Citation for this page in APA citation style.           Close


Mortimer Adler
Rogers Albritton
Alexander of Aphrodisias
Samuel Alexander
William Alston
Louise Antony
Thomas Aquinas
David Armstrong
Harald Atmanspacher
Robert Audi
Alexander Bain
Mark Balaguer
Jeffrey Barrett
William Belsham
Henri Bergson
George Berkeley
Isaiah Berlin
Richard J. Bernstein
Bernard Berofsky
Robert Bishop
Max Black
Susanne Bobzien
Emil du Bois-Reymond
Hilary Bok
Laurence BonJour
George Boole
Émile Boutroux
Michael Burke
Joseph Keim Campbell
Rudolf Carnap
Ernst Cassirer
David Chalmers
Roderick Chisholm
Randolph Clarke
Samuel Clarke
Anthony Collins
Antonella Corradini
Diodorus Cronus
Jonathan Dancy
Donald Davidson
Mario De Caro
Daniel Dennett
Jacques Derrida
René Descartes
Richard Double
Fred Dretske
John Dupré
John Earman
Laura Waddell Ekstrom
Herbert Feigl
John Martin Fischer
Owen Flanagan
Luciano Floridi
Philippa Foot
Alfred Fouilleé
Harry Frankfurt
Richard L. Franklin
Michael Frede
Gottlob Frege
Peter Geach
Edmund Gettier
Carl Ginet
Alvin Goldman
Nicholas St. John Green
H.Paul Grice
Ian Hacking
Ishtiyaque Haji
Stuart Hampshire
Sam Harris
William Hasker
Georg W.F. Hegel
Martin Heidegger
Thomas Hobbes
David Hodgson
Shadsworth Hodgson
Baron d'Holbach
Ted Honderich
Pamela Huby
David Hume
Ferenc Huoranszki
William James
Lord Kames
Robert Kane
Immanuel Kant
Tomis Kapitan
Jaegwon Kim
William King
Hilary Kornblith
Christine Korsgaard
Saul Kripke
Andrea Lavazza
Keith Lehrer
Gottfried Leibniz
Michael Levin
George Henry Lewes
David Lewis
Peter Lipton
C. Lloyd Morgan
John Locke
Michael Lockwood
E. Jonathan Lowe
John R. Lucas
Alasdair MacIntyre
Ruth Barcan Marcus
James Martineau
Storrs McCall
Hugh McCann
Colin McGinn
Michael McKenna
Brian McLaughlin
John McTaggart
Paul E. Meehl
Uwe Meixner
Alfred Mele
Trenton Merricks
John Stuart Mill
Dickinson Miller
Thomas Nagel
Friedrich Nietzsche
John Norton
Robert Nozick
William of Ockham
Timothy O'Connor
David F. Pears
Charles Sanders Peirce
Derk Pereboom
Steven Pinker
Karl Popper
Huw Price
Hilary Putnam
Willard van Orman Quine
Frank Ramsey
Ayn Rand
Michael Rea
Thomas Reid
Charles Renouvier
Nicholas Rescher
Richard Rorty
Josiah Royce
Bertrand Russell
Paul Russell
Gilbert Ryle
Jean-Paul Sartre
Kenneth Sayre
Moritz Schlick
Arthur Schopenhauer
John Searle
Wilfrid Sellars
Alan Sidelle
Ted Sider
Henry Sidgwick
Walter Sinnott-Armstrong
Saul Smilansky
Michael Smith
Baruch Spinoza
L. Susan Stebbing
Isabelle Stengers
George F. Stout
Galen Strawson
Peter Strawson
Eleonore Stump
Francisco Suárez
Richard Taylor
Kevin Timpe
Mark Twain
Peter Unger
Peter van Inwagen
Manuel Vargas
John Venn
Kadri Vihvelin
G.H. von Wright
David Foster Wallace
R. Jay Wallace
Ted Warfield
Roy Weatherford
William Whewell
Alfred North Whitehead
David Widerker
David Wiggins
Bernard Williams
Timothy Williamson
Ludwig Wittgenstein
Susan Wolf


Michael Arbib
Bernard Baars
Gregory Bateson
John S. Bell
Charles Bennett
Ludwig von Bertalanffy
Susan Blackmore
Margaret Boden
David Bohm
Niels Bohr
Ludwig Boltzmann
Emile Borel
Max Born
Satyendra Nath Bose
Walther Bothe
Hans Briegel
Leon Brillouin
Stephen Brush
Henry Thomas Buckle
S. H. Burbury
Donald Campbell
Anthony Cashmore
Eric Chaisson
Jean-Pierre Changeux
Arthur Holly Compton
John Conway
John Cramer
E. P. Culverwell
Charles Darwin
Terrence Deacon
Lüder Deecke
Louis de Broglie
Max Delbrück
Abraham de Moivre
Paul Dirac
Hans Driesch
John Eccles
Arthur Stanley Eddington
Paul Ehrenfest
Albert Einstein
Hugh Everett, III
Franz Exner
Richard Feynman
R. A. Fisher
Joseph Fourier
Lila Gatlin
Michael Gazzaniga
GianCarlo Ghirardi
J. Willard Gibbs
Nicolas Gisin
Paul Glimcher
Thomas Gold
Brian Goodwin
Joshua Greene
Jacques Hadamard
Patrick Haggard
Stuart Hameroff
Augustin Hamon
Sam Harris
Hyman Hartman
John-Dylan Haynes
Donald Hebb
Martin Heisenberg
Werner Heisenberg
John Herschel
Jesper Hoffmeyer
E. T. Jaynes
William Stanley Jevons
Roman Jakobson
Pascual Jordan
Ruth E. Kastner
Stuart Kauffman
Martin J. Klein
Simon Kochen
Hans Kornhuber
Stephen Kosslyn
Ladislav Kovàč
Rolf Landauer
Alfred Landé
Pierre-Simon Laplace
David Layzer
Benjamin Libet
Seth Lloyd
Hendrik Lorentz
Josef Loschmidt
Ernst Mach
Donald MacKay
Henry Margenau
James Clerk Maxwell
Ernst Mayr
John McCarthy
Ulrich Mohrhoff
Jacques Monod
Emmy Noether
Abraham Pais
Howard Pattee
Wolfgang Pauli
Massimo Pauri
Roger Penrose
Steven Pinker
Colin Pittendrigh
Max Planck
Susan Pockett
Henri Poincaré
Daniel Pollen
Ilya Prigogine
Hans Primas
Adolphe Quételet
Juan Roederer
Jerome Rothstein
David Ruelle
Erwin Schrödinger
Aaron Schurger
Claude Shannon
David Shiang
Herbert Simon
Dean Keith Simonton
B. F. Skinner
Roger Sperry
John Stachel
Henry Stapp
Tom Stonier
Antoine Suarez
Leo Szilard
Max Tegmark
William Thomson (Kelvin)
Peter Tse
Vlatko Vedral
Heinz von Foerster
John von Neumann
John B. Watson
Daniel Wegner
Steven Weinberg
Paul A. Weiss
John Wheeler
Wilhelm Wien
Norbert Wiener
Eugene Wigner
E. O. Wilson
H. Dieter Zeh
Ernst Zermelo
Wojciech Zurek


Free Will
Mental Causation
James Symposium
Seth Lloyd
Seth Lloyd is a theoretical physicist and computer scientist at MIT with a strong background in mechanical engineering. He calls himself a "quantum mechanic" and is one of the designers of quantum computing systems.

Lloyd's most provocative idea is that the universe is a giant computer. Everything in it, including all living systems, are running one enormous program. This seems to be an extreme form of determinism, with the program an example of the super-intelligence of a Laplace Demon, who can see the complete past and future. But Lloyd is no determinist, he sees that quantum mechanics introduces probabilities and uncertainty.

Lloyd worked with Rolf Landauer at IBM, who extended the ideas of John von Neumann and Leo Szilard, who, along with many other physicists, had connected a physical measurement with thermodynamical irreversibility, that is to say a dissipation of energy and increase in entropy.

The increase in entropy (or decrease in available negentropy, as Leon Brillouin put it), must equal or exceed the increase in information acquired in the measurement, in order to satisfy the second law of thermodynamics. There is an intimate connection of physical things and information, captured in John Wheeler's famous dictum, "It from bit."

Seth Lloyd is quite correct that information ("bits") is physical ("its"). However, unlike things, which are concrete and material. Information is abstract and immaterial. To be sure, bits in a computer are embodied in the logical switches that represent 1's and 0's.

Free Will
In his proposed "Turing Test" for free will, Lloyd says because "quantum mechanics implies that events are intrinsically unpredictable, the ‘pure stochasticity’ of quantum mechanics adds only randomness to decision making processes, not freedom." This is the second part of the standard argument against free will.

By contrast, he says that the theory of computation provides an "intrinsic computational unpredictability" that gives "rise to our impression that we possess free will."

Unpredictability is not freedom, just the inability for anyone, including ourselves, to predict what we are going to do.

Lloyd writes,

The primary scientific issue in the debate over free will is traditionally taken to be the question of whether the world is deterministic or probabilistic in nature . (Whether or not this is indeed the proper question to ask will be discussed in detail below.) In a deterministic world, events in the past fully determine the outcomes of all events in the present and future. Conversely, if the world is probabilistic, then at least some outcomes of current events are neither determined nor caused by events in the past. Determinism is evidently a problem for free will: more than two thousand years ago, Epicurus felt obliged to emend the determinism of Democritus’s atomic picture by adding an occasional probabilistic ‘swerve’ to the motion of atoms, in part to preserve freedom of will. From the seventeenth until the twentieth century, by contrast, most scientists believed that the world was deterministic, for the simple reason that all known physical laws, from Newton’s laws to Maxwell’s equations, were expressed in terms of deterministic differential equations. In such theories, apparently probabilistic behavior arises from lack of knowledge combined with sensitive dependence on initial conditions (‘chaos’) [2]. In a deterministic physical world, an hypothetical being (Laplace’s ‘demon’) that possesses exact knowledge of the past could in principle use the laws of physics to predict the entire future.

From Newton up to the twentieth century, the philosophical debate over free will by and large assumed that the world is deterministic. In such a deterministic world, there are two antagonistic philosophical positions [3]. Incompatibilism claims that free will is incompatible with a deterministic world: since all events, including our decisions, were determined long ago, there is no space for freedom in our choices. Compatibilism, by contrast, asserts that free will is compatible with a derministic world. In contrast to classical mechanics, the theory of quantum mechanics that emerged as the fundamental physical framework at the beginning of the twentieth cnetury predicts that the world is intrinsically probabilistic. Despite Einstein’s opinion that ‘God does not play dice,’ experiment and theory have repeatedly confirmed the probabilistic nature of events in quantum mechanics. For example, the Kochen-Specher theorem [18] shows that certain types of deterministic hidden-variable theories are incompatible with the predictions of quantum mechanics, a result extended by the Conway-Kochen ‘free will theorem’ [19]. (Despite the presence of the phrase ‘free will’ in its title, and the authors’ whimsical assertion that ‘if indeed we humans have free will, then elementary particles already have their own small share of this valuable commodity,’ this theorem is less a statement about free will in the sense discussed in the current paper, and more a statement about the incompatibility of deterministic models of quantum mechanics with special relativity.) At first, it might seem that the probabilistic nature of the underlying physics of the universe implies renders the compatibilism–incompatibilism debate moot. Indeed, when it became clear starting in the mid-nineteen twenties that quantum mechanics was necessarily probabilistic, scientists began to invoke the probabilistic nature of quantum mechanics to supply the freedom in free will. In 1928 Arthur Eddington stated [4] that with the ‘advent of the quantum theory . . . physics is no longer pledged to a scheme of deterministic law.’ Consequently, ‘science thereby withdraws its moral opposition to free will.’ Eddington’s book inspired Turing to investigate the connection between quantum mechanics and free will [1]. The way in which quantum mechanics injects chance into the world was analyzed by A.H. Compton [5], whose work on photo-electric cells formed the basis for his notion of a ‘massive switch amplifier’ that could amplify tiny quantum fluctuations to at scale accessible to the brain. Such purely random information resulting from the amplification of quantum fluctuations, Eddington and Compton argued, could then supply the seeds for probabilistic decisions. The Conway-Kochen theorem is the latest in a long line of works that identifies free will with the probabilistic nature of quantum mechanics.

But are decisions ‘free’ simply because they are probabilistic? Flipping a coin to make a decision is typically used as a last resort by deciders who are unable to make the decision themselves: the outcome of the coin toss determines the decision, not you. As the twentieth century wended on, it became clear that merely adding randomness did not obvously solve the problem posed by incompatibilism. After all, as the philosopher Karl Popper noted [6], one of they key features of a decision arrived at by the process of free will is that it is NOT random. Eddington and Compton backtracked. By the end of the twentieth century, Steven Pinker could declare confidently [7] that ‘a random event does not fit the concept of free will any more than a lawful one does.’ If determinism robs us of agency, then so does randomness.

For many contemporary scientific opponents of free will, it seems that the problem with free will is not so much the question of determinism vs. probability, but rather the existence of a mechanistic description of the system that is making the decision.

The idea of "naturalism treats human beings as machines, as purely material things subject to the "laws of nature."

Naturalism is a materialism, indeed an eliminative materialism. This is the idea that there are no ideas and no minds. The immaterial mind is identical to the material brain.

Philosophers who have attempted to explain free will in terms of event causation (for example, Robert Kane, assume that everything is the result of a causal chain of events, some of which are determined, others are probabilistic, uncaused, or "self-caused."

There is nowhere in this picture for a mind that can generate alternative possibilities for action and then evaluate all those possibilities, holding them all in a mind before a deliberation process evaluates them all and selects one. This is the two-stage model of free will.

The Universe as a Quantum Computer
A Turing Test for Free Will
For Teachers
For Scholars

Chapter 1.5 - The Philosophers Chapter 2.1 - The Problem of Knowledge
Home Part Two - Knowledge
Normal | Teacher | Scholar
Normal | Teacher | Scholar