Citation for this page in APA citation style.           Close


Philosophers

Mortimer Adler
Rogers Albritton
Alexander of Aphrodisias
Samuel Alexander
G.E.M.Anscombe
Anselm
Louise Antony
Thomas Aquinas
Aristotle
David Armstrong
Harald Atmanspacher
Augustine
J.L.Austin
A.J.Ayer
Alexander Bain
Mark Balaguer
Jeffrey Barrett
William Belsham
Henri Bergson
Isaiah Berlin
Bernard Berofsky
Robert Bishop
Susanne Bobzien
Emil du Bois-Reymond
Hilary Bok
George Boole
Émile Boutroux
F.H.Bradley
C.D.Broad
C.A.Campbell
Joseph Keim Campbell
Carneades
Ernst Cassirer
David Chalmers
Roderick Chisholm
Chrysippus
Cicero
Randolph Clarke
Samuel Clarke
Anthony Collins
Antonella Corradini
Diodorus Cronus
Jonathan Dancy
Donald Davidson
Mario De Caro
Democritus
Daniel Dennett
Jacques Derrida
René Descartes
Richard Double
Fred Dretske
John Dupré
John Earman
Laura Waddell Ekstrom
Epictetus
Epicurus
Herbert Feigl
John Martin Fischer
Owen Flanagan
Luciano Floridi
Philippa Foot
Alfred Fouilleé
Harry Frankfurt
Richard L. Franklin
Michael Frede
Carl Ginet
Nicholas St. John Green
H.Paul Grice
Ian Hacking
Ishtiyaque Haji
Stuart Hampshire
W.F.R.Hardie
William Hasker
R.M.Hare
Georg W.F. Hegel
Martin Heidegger
R.E.Hobart
Thomas Hobbes
David Hodgson
Shadsworth Hodgson
Ted Honderich
Pamela Huby
David Hume
Ferenc Huoranszki
William James
Lord Kames
Robert Kane
Immanuel Kant
Tomis Kapitan
Jaegwon Kim
William King
Christine Korsgaard
Andrea Lavazza
Keith Lehrer
Gottfried Leibniz
Leucippus
Michael Levin
George Henry Lewes
C.I.Lewis
David Lewis
Peter Lipton
John Locke
Michael Lockwood
E. Jonathan Lowe
John R. Lucas
Lucretius
James Martineau
Storrs McCall
Hugh McCann
Colin McGinn
Michael McKenna
Brian McLaughlin
Paul E. Meehl
Uwe Meixner
Alfred Mele
John Stuart Mill
Dickinson Miller
G.E.Moore
C. Lloyd Morgan
Thomas Nagel
Friedrich Nietzsche
John Norton
P.H.Nowell-Smith
Robert Nozick
William of Ockham
Timothy O'Connor
David F. Pears
Charles Sanders Peirce
Derk Pereboom
Steven Pinker
Plato
Karl Popper
Huw Price
H.A.Prichard
Hilary Putnam
Willard van Orman Quine
Frank Ramsey
Ayn Rand
Thomas Reid
Charles Renouvier
Nicholas Rescher
C.W.Rietdijk
Richard Rorty
Josiah Royce
Bertrand Russell
Paul Russell
Gilbert Ryle
Kenneth Sayre
T.M.Scanlon
Moritz Schlick
Arthur Schopenhauer
John Searle
Wilfrid Sellars
Henry Sidgwick
Walter Sinnott-Armstrong
J.J.C.Smart
Saul Smilansky
Michael Smith
L. Susan Stebbing
George F. Stout
Galen Strawson
Peter Strawson
Eleonore Stump
Richard Taylor
Kevin Timpe
Mark Twain
Peter van Inwagen
Manuel Vargas
John Venn
Kadri Vihvelin
Voltaire
G.H. von Wright
David Foster Wallace
R. Jay Wallace
W.G.Ward
Ted Warfield
Roy Weatherford
William Whewell
Alfred North Whitehead
David Widerker
David Wiggins
Bernard Williams
Ludwig Wittgenstein
Susan Wolf

Scientists

Michael Arbib
Bernard Baars
John S. Bell
Charles Bennett
Ludwig von Bertalanffy
Susan Blackmore
Margaret Boden
David Bohm
Niels Bohr
Ludwig Boltzmann
Emile Borel
Max Born
Walther Bothe
Hans Briegel
Leon Brillouin
Stephen Brush
Henry Thomas Buckle
Donald Campbell
Anthony Cashmore
Eric Chaisson
Jean-Pierre Changeux
Arthur Holly Compton
John Conway
E. H. Culverwell
Charles Darwin
Terrence Deacon
Max Delbrück
Abraham de Moivre
Paul Dirac
Hans Driesch
John Eccles
Arthur Stanley Eddington
Paul Ehrenfest
Albert Einstein
Hugh Everett, III
Franz Exner
Richard Feynman
Joseph Fourier
Michael Gazzaniga
GianCarlo Ghirardi
Nicolas Gisin
Paul Glimcher
Thomas Gold
A.O.Gomes
Brian Goodwin
Joshua Greene
Jacques Hadamard
Stuart Hameroff
Patrick Haggard
Augustin Hamon
Sam Harris
Martin Heisenberg
Werner Heisenberg
William Stanley Jevons
Pascual Jordan
Simon Kochen
Stephen Kosslyn
Ladislav Kovàč
Rolf Landauer
Alfred Landé
Pierre-Simon Laplace
David Layzer
Benjamin Libet
Hendrik Lorentz
Josef Loschmidt
Ernst Mach
Henry Margenau
James Clerk Maxwell
Ernst Mayr
Ulrich Mohrhoff
Jacques Monod
Wolfgang Pauli
Massimo Pauri
Roger Penrose
Steven Pinker
Max Planck
Susan Pockett
Henri Poincaré
Daniel Pollen
Ilya Prigogine
Hans Primas
Adolphe Quételet
Jerome Rothstein
David Ruelle
Erwin Schrödinger
Aaron Schurger
Claude Shannon
Herbert Simon
Dean Keith Simonton
B. F. Skinner
Roger Sperry
Henry Stapp
Antoine Suarez
Leo Szilard
William Thomson (Kelvin)
Peter Tse
John von Neumann
Daniel Wegner
Steven Weinberg
Paul A. Weiss
Norbert Wiener
Eugene Wigner
E. O. Wilson
H. Dieter Zeh
Ernst Zermelo
Wojciech Zurek
 
Nicolas Gisin

Nicolas Gisin is an experimental physicist who has extended the tests of quantum entanglement and nonlocality (the EPR experiment) to many kilometers from his lab in Geneva. His work has confirmed the correctness of quantum mechanics, and with it the irreducible indeterminacy involved in quantum mechanical measurements.

Gisin is the recipient of the first John Stewart Bell prize. It is Bell's Theorem and the Bell Inequalities that Gisin's work has confirmed.

Despite his critical work that grounds quantum physics, Gisin has been active in searching for alternative mathematical formulations of quantum theory, especially ones that might replace the ad hoc assumption of wave functions "collapsing" when measurements are made.

Alternatives proposed by GianCarlo Ghirardi and his colleagues replace the linear Schrödinger equation for the time evolution of the wave function with a nonlinear equation that includes explicit stochastic terms.

Gisin also has explored the paradoxical interpretations of his nonlocality experiments. The perfect nonlocal correlation of distant spin states suggests that information is traveling between the two widely separated measurements of electrons in an entangled spin state at velocities greater than the speed of light.

This is of course impossible, but Gisin speculates that some "influence" may be affecting both experiments coming from "outside space and time." Gisin says he means by this that "there is no story in space and time" to account for nonlocality. This is of course because the collapse of probabilities is instantaneous (not therefore "in time?") and happens everywhere (surely "in all space?").

If there were such influences, they might provide an explanation for deterministic theories, "some sort of hyper-determinism that would make all Science an illusion," says Gisin. He explains:

We have seen that any proper violation of a Bell inequality implies that all possible future theories have to predict nonlocal correlations. In this sense it is Nature that is nonlocal. But how can that be? How does Nature perform the trick? Leaving aside some technical loopholes, like a combination of detection and locality loopholes, the obvious answer, already suggested by John Bell, is that there is some hidden communication going on behind the scene. A first meaning of "behind the scene" could be "beyond today's physics", in particular beyond the speed limit set by relativity. We have seen how this interesting idea can be experimentally tested and how difficult it is to combine this idea with no-signaling. Hence, it is time to take seriously the idea that Nature is able to produce nonlocal correlations. There are several ways of formulating this:

1. Somehow God plays dice with nonlocal die: a random event can manifest itself at several locations.

2. Nonlocal correlations merely happen. somehow from outside space-time, in the sense that no story in space-time can describe how they happen.

3. The communications behind the scene happens outside space-time

4. Reality happens in configuration space: what we observe is only a shadow in 3-dimensional space (this might be closest to the description provided by standard quantum physics).

Free will
Gisin says about free will,
Determinsim is a physical hypothesis that denies free will, and it is false
I know that I enjoy free will much more than I know anything about physics. Hence, physics will never be able to convince me that free will is an illusion. Quite the contrary, any physical hypothesis incompatible with free will is falsified by the most profound experience I have about free will.

So, would I have rejected Newtonian classical mechanics had I lived before quantum physics? Probably not. Indeed, classical physics leaves open the possibility that free will can somehow interface with the deterministic Newtonian equations: free will could set-up some potential that could slightly influence particles's motion. This would be something like Descartes pineal gland. In standard quantum physics such an interface between free will and physics could be even simpler: free will could influence the probabilities of quantum events. This is, admittedly, a vague and not very original idea; but important is that there is no obvious definite contradiction between free will and standard quantum physics.

For Teachers
For Scholars
The experimental setup for quantum entanglement tests is theoretically simple but experimentally difficult. Two spin 1/2 electrons are prepared in a state, say with opposing spins so the total spin angular momentum of the electrons is zero. They are said to be in a singlet state. Most recent studies, like Gisin's, used entangled polarized photon pairs.)

Two experimenters (call them A and B) measure the electron spins at some later time.

The conservation of angular momentum requires that should one of these electrons be measured with spin up, the other must be spin down. This is what is described as "nonlocal" correlation of the spin measurement results.

A simpler way of looking at the problem is to consider the conservation of angular momentum, a law of nature that can not be violated. What would the lack of "correlation" between electron spins look like? It would include some spin-up measurements by experimenter A at the same time as spin-up measurements by experimenter B.

But this is a clear violation of the conservation law for angular momentum.

This conservation law in no way depends on supra-luminal communications between particles. Consider two electrons at opposite ends of the Andromeda galaxy, say 100,000 light years apart. As they revolve around the center of the galaxy, they conserve their orbital angular momenta perfectly.

We might say that conservation laws are "outside space-time."

Note that the original EPR thought experiment involved electrons going in opposite directions from a central source. In that case the governing conservation law was for ordinary translational momentum.


Normal | Teacher | Scholar