisson
Gregory Chaitin
Jean-Pierre Changeux
Rudolf Clausius
Arthur Holly Compton
John Conway
Simon Conway-Morris
Peter Corning
George Cowan
Jerry Coyne
John Cramer
Francis Crick
E. P. Culverwell
Antonio Damasio
Olivier Darrigol
Charles Darwin
Paul Davies
Richard Dawkins
Terrence Deacon
Lüder Deecke
Richard Dedekind
Louis de Broglie
Stanislas Dehaene
Max Delbrück
Abraham de Moivre
David Depew
Bernard d'Espagnat
Paul Dirac
Theodosius Dobzhansky
Hans Driesch
John Dupré
John Eccles
Arthur Stanley Eddington
Gerald Edelman
Paul Ehrenfest
Manfred Eigen
Albert Einstein
George F. R. Ellis
Walter Elsasser
Hugh Everett, III
Franz Exner
Richard Feynman
R. A. Fisher
David Foster
Joseph Fourier
George Fox
Philipp Frank
Steven Frautschi
Edward Fredkin
Augustin-Jean Fresnel
Karl Friston
Benjamin Gal-Or
Howard Gardner
Lila Gatlin
Michael Gazzaniga
Nicholas Georgescu-Roegen
GianCarlo Ghirardi
J. Willard Gibbs
James J. Gibson
Nicolas Gisin
Paul Glimcher
Thomas Gold
A. O. Gomes
Brian Goodwin
Julian Gough
Joshua Greene
Dirk ter Haar
Jacques Hadamard
Mark Hadley
Ernst Haeckel
Patrick Haggard
J. B. S. Haldane
Stuart Hameroff
Augustin Hamon
Sam Harris
Ralph Hartley
Hyman Hartman
Jeff Hawkins
John-Dylan Haynes
Donald Hebb
Martin Heisenberg
Werner Heisenberg
Hermann von Helmholtz
Grete Hermann
John Herschel
Francis Heylighen
Basil Hiley
Art Hobson
Jesper Hoffmeyer
John Holland
Don Howard
John H. Jackson
Ray Jackendoff
Roman Jakobson
E. T. Jaynes
William Stanley Jevons
Pascual Jordan
Eric Kandel
Ruth E. Kastner
Stuart Kauffman
Martin J. Klein
William R. Klemm
Christof Koch
Simon Kochen
Hans Kornhuber
Stephen Kosslyn
Daniel Koshland
Ladislav Kovàč
Leopold Kronecker
Bernd-Olaf Küppers
Rolf Landauer
Alfred Landé
Pierre-Simon Laplace
Karl Lashley
David Layzer
Joseph LeDoux
Gerald Lettvin
Michael Levin
Gilbert Lewis
Benjamin Libet
David Lindley
Seth Lloyd
Werner Loewenstein
Hendrik Lorentz
Josef Loschmidt
Alfred Lotka
Ernst Mach
Donald MacKay
Henry Margenau
Lynn Margulis
Owen Maroney
David Marr
Humberto Maturana
James Clerk Maxwell
John Maynard Smith
Ernst Mayr
John McCarthy
Barbara McClintock
Warren McCulloch
N. David Mermin
George Miller
Stanley Miller
Ulrich Mohrhoff
Jacques Monod
Vernon Mountcastle
Gerd B. Müller
Emmy Noether
Denis Noble
Donald Norman
Travis Norsen
Howard T. Odum
Alexander Oparin
Abraham Pais
Howard Pattee
Wolfgang Pauli
Massimo Pauri
Wilder Penfield
Roger Penrose
Massimo Pigliucci
Steven Pinker
Colin Pittendrigh
Walter Pitts
Max Planck
Susan Pockett
Henri Poincaré
Michael Polanyi
Daniel Pollen
Ilya Prigogine
Hans Primas
Giulio Prisco
Zenon Pylyshyn
Henry Quastler
Adolphe Quételet
Pasco Rakic
Nicolas Rashevsky
Lord Rayleigh
Frederick Reif
Jürgen Renn
Giacomo Rizzolati
A.A. Roback
Emil Roduner
Juan Roederer
Robert Rosen
Frank Rosenblatt
Jerome Rothstein
David Ruelle
David Rumelhart
Michael Ruse
Stanley Salthe
Robert Sapolsky
Tilman Sauer
Ferdinand de Saussure
Jürgen Schmidhuber
Erwin Schrödinger
Aaron Schurger
Sebastian Seung
Thomas Sebeok
Franco Selleri
Claude Shannon
James A. Shapiro
Charles Sherrington
Abner Shimony
Herbert Simon
Dean Keith Simonton
Edmund Sinnott
B. F. Skinner
Lee Smolin
Ray Solomonoff
Herbert Spencer
Roger Sperry
John Stachel
Kenneth Stanley
Henry Stapp
Ian Stewart
Tom Stonier
Antoine Suarez
Leonard Susskind
Leo Szilard
Max Tegmark
Teilhard de Chardin
Libb Thims
William Thomson (Kelvin)
Richard Tolman
Giulio Tononi
Peter Tse
Alan Turing
Robert Ulanowicz
C. S. Unnikrishnan
Nico van Kampen
Francisco Varela
Vlatko Vedral
Vladimir Vernadsky
Clément Vidal
Mikhail Volkenstein
Heinz von Foerster
Richard von Mises
John von Neumann
Jakob von Uexküll
C. H. Waddington
Sara Imari Walker
James D. Watson
John B. Watson
Daniel Wegner
Steven Weinberg
August Weismann
Paul A. Weiss
Herman Weyl
John Wheeler
Jeffrey Wicken
Wilhelm Wien
Norbert Wiener
Eugene Wigner
E. O. Wiley
E. O. Wilson
Günther Witzany
Carl Woese
Stephen Wolfram
H. Dieter Zeh
Semir Zeki
Ernst Zermelo
Wojciech Zurek
Konrad Zuse
Fritz Zwicky

Presentations

ABCD Harvard (ppt) Biosemiotics
Free Will
Mental Causation
James Symposium
CCS25 Talk
Evo Devo September 12
Evo Devo October 2
Evo Devo Goodness
Evo Devo Davies Nov12

 
Black Holes

Black holes are such extraordinarily compact objects they require a theory that involves general relativity (the theory of gravitation) and quantum mechanics (the theory of microscopic particles), in short a theory of quantum gravity.

The popular definition of a black hole is a region of space having a gravitational field so intense that no matter or radiation can escape. When the gravitational attraction of the mass at the center singularity is greater than the centrifugal force of a particle grazing the event horizon, the particle will be drawn into the black hole, never to escape.

The centrifugal force on a particle with mass m traveling around a circle with radius r at velocity v is ½(mv2/r). The gravitational attraction of a mass M at the center is GMm/r2.

Equating these, and assuming v = c, the velocity of light, the Schwarzscild radius R = 2GM/c2.

Jacob Bekenstein showed that adding a low-energy photon with a wavelength the size of a black hole would add an area one Planck-length squared to its event horizon.1

Leonard Susskind argued that the photon adds one bit of lost (or hidden) information to the internal entropy of the black hole (i.e., in the singularity at it's center) and one bit of information at the event horizon. Susskind's "holographic universe" interprets the event horizon as a hologram of the lost (or hidden) information inside a black hole.

But the event horizon is not a material structure capable of storing information. As first described by Karl Schwarzschild and Albert Einstein in the 1920's, the horizon is simply an abstract mathematical surface where the pull of gravity from the condensed matter of the singularity at the center prevents anything, including light, from crossing the horizon and escaping the black hole.

The center singularity is said to be infinitesimal in size but infinite in density, so there is nothing but empty space in a black hole between the singularity and the event horizon. Any particle that entered the horizon will very rapidly fall to the center.

Stephen Hawking added four famous properties to black holes.

First was the idea that black holes have "no hair," that the event horizon is featureless.
This is strictly correct. No visible radiation is coming through the event horizon, but we will see that immense amounts of radiation are being produced by the extreme activity in the immediate vicinity of the black hole event horizon.

Hawking's second idea was the radical proposal that black holes are not so black after all, because they are radiating information. This needs careful explanation.

This second idea is that "virtual particle" pairs are appearing just outside the event horizon, with one particle going into the black hole and the other radiating away what is known as "Hawking radiation." Now there is a vast amount of radiative activity around all observed black holes, otherwise they would not be observable, only discoverable by their gravitational effect on their luminous neighbors.

For supermassive black holes at the center of galaxies, all this activity is caused by the vast amounts of intergalactic material falling into the black hole. These active galactic nuclei were first detected as "quasars" or quasi-stellar sources. The largest are today called "blazers." These are the most powerful and brightest objects in the universe.

Hawking's third idea was that his radiation would be evaporating a black hole. This needs very careful examination. First, there is no evidence that black holes are evaporating. All observed black holes appear to be growing, fed by the intergalactic material they are accreting. Even that single virtual particle Hawking saw falling in (as its partner radiates away) does not reduce, it adds to the black hole mass. We can note that Hawking's pair production might be happening inside the event horizon a short distance. As long as the gravitational red shift is not enough to reduce the energy to zero, a weakened photon can pass through the event horizon.

The second law of thermodynamics suggests that even black holes that are currently unobservable are also growing and not evaporating. The intergalactic material is very sparse and very cold, warmed only by the 2.7K cosmic background radiation. But a black hole singularity is thought to be much, much colder, perhaps a millionth of a degree Kelvin. Heat flows from hot to cold, carrying the atoms of the intergalactic medium (perhaps as little as a few hydrogen atoms per cubic meter) into the black hole.

Hawking's fourth idea, and perhaps most important, was that information is being lost to the black hole. This is very likely correct

But multiple physicists claimed Hawking was wrong. Some made bets.

Susskind described this as the "black hole war" which, he said, was fought to "make the world safe for quantum mechanics." His argument was based on the argument that "information never dies." This is a "law of physics that may be even more fundamental than energy conservation. It's sometimes called reversibility, but let's just call it information conversation."2.

Notes
  1. The Schwarzschild radius is the radius of a spherical boundary around a massive object; if the object's entire mass collapses within this radius, it becomes a black hole. This boundary, also known as the event horizon, is the point of no return, where the escape velocity equals the speed of light. The formula for the Schwarzschild radius is R = 2GM/c2 where G is the gravitational constant, M is the mass of the object, and c is the speed of light.  
  2. Susskind, The Black Hole War, p.87
Normal | Teacher | Scholar