Citation for this page in APA citation style.           Close


Philosophers

Mortimer Adler
Rogers Albritton
Alexander of Aphrodisias
Samuel Alexander
William Alston
Anaximander
G.E.M.Anscombe
Anselm
Louise Antony
Thomas Aquinas
Aristotle
David Armstrong
Harald Atmanspacher
Robert Audi
Augustine
J.L.Austin
A.J.Ayer
Alexander Bain
Mark Balaguer
Jeffrey Barrett
William Barrett
William Belsham
Henri Bergson
George Berkeley
Isaiah Berlin
Richard J. Bernstein
Bernard Berofsky
Robert Bishop
Max Black
Susanne Bobzien
Emil du Bois-Reymond
Hilary Bok
Laurence BonJour
George Boole
Émile Boutroux
F.H.Bradley
C.D.Broad
Michael Burke
Lawrence Cahoone
C.A.Campbell
Joseph Keim Campbell
Rudolf Carnap
Carneades
Nancy Cartwright
Gregg Caruso
Ernst Cassirer
David Chalmers
Roderick Chisholm
Chrysippus
Cicero
Randolph Clarke
Samuel Clarke
Anthony Collins
Antonella Corradini
Diodorus Cronus
Jonathan Dancy
Donald Davidson
Mario De Caro
Democritus
Daniel Dennett
Jacques Derrida
René Descartes
Richard Double
Fred Dretske
John Dupré
John Earman
Laura Waddell Ekstrom
Epictetus
Epicurus
Herbert Feigl
Arthur Fine
John Martin Fischer
Frederic Fitch
Owen Flanagan
Luciano Floridi
Philippa Foot
Alfred Fouilleé
Harry Frankfurt
Richard L. Franklin
Bas van Fraassen
Michael Frede
Gottlob Frege
Peter Geach
Edmund Gettier
Carl Ginet
Alvin Goldman
Gorgias
Nicholas St. John Green
H.Paul Grice
Ian Hacking
Ishtiyaque Haji
Stuart Hampshire
W.F.R.Hardie
Sam Harris
William Hasker
R.M.Hare
Georg W.F. Hegel
Martin Heidegger
Heraclitus
R.E.Hobart
Thomas Hobbes
David Hodgson
Shadsworth Hodgson
Baron d'Holbach
Ted Honderich
Pamela Huby
David Hume
Ferenc Huoranszki
William James
Lord Kames
Robert Kane
Immanuel Kant
Tomis Kapitan
Walter Kaufmann
Jaegwon Kim
William King
Hilary Kornblith
Christine Korsgaard
Saul Kripke
Thomas Kuhn
Andrea Lavazza
Christoph Lehner
Keith Lehrer
Gottfried Leibniz
Jules Lequyer
Leucippus
Michael Levin
George Henry Lewes
C.I.Lewis
David Lewis
Peter Lipton
C. Lloyd Morgan
John Locke
Michael Lockwood
E. Jonathan Lowe
John R. Lucas
Lucretius
Alasdair MacIntyre
Ruth Barcan Marcus
James Martineau
Storrs McCall
Hugh McCann
Colin McGinn
Michael McKenna
Brian McLaughlin
John McTaggart
Paul E. Meehl
Uwe Meixner
Alfred Mele
Trenton Merricks
John Stuart Mill
Dickinson Miller
G.E.Moore
Thomas Nagel
Otto Neurath
Friedrich Nietzsche
John Norton
P.H.Nowell-Smith
Robert Nozick
William of Ockham
Timothy O'Connor
Parmenides
David F. Pears
Charles Sanders Peirce
Derk Pereboom
Steven Pinker
Plato
Karl Popper
Porphyry
Huw Price
H.A.Prichard
Protagoras
Hilary Putnam
Willard van Orman Quine
Frank Ramsey
Ayn Rand
Michael Rea
Thomas Reid
Charles Renouvier
Nicholas Rescher
C.W.Rietdijk
Richard Rorty
Josiah Royce
Bertrand Russell
Paul Russell
Gilbert Ryle
Jean-Paul Sartre
Kenneth Sayre
T.M.Scanlon
Moritz Schlick
Arthur Schopenhauer
John Searle
Wilfrid Sellars
Alan Sidelle
Ted Sider
Henry Sidgwick
Walter Sinnott-Armstrong
J.J.C.Smart
Saul Smilansky
Michael Smith
Baruch Spinoza
L. Susan Stebbing
Isabelle Stengers
George F. Stout
Galen Strawson
Peter Strawson
Eleonore Stump
Francisco Suárez
Richard Taylor
Kevin Timpe
Mark Twain
Peter Unger
Peter van Inwagen
Manuel Vargas
John Venn
Kadri Vihvelin
Voltaire
G.H. von Wright
David Foster Wallace
R. Jay Wallace
W.G.Ward
Ted Warfield
Roy Weatherford
C.F. von Weizsäcker
William Whewell
Alfred North Whitehead
David Widerker
David Wiggins
Bernard Williams
Timothy Williamson
Ludwig Wittgenstein
Susan Wolf

Scientists

David Albert
Michael Arbib
Walter Baade
Bernard Baars
Jeffrey Bada
Leslie Ballentine
Gregory Bateson
John S. Bell
Mara Beller
Charles Bennett
Ludwig von Bertalanffy
Susan Blackmore
Margaret Boden
David Bohm
Niels Bohr
Ludwig Boltzmann
Emile Borel
Max Born
Satyendra Nath Bose
Walther Bothe
Jean Bricmont
Hans Briegel
Leon Brillouin
Stephen Brush
Henry Thomas Buckle
S. H. Burbury
Melvin Calvin
Donald Campbell
Sadi Carnot
Anthony Cashmore
Eric Chaisson
Gregory Chaitin
Jean-Pierre Changeux
Rudolf Clausius
Arthur Holly Compton
John Conway
Jerry Coyne
John Cramer
Francis Crick
E. P. Culverwell
Antonio Damasio
Olivier Darrigol
Charles Darwin
Richard Dawkins
Terrence Deacon
Lüder Deecke
Richard Dedekind
Louis de Broglie
Stanislas Dehaene
Max Delbrück
Abraham de Moivre
Paul Dirac
Hans Driesch
John Eccles
Arthur Stanley Eddington
Gerald Edelman
Paul Ehrenfest
Manfred Eigen
Albert Einstein
George F. R. Ellis
Hugh Everett, III
Franz Exner
Richard Feynman
R. A. Fisher
David Foster
Joseph Fourier
Philipp Frank
Steven Frautschi
Edward Fredkin
Lila Gatlin
Michael Gazzaniga
Nicholas Georgescu-Roegen
GianCarlo Ghirardi
J. Willard Gibbs
Nicolas Gisin
Paul Glimcher
Thomas Gold
A. O. Gomes
Brian Goodwin
Joshua Greene
Dirk ter Haar
Jacques Hadamard
Mark Hadley
Patrick Haggard
J. B. S. Haldane
Stuart Hameroff
Augustin Hamon
Sam Harris
Ralph Hartley
Hyman Hartman
John-Dylan Haynes
Donald Hebb
Martin Heisenberg
Werner Heisenberg
John Herschel
Basil Hiley
Art Hobson
Jesper Hoffmeyer
Don Howard
William Stanley Jevons
Roman Jakobson
E. T. Jaynes
Pascual Jordan
Ruth E. Kastner
Stuart Kauffman
Martin J. Klein
William R. Klemm
Christof Koch
Simon Kochen
Hans Kornhuber
Stephen Kosslyn
Daniel Koshland
Ladislav Kovàč
Leopold Kronecker
Rolf Landauer
Alfred Landé
Pierre-Simon Laplace
David Layzer
Joseph LeDoux
Gilbert Lewis
Benjamin Libet
David Lindley
Seth Lloyd
Hendrik Lorentz
Josef Loschmidt
Ernst Mach
Donald MacKay
Henry Margenau
Owen Maroney
Humberto Maturana
James Clerk Maxwell
Ernst Mayr
John McCarthy
Warren McCulloch
N. David Mermin
George Miller
Stanley Miller
Ulrich Mohrhoff
Jacques Monod
Emmy Noether
Alexander Oparin
Abraham Pais
Howard Pattee
Wolfgang Pauli
Massimo Pauri
Roger Penrose
Steven Pinker
Colin Pittendrigh
Max Planck
Susan Pockett
Henri Poincaré
Daniel Pollen
Ilya Prigogine
Hans Primas
Henry Quastler
Adolphe Quételet
Lord Rayleigh
Jürgen Renn
Juan Roederer
Jerome Rothstein
David Ruelle
Tilman Sauer
Jürgen Schmidhuber
Erwin Schrödinger
Aaron Schurger
Sebastian Seung
Thomas Sebeok
Claude Shannon
David Shiang
Abner Shimony
Herbert Simon
Dean Keith Simonton
B. F. Skinner
Lee Smolin
Ray Solomonoff
Roger Sperry
John Stachel
Henry Stapp
Tom Stonier
Antoine Suarez
Leo Szilard
Max Tegmark
Libb Thims
William Thomson (Kelvin)
Giulio Tononi
Peter Tse
Francisco Varela
Vlatko Vedral
Mikhail Volkenstein
Heinz von Foerster
Richard von Mises
John von Neumann
Jakob von Uexküll
John B. Watson
Daniel Wegner
Steven Weinberg
Paul A. Weiss
Herman Weyl
John Wheeler
Wilhelm Wien
Norbert Wiener
Eugene Wigner
E. O. Wilson
Stephen Wolfram
H. Dieter Zeh
Ernst Zermelo
Wojciech Zurek
Konrad Zuse
Fritz Zwicky

Presentations

Biosemiotics
Free Will
Mental Causation
James Symposium
 
Epistemological Letters
Hidden Variables and Quantum Uncertainty

Between 1973 and 1984, thirty-six issues of a privately published newsletter were circulated to about 180 of the most prominent physicists in the world. It contained contributions on the foundations of physics inspired by the work of John Bell, which in turn had been inspired by David Bohm's revival of Louis de Broglie's "pilot wave theory."

The Epistemological Letters were digitized and cataloged at Notre Dame's Hesburgh Libraries under the supervision of philosopher of science Don Howard and his graduate student Sebastián Margueitio Ramírez.

Here is a rough translation of the "Elementary Introduction" in the first issue, De quoi s'agit-il? It set the stage and opened the discussion.

In the nineteenth century, Fresnel proves, by experiments considered as irrefutable, the wave character of light.

1905 Einstein suggests explaining the photoelectric effect by a corpuscular theory of light, using the quanta recently discovered by Planck.

1924 To explain whole numbers (quantum numbers) which appeared in the quantum theory and based on Hamilton-Jacobi mechanics, de Broglie conversely proposes to associate a wave with material corpuscles such as the electron. One therefore has, in these two fields, coexistence of a wave theory and a corpuscular theory. The problem arises of reconciling them.

1926 Born interprets the amplitude of the wave (or rather the square of its modulus) as a probability density of the presence of a particle, an interpretation universally accepted today. Bohr and Heisenberg introduce the notion of complementarity: according to the experiment one proposes to do, physical reality sometimes appears under the corpuscular aspect, sometimes under the wave aspect. Experiments show one or the other mutually exclusive aspect. There is never experimental contradiction. But our conception of physical reality must be a synthesis of these two aspects contradictory and yet complementary.

1927 At the Solvay congress, a big discussion between the great theoretical physicists. Einstein disputes the interpretation of Bohr and Heisenberg (Copenhagen School). De Broglie offers a so-called pilot wave theory or he admits that the trajectory of the corpuscle is determined by the wave as it is where it is (theory of the pilot wave ),

Because it must be said that the Born statistical interpretation does not resolve every problems.

Take for example Young's experience: We drill two holes in a screen A and we examine what happens on screen B when sending light through the holes

On screen B we observe interference fringes which can be explained very well by a wave theory.

On the other hand, in a corpuscular theory, we have great difficulties. Because the interference figure that we get on screen B is not simply the superimposition of what we would get with each hole separately. To some places, there is less light when the two holes are open than when only one is open. It’s also experiences of this guy who had allowed Fresnel to lay down his wave theory.

Suppose now that we send a light very weak, so that it doesn’t fall on The device that has a grain of light (photon) sometimes. This photon will either pass through one hole or through the other.

The trajectory of the photon which passes through a hole must therefore be modified by the fact that the second hole is open or not, even if it no photon passes through this second hole.

Now what can pass through this second hole? We have a ready answer: the wave associated with the corpuscle.

But if this wave only represents a probability of presence, how can we understand that it physically influences the trajectory of the corpuscle? Because a probability, on an individual event represents nothing real: either a photon is in a certain area or else it is not there. Probability only took meaning statistically, over a large number of events of the same type. As Ashby says, the notion of probability makes it possible to artificially attribute to an individual event a property which belongs only to a set of events of the same type. How are we to understand how this set of events, which are not concretely present at the time of the passage of the photon, can influence its movement?

We therefore understand that L. de Broglie was led to formulate a so-called double theory solution, which assumes that the equation of Schrödinger admits two solutions: one being the Ψ wave, giving the probability of presence, the other being a physical wave u which could influence the trajectory of the corpuscle of such so that statistically the probability of presence of the corpuscle restores that predicted by the Ψ wave. (More precisely, the wave u would be a nonlinear solution comprising singularities which would represent the corpuscles :) But, faced with the mathematical difficulties encountered, he fell back on the theory of the more simple pilot wave.

The discussion started at the Solvay congress did not never completely die. The majority of physicists are rallying around the Copenhagen interpretation, which refuses to ask questions about an individual event in space-time and is only interested in what we can actually measure..

But some physicists, not least (Einstein, Schrödinger, De Broglie, Bohm), all admitting the experimental successes of quantum mechanics, remained of the opinion that we should obtain a description having the true character of reality, that is to say, not dependent on what the observer arbitrarily decided to measure.

An example may help to understand better: in thermodynamics, we can describe a macroscopic system using global quantities:: temperature, pressure etc. and enact laws for the evolution of these quantities.

Boltzmann and Gibbs succeeded, starting from a model of molecules obeying the laws of mechanics to find these macroscopic magnitudes and the laws which govern them.

From the point of view of macroscopic thermodynamics, the positions and velocities of individual molecules may be hidden variables? not predictable. But we can make reasonable assumptions about these hidden variables and recover thermodynamics, its magnitudes and its laws.

In this sense, macroscopic (or "phenomenological") thermodynamics is not a complete description; it only processes molecules by statistical, global quantities, averages; it does not take into account movements and individual deviations and proves unable to predict phenomena such as fluctuations.

Likewise, according to Einstein and others, the same. quantum quantum would not be a complete description. We will have to invent a theory making certain assumptions about hidden variables, inaccessible to experience, (such as velocity, position, and trajectory of the corpuscles), the theory which underlies quantum mechanics like statistical mechanics underpins phenomenological thermodynamics. And it's our ignorance of the value of some parameters that would force us to fall back on a statistical description. Indeterminism it will not be in the things themselves, it would come from our ignorance.

The developments are as follows:

Bell was able to show in 1965 that, using certain reasonable assumptions, theories of hidden variables had to satisfy a certain inequality, an inequality which would allow them to differentiate their predictions from those of quantum mechanics.

An experiment was proposed by Shimony, Horne, Holt and Clauser, then carried out by Freedman and Clauser. It gave a result clearly supporting quantum mechanics and excluding at least some type of hidden variable theories.

The discussion is open to evaluate the scope of the exact results and the consequences we must draw from it.

Epistemological Letters Index

Hidden Variables and Quantum Uncertainty

Issue 1, February 1973

De quoi s'agit-il ?
A.Horne, A.Shimony (Easton, Boston) Local Hidden-variable Theories
A.Horne, A.Shimony - Postscript, Sept. 1973 New experiments: Disagreement with Quantum Mechanics?

Issue 2, May, 1974

Comments from P.Bernays and G.Temple 1
H.J. Treder (Berlin, DDR) Du paradoxe au paradigme. "Pouvoir incantatoire" dl'une lecture "rituelle" du formalisme 14
P.A. Moldauer A new critique of EPR 23
A. Cochran A new interpretation of quantum mechanics in relation to hidden variables and quantum uncertainty 25
F. Bonsack InterprétatIon objectivistes ou subjectivistes? 31

Issue 3, September, 1974

6.1 O. Costa de Beauregard Le role des interprétations frequentielle et informationelle de la probabilité dans notre probleme 2
7.0 Ren´Malcor Comment s'egarer dans les experiences de pensée 4
8.1 J.L. Destouches Symposium sur l'entropie 8

Issue 4, December, 1974

5.1 W.T. Scott Remarks on Consciousness and Quantum Mechanics 1
6.2, 7.3, 8.2 P.Huguenin Remarques 2
7.1 D. Park Commentaire sur 1a notion de particule 4
7.2 F.Bonsack Réponse 5
8.3 A.Guggenheimer Remarks on the note of J .L. Destouches 6
9.0 M.Drieschner EPR, a challenge of objectivity 7
10.0 W.T. Scott Three Uncertainty principles
Colloque de Strasbourg : Un demi-siecle de mecanique quantique

Issue 5, June, 1975

Rectification 1
11.0 M.Mugur-Schaechter The quantum mechanical one-system formalism, joint probabilities, and locality of momentum measurement events 4

Issue 6, September, 1975

12.0 P. Huguenin Remarques sur A. Landé: "Quantum Mechanics in a new key' 3
13.0 M. Paty Les tentatives récentes de vérification de la mécanique quantique 5
14.0 G. Lochak Paramètres cachés et probabilités cachées 41

Issue 7, November, 1975

14.1 J. S. Bell Locality in Quantum Mechanics: Reply to critics 2
14.2 F. Bonsack Remarques a propos de l'artic1e de G.Lochak (14.0) et de la réponse de J.S. Bell (14.1) 7
Communiqué 9

Issue 8, January, 1976

14.3 A. Shimony Reply to Dr. Lochak 1
12.1 A. Shimony A Comment on Landé's Approach to Quantum Mechanics 6
15.0 F. Bonsack Les conditions de validité du théorème de Bell 8

Issue 9, March, 1976

16.0 M.Mugur-Schächter What is at Stake in the experiments on Bell's Inequality? 1
17.0 J. S. Bell The Theory of Local Beables 11
14.3 O. Costa de Beauregard Remarques à propos de 14.1 et 14.2 25
14.4 F.Bonsack Réponse à 14.3 27
18.0 B.Hoffmann Quelques remarques 28

Issue 10, May, 1976

19.0 G.Lochak Encore quelques refléxions sur le théorème de Bell 1
19.1 F. Bonsack Commentaires sur 19.0 10
16.1 B.d 'Espagnat What is at stake in the experiments on Bell's inequality 12
20.0 O. Costa de Beauregard The Paradox 23
Nouvelles du Colloque EPR à Erice 26

Issue 11, July, 1976

21.0 R.Malcor Une variable cachée e la phase 1
22.0 P.Moldauer Questions concerning "reduction"··and "splitting" 13
22.1 B.d'Espagnat Comments on 22.0

Issue 12, September, 1976

14.6 L. de la Pena
A. M. Cetto
T.A. Brody
Further Comments on Bell's Inequality 2
22.2 P.A. Moldauer Reply to a comment of d'Espagnat
R. Halcor Errata 4

Issue 13, October, 1976

17.1 A. Shimony, M. A. Horne, J. F. Clauser Comment on "The Theory of Local Beables" 1
17.2 P. A. Noldauer A remark on local causality 9

Issue 14, December, 1976

23.0 O.Costa de Beauregard Evidence expérimentale Beauregard du paradoxe d'Einstein 1
16.2 P.A.Moldauer Comment on Separability and Quantum Logic 5
24.0 P.A.Moldauer Quantum Description of Reality 6

Issue 15, February, 1977

25.0 S. Dimitru Uncertainty Relations or correlation relations? 1
17.3 J. S. Bell Free Variables and Local Causality 79
23.1
23.1 O. Costa de Beauregard Evidence expérimentale du paradoxe d'Einstein (suite) 85

Issue 16, May, 1977

17.4 O. Costa de Beauregard Las duellistes Bell et Clauser-Horne-Shimony ("C.H.S.") s'aveuglent en refusant la "causalite rétrograde" inscrite en clair dans Ie formalisme 1
25.1 L.S.Hayants Remarks on the contribution of S.Dumitru (25.0) 9

Issue 17, December, 1977

26.0 O. Costa de Beauregard Leparadoxe d'Einstein retourné 3
27.0 O. Costa de Beauregard Corrélation d'Einstein Beauregard et covariance relativiste 7
27.q B.d'Espagna Réeponse à M. Costa de Beauregard 10

Issue 18, January, 1978

17.4 A. Shimony Reply to Bell 17.3 1
25.2 S•Dumitru A few replies to the remarks of professor L.S.Mayants (25.1) 5
27.2 O. Costa de Beauregard Réponse à B.d'Espagnat (27.1 18
27.3 B.d'Espagnat Lettre à F.Bonsack au sujet de 27.2 33

Issue 19, June, 1978

28.0 C. Piron Remarques à propos du symposium écrit 1
28.1-3 F.Bonsack et
C.Piron
Questions, précisions et remarque 12
29.0 -34.0 B.d'Espagnat, O.Costa de Beauregard, A.Shimony, J._L.Destouches, G.Lochak, M.Mugur-Schaechter Thèses pour la discussion (colloque oral) 19
33.1 G. Lochak Exposé 31
33.2 Discussion 40
33.3 F.Bonsack Réponse à M. Lochak 43
35.0 C. Piron Le modèle quantique 47
36.0 Non Local Character of Quantum Theory 55

Issue 20, July, 1978

37.0 J. S. Bell On the hypothesis that the Schroedinger Equation is correct 1
38.0 O. Costa de Beauregard Expérience de corrélation d'Einstein inverse 29
17.6 A.Shimony Reply to Costa de Beauregard 33
17.7 O. Costa de Beauregard Réponse
17.8 F.Bonsack Remarques à propos de 17.0 (J.S.Bell) 49
17.9 J. S. Bell Réponse
17.10 F.Bonsack Réponse et compléments 54
27.4 C.de Charrière Causalité retrograde? 61
27.5 O. Costa de Beauregard Rectification et generalisation 63

Issue 21, October, 1978

39.0 F. Selleri, G. Tarozzi Extension of the domain of validity of Bell's Inequality 1
17.9 O. Costa de Beauregard Compléments à Bonsack 17.8 23
29.1 O. Costa de Beauregard Objection à d'Espagnat 29.0 25
32.1 J.L. Destouches Paradoxe EPR et ondes u 27
28.4 O. Costa de Beauregard Nouveaux braiements de l'un des anes 31
33.4 O. Costa de Beauregard Réponse à Lochak 33
33.5 F. Bonsack La non-localité sur un exemple simple et sans inégalités 35

Issue 22, March, 1979

40.0 B. d'Espagnat Définitions' partieIles, mécanique quantique, contrafactualité et réaIisme 1
40.1 F. Bonsack Réflexions au sujet de 40.0 33
41.0 R.M. Cooke, J. Hilgevoord, Correspondence, Equivalence and Completeness 42
21.1 R. Malcor La Mécanique quantique est une mécanique cIassique 54
27.6 C. de Charrièrre Causalité rétrograde (bis) 72
33.6 O. Costa de Beauregard Remarques sur 33.5 80
39.1 O. Costa de Beauregard Remarques sur 39.0 82

Issue 23, June, 1979

42.0 G.F. Hussain A Critique of Bunge's Interpretation of Quantum Mechanics 1
42.1 F. Bonsack Remarques à propos de 42.0 12
O. Costa de Beauregard Commentaires
27.7 sur 27.6 (C. de Charrièrre) 13
40.2 sur 40.1 (F. Bonsack) 15
40.3 sur 40.0 (B. d'Espagnat) 15
40.4 F. Bonsack Remarques à propos de 40.2 et 40.3 20

Issue 24, October, 1979

44.0 A. Garuccio, F. Selleri Action at a distance in Quantum ·Mechanics 1
44.1 O. Costa de Beauregard Collapse du ψ et Covariance relativiste 9
44.2 N.Hadjisavvas Non-conservation du moment cinétique total lors d'une mesure de spin 14
45.0 J .-L.Destouches Remarques sur les variables cachée s et l'indéterminisme quantique 21
45.1 F. Bonsack Remarques à propos de 45.0 23
27.7 C. de Charrière Réponse à Costa de Beauregard 25
27.8 F. Bonsack Réponse à 27.7 26
42.2 H. Jochim Kommentar zu 42.0 und 42.1 27
43.1 R.M. Cooke The Friedman-Putnam Realism 37

Issue 25, February, 1980

46.0 M.Mugur-Schächter RefIexion sur Ie problème de Localité 1
33.7 - 33.9 Suite de 1a discussion Lochak/Bonsack 33.1 a 33.3 23
33.11 F. Selleri Photon coincidences with crossed polarizers 39
33.12 F. Bonsack Remarques 47
44.3 O. Costa de Beauregard Discussion de Selleri/Garuccio 44.0 49
44.4 C.D.Galles " 52
44.5 A. Shimony " 55

Issue 26, June 1980

47.0 A. Shimony The Point We Have Reached 1
47.1 F. Bonsack Espace-temps et connexion causale, ou localité et séparablité 7
47.1 O. Costa de Beauregard Réflexions sur le colloque de Genève 11
49.0 H.D.Zeh Why Hidden Variables (Now) ? 21
50.0 J .-L. Destouches Commentaires sur le colloque de Genève 31
51.0 A.Garuccia / J.-P. Vigier Experimental Test or the Causal Stochastic Interpretation of QM and of de Broglies waves 45
52.0 G.Tarozzi Localité, séparablité et réalité phvsique 51
53.0 O. Bedlord / D. Wang Non-Locality. Relativity and Measurement 57
54.0 P. Huguenin A propos de la localité 63
17.12 F. Bonsack Démonstration plus transparente du th. de Bell 65
17.13 G.Lochak Quelques remarques 76
27.10 C.de Charrièrre Ordre-information-néguentropie et causalité 77
33.13 O. Costa de Beauregard Réponse de F. Selleri 79
44.6 ] . Hllgevoord Discussion of 44.0 81
Questions for the Geneva Colloquium of 10 - 12 November 1979 83

Issue 27, August, 1980

55.0 D. Evrard Etude de I'information disponible au niveau des appareils de mesure dans Ie théorème de Bell 1
56.0 R. Fralssé L'échec de I'Inégalité de Bell,-- une présomption en faveur de la ramification d' Everett 17
33.14 F. Selleri Réponse à F. Bonsack (33.12) 41
51.1 O. Costa de Beauregard Réponse à Garuccio et Vigier 43
40.5 P. A. Moldauer Comment on an article by B. d'Espagnat 45
55.0 D. Evrard Etude de I'information disponible au niveau des appareils de mesure dans Ie théorème de Bell

Issue 28, November, 1980

57.0 J .-P. Vigier Une nouvelle étape du débat Bohr- Einstein 1
58.0 H.Guggenheimer Time Reversion in General Relativity 11
59.0 Criticism of Certain Formulations of Bell Theorem 13
60.0 Free-will. Many-Worlds. and Superluminal Transfer of Information 17
47.2 R. Mattuck EPR non-locality and relativistic covariance of state vector collapse 23
48.1 O.Costa de Beauregard Télégraphie supralumineuse via rétropsychocinese 27
48.2. 48.3 Discussion avec F. Bonsack 30
51.2 W.M.de Muynck Comments on 51.0 33

Issue 29, April, 1981

61.0 E. Conte Le collapse du ψ et la mécanique quantique 1
62.0 T. A . Brody, P . E. Hodgson Comment on d'Espagnat's "Quantum Theory and Reality" 7
17.13 B. d'Espagnat Objections a certaines thèses d'O. Costa de Beauregard 9
17.14, 17.15 Discussion avec O. Costa de Beauregard 29
51.3 J. and M. Andrade e Silva A Critical Comment on a New Experiment Proposed by Garuccio and Vigier 39

Issue 30, July, 1981

63.0 H.D.Zeh The Problem of Conscious Observation in Quantum Mechanical Description 1
64.0 A. Michel La Biophysique témoigne-t-elle d'une Physique cachee? 13
51.4 O.Costa de Beauregard Suite à la controverse 51.0 - 3 19
51.5 K. Popper A. Garuccio J.-P. Vigier An Experiment to interpret EPR Action-at-a-Distance: Detection of real De Broglies Waves 21
51.6 O.Costa de Beauregard Réponse 30

Issue 31, October 1981

51.7 O. Costa de Beauregard Réponse a Popper. Garuccio et Vigier (suite) 1
52.1 F .Bonsack Esquisse d'un realisme non métaphysique 3
57.1 ] .-P. Vigier Causal Non-local Stochastic Interactions in Quantum Mechanics 25
64.1 E.Conte Can the Biological Organizing Principles admit a Physical Explanation by Quantum Mechanics? 37
64.2 H. Guggenheimer Remarque sur 64.0 43
64.3 A.Michel Complément á 64.0 44

Issue 32, May 1982

65.0 H.D.Zeh Information and Determinism 1
48.4 O. Costa de Beauregard Causalité et antiparticules 11
52.2 J .-D. Robert Réaction au texte de F.Bonsack, 52.1 15
52.3 F.Bonsack Quelques remarques sur 52.2 24

Issue 33, October 1982

66.0 Bedford/Wang On the Phase II Non-Locality Experiments 1
48.5 O. Costa de Beauregard Déduction de la formule des polarisations corrélées 3
51.8 W.M.de Muynck On the Garuccio-Vigier experiment 7
51.9 W.M.de Muynck Garuccio- Ra pisarda- Vigier experiment: test of non-locality 13
57.2 j.P.Vigier Causal Action at a Distance. Quantum Mechanics and General Relativity 19
64.4 A. Michel La Biophysique témoigne-t-ielle d'une Physique cachée? 31

Issue 34, April, 1983

67.0 D. Canals- Frau À propos du livre de B.d'Espagnat "A la Recherche du Réel" 1
67.1 F. Bonsack Remarques sur 67.0 7
68.0 H.-J.Treder On the Correlations between the particles in the EPR-Paradoxon 17
51.10 O.Costa de Beauregard Sur l'expérience proposée par Garuccio, Rapisarda et Vigier 21
65.1 B. Escudié Remarques sur H.Zeh, 65.0 Information and Determinism 23

Issue 35, December, 1983

69.0 N.Hadjisavvas The Role of the "Hidden Variables" of the Apparatus in Bell's Theorem 1
69.1 F. Bonsack Remarque à propos de 69.0 4
69.2 N.Hadjisavvas What a Hidden Variables Theory is not 5
70.0 M. Pavičič The Einstein Locality without the Bell Inequality 9
25.3 G. E. Drǎgǎnescu, N.M.Avram Relations d'incertitude pour des mesures non idéales
48.6 O. Costa de Beauregard Covariance relativiste et corréelations des spins d'une paire electron-positron 33
51.11 O. Costa de Beauregard Réponse à W.M.de Muynck 35
51.12 W.M.de Muynck Relevance of number-phase uncertainty relation for the G.R.V. experiment (answer to 51.10) 38
51.13 Y. Cantelaube Confrontation expérimentale entre les interpretations "CIQM" et "SIQM" 40
51.14 O. Costa de Beauregard Commentaire sur 51.13 46
68.1 H.-J. Treder Additional Remarks to EPR 49
69.0 N.Hadjisavvas The Role of the "Hidden Variables" of the Apparatus in Bell's Theorem

Issue 36, October 1984

71.0 M. Mugur-Schächter Représentation générale et formalisée des descriptions et mécanique quantique 1
72.0 A.Avramesco Déterminisme quantique et experience 69
73.0 C. Dewdney,
A. Kyprianidis,
J. P. Vigier
Causal Non Local Interpretation of the Double Slit Experiment and Quantum Statistics 71
71.0 M. Mugur-Schächter Esguisse d'une représentation générale et formalisée des descriptions et Ie type descriptionnel de la mécanigue quantique
Normal | Teacher | Scholar