Citation for this page in APA citation style.           Close


Philosophers

Mortimer Adler
Rogers Albritton
Alexander of Aphrodisias
Samuel Alexander
William Alston
G.E.M.Anscombe
Anselm
Louise Antony
Thomas Aquinas
Aristotle
David Armstrong
Harald Atmanspacher
Robert Audi
Augustine
J.L.Austin
A.J.Ayer
Alexander Bain
Mark Balaguer
Jeffrey Barrett
William Belsham
Henri Bergson
Isaiah Berlin
Bernard Berofsky
Robert Bishop
Max Black
Susanne Bobzien
Emil du Bois-Reymond
Hilary Bok
Laurence BonJour
George Boole
Émile Boutroux
F.H.Bradley
C.D.Broad
Michael Burke
C.A.Campbell
Joseph Keim Campbell
Rudolf Carnap
Carneades
Ernst Cassirer
David Chalmers
Roderick Chisholm
Chrysippus
Cicero
Randolph Clarke
Samuel Clarke
Anthony Collins
Antonella Corradini
Diodorus Cronus
Jonathan Dancy
Donald Davidson
Mario De Caro
Democritus
Daniel Dennett
Jacques Derrida
René Descartes
Richard Double
Fred Dretske
John Dupré
John Earman
Laura Waddell Ekstrom
Epictetus
Epicurus
Herbert Feigl
John Martin Fischer
Owen Flanagan
Luciano Floridi
Philippa Foot
Alfred Fouilleé
Harry Frankfurt
Richard L. Franklin
Michael Frede
Gottlob Frege
Peter Geach
Edmund Gettier
Carl Ginet
Alvin Goldman
Gorgias
Nicholas St. John Green
H.Paul Grice
Ian Hacking
Ishtiyaque Haji
Stuart Hampshire
W.F.R.Hardie
Sam Harris
William Hasker
R.M.Hare
Georg W.F. Hegel
Martin Heidegger
R.E.Hobart
Thomas Hobbes
David Hodgson
Shadsworth Hodgson
Baron d'Holbach
Ted Honderich
Pamela Huby
David Hume
Ferenc Huoranszki
William James
Lord Kames
Robert Kane
Immanuel Kant
Tomis Kapitan
Jaegwon Kim
William King
Hilary Kornblith
Christine Korsgaard
Saul Kripke
Andrea Lavazza
Keith Lehrer
Gottfried Leibniz
Leucippus
Michael Levin
George Henry Lewes
C.I.Lewis
David Lewis
Peter Lipton
John Locke
Michael Lockwood
E. Jonathan Lowe
John R. Lucas
Lucretius
Ruth Barcan Marcus
James Martineau
Storrs McCall
Hugh McCann
Colin McGinn
Michael McKenna
Brian McLaughlin
John McTaggart
Paul E. Meehl
Uwe Meixner
Alfred Mele
Trenton Merricks
John Stuart Mill
Dickinson Miller
G.E.Moore
C. Lloyd Morgan
Thomas Nagel
Friedrich Nietzsche
John Norton
P.H.Nowell-Smith
Robert Nozick
William of Ockham
Timothy O'Connor
David F. Pears
Charles Sanders Peirce
Derk Pereboom
Steven Pinker
Plato
Karl Popper
Porphyry
Huw Price
H.A.Prichard
Hilary Putnam
Willard van Orman Quine
Frank Ramsey
Ayn Rand
Michael Rea
Thomas Reid
Charles Renouvier
Nicholas Rescher
C.W.Rietdijk
Richard Rorty
Josiah Royce
Bertrand Russell
Paul Russell
Gilbert Ryle
Jean-Paul Sartre
Kenneth Sayre
T.M.Scanlon
Moritz Schlick
Arthur Schopenhauer
John Searle
Wilfrid Sellars
Alan Sidelle
Ted Sider
Henry Sidgwick
Walter Sinnott-Armstrong
J.J.C.Smart
Saul Smilansky
Michael Smith
Baruch Spinoza
L. Susan Stebbing
George F. Stout
Galen Strawson
Peter Strawson
Eleonore Stump
Francisco Suárez
Richard Taylor
Kevin Timpe
Mark Twain
Peter Unger
Peter van Inwagen
Manuel Vargas
John Venn
Kadri Vihvelin
Voltaire
G.H. von Wright
David Foster Wallace
R. Jay Wallace
W.G.Ward
Ted Warfield
Roy Weatherford
William Whewell
Alfred North Whitehead
David Widerker
David Wiggins
Bernard Williams
Timothy Williamson
Ludwig Wittgenstein
Susan Wolf

Scientists

Michael Arbib
Bernard Baars
Gregory Bateson
John S. Bell
Charles Bennett
Ludwig von Bertalanffy
Susan Blackmore
Margaret Boden
David Bohm
Niels Bohr
Ludwig Boltzmann
Emile Borel
Max Born
Satyendra Nath Bose
Walther Bothe
Hans Briegel
Leon Brillouin
Stephen Brush
Henry Thomas Buckle
S. H. Burbury
Donald Campbell
Anthony Cashmore
Eric Chaisson
Jean-Pierre Changeux
Arthur Holly Compton
John Conway
John Cramer
E. P. Culverwell
Charles Darwin
Terrence Deacon
Louis de Broglie
Max Delbrück
Abraham de Moivre
Paul Dirac
Hans Driesch
John Eccles
Arthur Stanley Eddington
Paul Ehrenfest
Albert Einstein
Hugh Everett, III
Franz Exner
Richard Feynman
R. A. Fisher
Joseph Fourier
Lila Gatlin
Michael Gazzaniga
GianCarlo Ghirardi
J. Willard Gibbs
Nicolas Gisin
Paul Glimcher
Thomas Gold
A.O.Gomes
Brian Goodwin
Joshua Greene
Jacques Hadamard
Patrick Haggard
Stuart Hameroff
Augustin Hamon
Sam Harris
Hyman Hartman
John-Dylan Haynes
Martin Heisenberg
John Herschel
Werner Heisenberg
Jesper Hoffmeyer
E. T. Jaynes
William Stanley Jevons
Roman Jakobson
Pascual Jordan
Ruth E. Kastner
Stuart Kauffman
Simon Kochen
Stephen Kosslyn
Ladislav Kovàč
Rolf Landauer
Alfred Landé
Pierre-Simon Laplace
David Layzer
Benjamin Libet
Seth Lloyd
Hendrik Lorentz
Josef Loschmidt
Ernst Mach
Donald MacKay
Henry Margenau
James Clerk Maxwell
Ernst Mayr
Ulrich Mohrhoff
Jacques Monod
Emmy Noether
Howard Pattee
Wolfgang Pauli
Massimo Pauri
Roger Penrose
Steven Pinker
Colin Pittendrigh
Max Planck
Susan Pockett
Henri Poincaré
Daniel Pollen
Ilya Prigogine
Hans Primas
Adolphe Quételet
Juan Roederer
Jerome Rothstein
David Ruelle
Erwin Schrödinger
Aaron Schurger
Claude Shannon
David Shiang
Herbert Simon
Dean Keith Simonton
B. F. Skinner
Roger Sperry
Henry Stapp
Tom Stonier
Antoine Suarez
Leo Szilard
William Thomson (Kelvin)
Peter Tse
Heinz von Foerster
John von Neumann
John B. Watson
Daniel Wegner
Steven Weinberg
Paul A. Weiss
John Wheeler
Wilhelm Wien
Norbert Wiener
Eugene Wigner
E. O. Wilson
H. Dieter Zeh
Ernst Zermelo
Wojciech Zurek

Presentations

Biosemiotics
Free Will
Mental Causation
James Symposium
 
J. Willard Gibbs

Josiah Willard Gibbs earned the first American Ph.D. in Engineering from Yale in 1863. He went to France where he studied with the great Joseph Louville, who formulated the theorem that the phase-space volume of a system evolving under a conservative Hamiltonian function is a constant along the system's trajectory.

He then travelled to Germany, where in Heidelberg he learned about the work of Hermann von Helmholtz and Gustav Kirchhoff in physics, and Robert Bunsen in chemistry.

Back in New Haven, in the 1870's he published a long monograph that began with the simplest translation into English of Clausius' great first and second laws of thermodynamics.

"The energy of the world is constant. The entropy of the world tends towards a maximum."
But it was his short text Principles in Statistical Mechanics published the year before his death in 1903 that brought him the most fame. In it, he coined the term phase space and the name for his field - statistical mechanics. Earlier he named the chemical potential and the statistical ensemble.

Gibbs formalized the earlier work in "kinetic gas theory" by Ludwig Boltzmann, making it more mathematically rigorous. But he lacked the physical insight of Boltzmann.

Perhaps inspired by the examples of other conservation laws in physics discovered during his lifetime, Gibbs disagreed with Boltzmann's view that information is "lost" when the entropy increases.

Information is conserved when macroscopic order disappears because it simply changes into microscopic (thus invisible) order as the path information of all the gas particles is preserved. As Boltzmann's mentor Joseph Loschmidt had argued in the early 1870's, if the velocities of all the particles could be reversed at an instant, the future evolution of the gas would move in the direction of decreasing entropy. All the original order would reappear.

This is consistent with the idea of Pierre-Simon Laplace's super-intelligent demon and completely deterministic laws of nature. It also follows from the Louville theorem that the hyper-volume of a cloud of points in phase space is a constant as the system evolves. Classical mechanics and physical determinism was shown to be only an approximation for large numbers of particles shortly after Gibbs's death by Albert Einstein and the later "founders" of quantum mechanics.

When quantum effects are included in the collision of gas particles, Boltzmann's idea of "molecular disorder" is seen to be correct and path information is destroyed.

Nevertheless, Gibbs's idea of the conservation of information is still widely held today by mathematical physicists. And most texts on statistical mechanics still claim that microscopic collisions between particles are reversible. Some explicitly claim that quantum mechanics changes nothing, but that is because they limit themselves to the unitary (conservative and deterministic) evolution of the Schrödinger equation and ignore the collapse of the wave function.

Microscopic physics is irreversible as a consequence of ontological indeterminacy.

More details
Gibbs thought that as disorder increased, information was not being "lost" as Boltzmann claimed. He thought that the path information needed to reverse the momenta of all particles is still there in all the particles, so Loschmidt's objection still held for Gibbs.

By seeing that physics is fundamentally statistical (the "classical" world is the result of the law of large numbers averaging over quantum effects), I believe that Boltzmann had the greater physical insight.

There is in fact only one world - the quantum world. When quantum physics is considered in modern statistical mechanics texts, they usually stop with the deterministic Schrödinger equation and conclude that quantum mechanics changes nothing about irreversibility,

For example, Richard Tolman (p.8) claimed that the “principle of dynamical reversibility” holds also in quantum mechanics in appropriate form, indicating that quantum theory supplies no new kind of element for understanding the actual irreversibility in the macroscopic behavior of physical systems.

And D. ter Haar (p. 292) said “The transition from classical to statistical mechanics does not introduce any fundamental changes.”

This is because both classical and quantum statistical mechanics describe ensembles of systems. Such systems are in “mixed states,” disregarding the interference terms in the density matrix of the “pure states” density operator. This is the basis for decoherence theories.

The origin of irreversibility depends on the ontological chance involved in von Neumann's Process 1, Dirac's projection postulate, the "collapse of the wave function," denied by so many interpretations of quantum mechanics and ignored in statistical mechanics texts.

In her 2008 book, Carolyne Van Vliet (p.678) says that the theory of non-equilibrium statistical mechanics is incomplete without some kind of randomization at the microscopic level.

Ter Haar, D. 1995. Elements of Statistical Mechanics, Third Edition. Oxford: Butterworth-Heinemann.

Tolman, Richard C. 2010. The Principles of Statistical Mechanics. New York: Dover Publications.

Van Vliet, Carolyne M. 2008. Equilibrium and Non-Equilibrium Statistical Mechanics/. Singapore ; Hackensack, NJ: World Scientific Publishing Company.

Doyle, Robert O. 2014. "The Origin of Irreversibility".

Normal | Teacher | Scholar