Citation for this page in APA citation style.           Close


Philosophers

Mortimer Adler
Rogers Albritton
Alexander of Aphrodisias
Samuel Alexander
William Alston
Anaximander
G.E.M.Anscombe
Anselm
Louise Antony
Thomas Aquinas
Aristotle
David Armstrong
Harald Atmanspacher
Robert Audi
Augustine
J.L.Austin
A.J.Ayer
Alexander Bain
Mark Balaguer
Jeffrey Barrett
William Belsham
Henri Bergson
George Berkeley
Isaiah Berlin
Richard J. Bernstein
Bernard Berofsky
Robert Bishop
Max Black
Susanne Bobzien
Emil du Bois-Reymond
Hilary Bok
Laurence BonJour
George Boole
Émile Boutroux
F.H.Bradley
C.D.Broad
Michael Burke
C.A.Campbell
Joseph Keim Campbell
Rudolf Carnap
Carneades
Ernst Cassirer
David Chalmers
Roderick Chisholm
Chrysippus
Cicero
Randolph Clarke
Samuel Clarke
Anthony Collins
Antonella Corradini
Diodorus Cronus
Jonathan Dancy
Donald Davidson
Mario De Caro
Democritus
Daniel Dennett
Jacques Derrida
René Descartes
Richard Double
Fred Dretske
John Dupré
John Earman
Laura Waddell Ekstrom
Epictetus
Epicurus
Herbert Feigl
John Martin Fischer
Owen Flanagan
Luciano Floridi
Philippa Foot
Alfred Fouilleé
Harry Frankfurt
Richard L. Franklin
Michael Frede
Gottlob Frege
Peter Geach
Edmund Gettier
Carl Ginet
Alvin Goldman
Gorgias
Nicholas St. John Green
H.Paul Grice
Ian Hacking
Ishtiyaque Haji
Stuart Hampshire
W.F.R.Hardie
Sam Harris
William Hasker
R.M.Hare
Georg W.F. Hegel
Martin Heidegger
Heraclitus
R.E.Hobart
Thomas Hobbes
David Hodgson
Shadsworth Hodgson
Baron d'Holbach
Ted Honderich
Pamela Huby
David Hume
Ferenc Huoranszki
William James
Lord Kames
Robert Kane
Immanuel Kant
Tomis Kapitan
Jaegwon Kim
William King
Hilary Kornblith
Christine Korsgaard
Saul Kripke
Andrea Lavazza
Keith Lehrer
Gottfried Leibniz
Leucippus
Michael Levin
George Henry Lewes
C.I.Lewis
David Lewis
Peter Lipton
C. Lloyd Morgan
John Locke
Michael Lockwood
E. Jonathan Lowe
John R. Lucas
Lucretius
Alasdair MacIntyre
Ruth Barcan Marcus
James Martineau
Storrs McCall
Hugh McCann
Colin McGinn
Michael McKenna
Brian McLaughlin
John McTaggart
Paul E. Meehl
Uwe Meixner
Alfred Mele
Trenton Merricks
John Stuart Mill
Dickinson Miller
G.E.Moore
Thomas Nagel
Friedrich Nietzsche
John Norton
P.H.Nowell-Smith
Robert Nozick
William of Ockham
Timothy O'Connor
Parmenides
David F. Pears
Charles Sanders Peirce
Derk Pereboom
Steven Pinker
Plato
Karl Popper
Porphyry
Huw Price
H.A.Prichard
Protagoras
Hilary Putnam
Willard van Orman Quine
Frank Ramsey
Ayn Rand
Michael Rea
Thomas Reid
Charles Renouvier
Nicholas Rescher
C.W.Rietdijk
Richard Rorty
Josiah Royce
Bertrand Russell
Paul Russell
Gilbert Ryle
Jean-Paul Sartre
Kenneth Sayre
T.M.Scanlon
Moritz Schlick
Arthur Schopenhauer
John Searle
Wilfrid Sellars
Alan Sidelle
Ted Sider
Henry Sidgwick
Walter Sinnott-Armstrong
J.J.C.Smart
Saul Smilansky
Michael Smith
Baruch Spinoza
L. Susan Stebbing
Isabelle Stengers
George F. Stout
Galen Strawson
Peter Strawson
Eleonore Stump
Francisco Suárez
Richard Taylor
Kevin Timpe
Mark Twain
Peter Unger
Peter van Inwagen
Manuel Vargas
John Venn
Kadri Vihvelin
Voltaire
G.H. von Wright
David Foster Wallace
R. Jay Wallace
W.G.Ward
Ted Warfield
Roy Weatherford
William Whewell
Alfred North Whitehead
David Widerker
David Wiggins
Bernard Williams
Timothy Williamson
Ludwig Wittgenstein
Susan Wolf

Scientists

Michael Arbib
Bernard Baars
Gregory Bateson
John S. Bell
Charles Bennett
Ludwig von Bertalanffy
Susan Blackmore
Margaret Boden
David Bohm
Niels Bohr
Ludwig Boltzmann
Emile Borel
Max Born
Satyendra Nath Bose
Walther Bothe
Hans Briegel
Leon Brillouin
Stephen Brush
Henry Thomas Buckle
S. H. Burbury
Donald Campbell
Anthony Cashmore
Eric Chaisson
Jean-Pierre Changeux
Arthur Holly Compton
John Conway
John Cramer
E. P. Culverwell
Charles Darwin
Terrence Deacon
Louis de Broglie
Max Delbrück
Abraham de Moivre
Paul Dirac
Hans Driesch
John Eccles
Arthur Stanley Eddington
Paul Ehrenfest
Albert Einstein
Hugh Everett, III
Franz Exner
Richard Feynman
R. A. Fisher
Joseph Fourier
Lila Gatlin
Michael Gazzaniga
GianCarlo Ghirardi
J. Willard Gibbs
Nicolas Gisin
Paul Glimcher
Thomas Gold
A.O.Gomes
Brian Goodwin
Joshua Greene
Jacques Hadamard
Patrick Haggard
Stuart Hameroff
Augustin Hamon
Sam Harris
Hyman Hartman
John-Dylan Haynes
Martin Heisenberg
Werner Heisenberg
John Herschel
Jesper Hoffmeyer
E. T. Jaynes
William Stanley Jevons
Roman Jakobson
Pascual Jordan
Ruth E. Kastner
Stuart Kauffman
Martin J. Klein
Simon Kochen
Stephen Kosslyn
Ladislav Kovàč
Rolf Landauer
Alfred Landé
Pierre-Simon Laplace
David Layzer
Benjamin Libet
Seth Lloyd
Hendrik Lorentz
Josef Loschmidt
Ernst Mach
Donald MacKay
Henry Margenau
James Clerk Maxwell
Ernst Mayr
Ulrich Mohrhoff
Jacques Monod
Emmy Noether
Abraham Pais
Howard Pattee
Wolfgang Pauli
Massimo Pauri
Roger Penrose
Steven Pinker
Colin Pittendrigh
Max Planck
Susan Pockett
Henri Poincaré
Daniel Pollen
Ilya Prigogine
Hans Primas
Adolphe Quételet
Juan Roederer
Jerome Rothstein
David Ruelle
Erwin Schrödinger
Aaron Schurger
Claude Shannon
David Shiang
Herbert Simon
Dean Keith Simonton
B. F. Skinner
Roger Sperry
John Stachel
Henry Stapp
Tom Stonier
Antoine Suarez
Leo Szilard
William Thomson (Kelvin)
Peter Tse
Vlatko Vedral
Heinz von Foerster
John von Neumann
John B. Watson
Daniel Wegner
Steven Weinberg
Paul A. Weiss
John Wheeler
Wilhelm Wien
Norbert Wiener
Eugene Wigner
E. O. Wilson
H. Dieter Zeh
Ernst Zermelo
Wojciech Zurek

Presentations

Biosemiotics
Free Will
Mental Causation
James Symposium
 
Gilbert N. Lewis

The American chemist Gilbert Lewis discovered the covalent bond in 1916 and introduced a novel diagram to explain the bonding, with double dots for the electrons arranged in pairs. He was the first to purify heavy water (deuterium dioxide) and should have shared the Nobel Prize awarded to his student, Harold Urey. Another student, Glenn Seaborg, also won a Nobel Prize and Novel Prize winner Linus Pauling became famous developing Lewis' theory of the covalent bond.

In late 1926, Lewis wrote an article on Albert Einstein's light quanta, at a time when the "founders" of quantum mechanics, Max Born, Werner Heisenberg, and Pascual Jordan, were not yet convinced that light quanta were real and involved in "quantum jumps.". Lewis renamed light quanta "photons" by analogy with electrons.

Lewis published a letter in Nature called "The Conservation of Photons" (which, unfortunately are not, like electrons, conserved).

WHATEVER view is held regarding the nature of light, it must now be admitted that the process whereby an atom loses radiant energy, and another near or distant atom receives the same energy, is characterised by a remarkable abruptness and singleness. We are reminded of the process in which a molecule loses or gains a whole atom or a whole electron but never a fraction of one or the other. When the genius of Planck brought him to the first formulation of the quantum theory, a new kind of atomicity was suggested, and thus Einstein was led to the idea of light quanta which has proved so fertile.
Lewis is, of course, wrong about the "definite path."
Indeed, we now have ample evidence that radiant energy (at least in the case of high frequencies) may be regarded as travelling in discrete units, each of which passes over a definite path in accordance with mechanical laws.

Had there not seemed to be insuperable objections, one might have been tempted to adopt the hypothesis that we are dealing here with a new type of atom, an identifiable entity, uncreatable and indestructible, which acts as the carrier of radiant energy and, after absorption, persists as an essential constituent of the absorbing atom until it is later sent out again bearing a new amount of energy. If I now advance this hypothesis of a new kind of atom, I do not claim that it can yet be proved, but only that a consideration of the several objections that might be adduced shows that there is not one of them that can not be overcome.

It would seem inappropriate to speak of one of these hypothetical entities as a particle of light, a corpuscle of light, a light quantum, or a light quant, if we are to assume that it spends only a minute fraction of its existence as a carrier of radiant energy, while the rest of the time it remains as an important structural element within the atom. It would also cause confusion to call it merely a quantum, for later it will be necessary to distinguish between the number of these entities present in an atom and the so-called quantum number. I therefore take the liberty of proposing for this hypothetical new atom, which is not light but plays an essential part in every process of radiation, the name photon.

Let us postulate for the photon the following properties: (1) In any isolated system the total number of photons is constant. (2) All radiant energy is carried by photons, the only difference between the radiation from the wireless station and from an X-ray tube being that the former emits a vastly greater number of photons, each carrying a very much smaller amount of energy. (3) All photons are intrinsically identical. As the molecules of hydrogen differ from one another in direction and energy of translation, and in direction and amount of rotation, so two photons, as seen by a single observer, differ in direction of motion, in energy, and in polarisation. If we were moving with rapid acceleration toward a wireless station, its photons would appear to possess increasing amounts of energy, and would pass over the whole spectral scale through the visible and into the ultraviolet. At a certain instant, for example, they would be indistinguishable from the photons emitted by excited sodium atoms. (4) The energy of an isolated photon, divided by the Planck constant, gives the frequency of photons which is therefore by definition strictly monochromatic; although two photons coming even from similar atoms would never have precisely the same frequency. (5) All photons are alike in one property which has the dimensions of action or of angular momentum, and is invariant to a relativity transformation. (6) The condition that the frequency of a photon emitted by a certain system be equal to some physical frequency existing within that system, is not in general fulfilled, but comes nearer to fulfilment the lower the frequency is.

The serious objections to the idea of the conservation of photons are met in a consideration of the thermodynamics of radiation and of the laws of spectroscopy. According to the classical thermodynamics of radiation, the energy of hohlraum at a given temperature is determined solely by the volume. If we define the number of photons in a small spectral interval by the amount of energy in that interval divided by hv, then, by Wien's displacement law, the number of photons remains constant in any reversible adiabatic process.

Another error: the expanding walls increase the wavelengths and reduce the energy in each photon.
Also in the irreversible adiabatic process of free expansion from a given volume to a larger volume (both with perfectly reflecting walls) the number of photons remains constant, for neither the energies nor the frequencies are changed. If the original radiation, corresponding to a definite temperature, freely expands, let us say, to sixteen times the first volume, then, according to the thermodynamics of Wien and Planck, it may be brought to a new temperature equilibrium by introducing an infinitesimal black body. Calculating from their equations, we find that in this process the number of photons is doubled. If this is so, there obviously can be no conservation law for photons. However, if we analyse carefully the thermodynamics of radiation, we find that Wien and Planck have tacitly employed a postulate which is supported by no experimental facts; namely, if an infinitesimal black body is introduced into a hohlraum, the radiation will come to a certain temperature, and then no further change will ensue when a large black body of the same temperature is introduced.

Dispensing with this postulate, and adding a new variable, the number of photons, the variables which have previously been deemed sufficient to define that state of a system, we obtain a greatly enlarged science of thermodynamics. In this new thermodynamics, which included as true and stable equilibria such states of equilibrium as those to which Einstein has applied the terms "aussergewohnlich" and "improprement dit" (Ann. Phys.,38, 881, 1912; Jour. de Phys.,3, 277, 1913) the familiar laws of radiation and of physical and chemical equilibrium become special cases, true only for an unlimited supply of photons. Even so fundamental a process as the flow of heat must involve two factors, the amount of energy and the number of photons transferred. A fuller account of this new thermodynamics will shortly be published.

Turning to spectroscopy, we find that the principle of the conservation of photons is in obvious conflict with existing notions of the radiation process. We must assume that in an elementary process of radiation one, and only one, photon is lost by the emitting atom. Suppose that an atom which is in the 4-2 state drops to the 3-3, then to the 2-2, then to the 1-1. It thus loses three photons, but the same atom dropping directly from the 4-2 state to the 1-1 loses only one photon. If, therefore, we are to admit the conservation of photons, we must say that the atom does not pass from precisely the same initial to the same final state by the two paths, but rather that either the 4-2 or the 1-1 states must be multiple. Even if the inner quantum number is given, as well as the total and the azimuthal quantum numbers, the atomic states must still be regarded as not completely specified. Indeed, numerous examples have been found (see the review by Ruark and Chenault, Phil. Mag.,50, 937, 1925) of superfine structure which is not yet accounted for.

I had hoped to be able to derive certain familiar selection principles from the conservation of photons. Here I have not as yet succeeded, and can only state that if we assume the existence of a number of atomic states with nearly the same energy but with different numbers of photons, the new theory is not in conflict with the results of spectroscopy.

The rule that one, and only one, photon is lost in each elementary radiation process, is far more rigorous than any existing selection principle, and forbids the majority of processes which are not supposed to occur. To account for the apparent existence of these processes, it is necessary to assume that atoms are frequently changing their photon number by the exchange of photons of very small energy, corresponding to thermal radiation in the extreme infra-red. The new theory therefore predicts that many atomic processes will be inhibited at very low temperatures, and for this there seems to be some experimental evidence. But the existence of numerous extraneous factors obscures the issue. In order to simplify matters, a molecular stream might be passed through the centre of a tube cooled to a very low temperature, so as to reduce to a minimum the amount of thermal radiation. The theory would predict that in such circumstances certain processes within the stream, such as fluorescence or the emission of light from activated atoms, would be profoundly changed. Experiments in this direction are now in progress.

For Teachers
For Scholars

Chapter 1.5 - The Philosophers Chapter 2.1 - The Problem of Knowledge
Home Part Two - Knowledge
Normal | Teacher | Scholar