Philosophers
Mortimer Adler Rogers Albritton Alexander of Aphrodisias Samuel Alexander William Alston Anaximander G.E.M.Anscombe Anselm Louise Antony Thomas Aquinas Aristotle David Armstrong Harald Atmanspacher Robert Audi Augustine J.L.Austin A.J.Ayer Alexander Bain Mark Balaguer Jeffrey Barrett William Belsham Henri Bergson George Berkeley Isaiah Berlin Richard J. Bernstein Bernard Berofsky Robert Bishop Max Black Susanne Bobzien Emil du BoisReymond Hilary Bok Laurence BonJour George Boole Émile Boutroux F.H.Bradley C.D.Broad Michael Burke C.A.Campbell Joseph Keim Campbell Rudolf Carnap Carneades Ernst Cassirer David Chalmers Roderick Chisholm Chrysippus Cicero Randolph Clarke Samuel Clarke Anthony Collins Antonella Corradini Diodorus Cronus Jonathan Dancy Donald Davidson Mario De Caro Democritus Daniel Dennett Jacques Derrida René Descartes Richard Double Fred Dretske John Dupré John Earman Laura Waddell Ekstrom Epictetus Epicurus Herbert Feigl John Martin Fischer Owen Flanagan Luciano Floridi Philippa Foot Alfred Fouilleé Harry Frankfurt Richard L. Franklin Michael Frede Gottlob Frege Peter Geach Edmund Gettier Carl Ginet Alvin Goldman Gorgias Nicholas St. John Green H.Paul Grice Ian Hacking Ishtiyaque Haji Stuart Hampshire W.F.R.Hardie Sam Harris William Hasker R.M.Hare Georg W.F. Hegel Martin Heidegger Heraclitus R.E.Hobart Thomas Hobbes David Hodgson Shadsworth Hodgson Baron d'Holbach Ted Honderich Pamela Huby David Hume Ferenc Huoranszki William James Lord Kames Robert Kane Immanuel Kant Tomis Kapitan Jaegwon Kim William King Hilary Kornblith Christine Korsgaard Saul Kripke Andrea Lavazza Keith Lehrer Gottfried Leibniz Leucippus Michael Levin George Henry Lewes C.I.Lewis David Lewis Peter Lipton C. Lloyd Morgan John Locke Michael Lockwood E. Jonathan Lowe John R. Lucas Lucretius Alasdair MacIntyre Ruth Barcan Marcus James Martineau Storrs McCall Hugh McCann Colin McGinn Michael McKenna Brian McLaughlin John McTaggart Paul E. Meehl Uwe Meixner Alfred Mele Trenton Merricks John Stuart Mill Dickinson Miller G.E.Moore Thomas Nagel Friedrich Nietzsche John Norton P.H.NowellSmith Robert Nozick William of Ockham Timothy O'Connor Parmenides David F. Pears Charles Sanders Peirce Derk Pereboom Steven Pinker Plato Karl Popper Porphyry Huw Price H.A.Prichard Protagoras Hilary Putnam Willard van Orman Quine Frank Ramsey Ayn Rand Michael Rea Thomas Reid Charles Renouvier Nicholas Rescher C.W.Rietdijk Richard Rorty Josiah Royce Bertrand Russell Paul Russell Gilbert Ryle JeanPaul Sartre Kenneth Sayre T.M.Scanlon Moritz Schlick Arthur Schopenhauer John Searle Wilfrid Sellars Alan Sidelle Ted Sider Henry Sidgwick Walter SinnottArmstrong J.J.C.Smart Saul Smilansky Michael Smith Baruch Spinoza L. Susan Stebbing Isabelle Stengers George F. Stout Galen Strawson Peter Strawson Eleonore Stump Francisco Suárez Richard Taylor Kevin Timpe Mark Twain Peter Unger Peter van Inwagen Manuel Vargas John Venn Kadri Vihvelin Voltaire G.H. von Wright David Foster Wallace R. Jay Wallace W.G.Ward Ted Warfield Roy Weatherford William Whewell Alfred North Whitehead David Widerker David Wiggins Bernard Williams Timothy Williamson Ludwig Wittgenstein Susan Wolf Scientists Michael Arbib Bernard Baars Gregory Bateson John S. Bell Charles Bennett Ludwig von Bertalanffy Susan Blackmore Margaret Boden David Bohm Niels Bohr Ludwig Boltzmann Emile Borel Max Born Satyendra Nath Bose Walther Bothe Hans Briegel Leon Brillouin Stephen Brush Henry Thomas Buckle S. H. Burbury Donald Campbell Anthony Cashmore Eric Chaisson JeanPierre Changeux Arthur Holly Compton John Conway John Cramer E. P. Culverwell Charles Darwin Terrence Deacon Louis de Broglie Max Delbrück Abraham de Moivre Paul Dirac Hans Driesch John Eccles Arthur Stanley Eddington Paul Ehrenfest Albert Einstein Hugh Everett, III Franz Exner Richard Feynman R. A. Fisher Joseph Fourier Lila Gatlin Michael Gazzaniga GianCarlo Ghirardi J. Willard Gibbs Nicolas Gisin Paul Glimcher Thomas Gold A.O.Gomes Brian Goodwin Joshua Greene Jacques Hadamard Patrick Haggard Stuart Hameroff Augustin Hamon Sam Harris Hyman Hartman JohnDylan Haynes Martin Heisenberg Werner Heisenberg John Herschel Jesper Hoffmeyer E. T. Jaynes William Stanley Jevons Roman Jakobson Pascual Jordan Ruth E. Kastner Stuart Kauffman Martin J. Klein Simon Kochen Stephen Kosslyn Ladislav Kovàč Rolf Landauer Alfred Landé PierreSimon Laplace David Layzer Benjamin Libet Seth Lloyd Hendrik Lorentz Josef Loschmidt Ernst Mach Donald MacKay Henry Margenau James Clerk Maxwell Ernst Mayr Ulrich Mohrhoff Jacques Monod Emmy Noether Abraham Pais Howard Pattee Wolfgang Pauli Massimo Pauri Roger Penrose Steven Pinker Colin Pittendrigh Max Planck Susan Pockett Henri Poincaré Daniel Pollen Ilya Prigogine Hans Primas Adolphe Quételet Juan Roederer Jerome Rothstein David Ruelle Erwin Schrödinger Aaron Schurger Claude Shannon David Shiang Herbert Simon Dean Keith Simonton B. F. Skinner Roger Sperry John Stachel Henry Stapp Tom Stonier Antoine Suarez Leo Szilard William Thomson (Kelvin) Peter Tse Vlatko Vedral Heinz von Foerster John von Neumann John B. Watson Daniel Wegner Steven Weinberg Paul A. Weiss John Wheeler Wilhelm Wien Norbert Wiener Eugene Wigner E. O. Wilson H. Dieter Zeh Ernst Zermelo Wojciech Zurek Presentations Biosemiotics Free Will Mental Causation James Symposium 
The Ergodic Hypothesis
Ludwig Boltzmann was criticized for his 1872 attempt to prove his Htheorem (that entropy always increases) by a dynamical analysis of molecular collisions. Josef Loschmidt and others pointed out that if the molecular velocities were to be reversed at an instant, Boltzmann's work would show that the entropy should decrease. This was the reversibility objection.
Entropy as Lost Information about Molecular Positions
Entropy increase can be easily understood as the loss of information as a system moves from an initially ordered state to a final disordered state. Ludwig Boltzmann was the first to describe entropy as "missing information."
Dr. Shannon's work roots back, as von Neumann has pointed out, to Boltzmann's observation, in some of his work on statistical physics (1894), that entropy is related to "missing information," inasmuch as it is related to the number of alternatives which remain possible to a physical system after all the macroscopically observable information concerning it has been recorded. L. Szilard (Zsch. f. Phys. Vol. 53, 1925) extended this idea to a general discussion of information in physics, and von Neumann (Math. Foundation of Quantum Mechanics, Berlin, 1932, Chap. V) treated information in quantum mechanics and particle physics. Although the physical dimensions of thermodynamic entropy (joules/ºK) are not the same as (dimensionless) mathematical information, apart from units they share the same famous formula. S = ∑ p_{i} ln p_{i}To see this very simply, let's consider the wellknown example of a bottle of perfume in the corner of a room. We can represent the room as a grid of 64 squares. Suppose the air is filled with molecules moving randomly at room temperature (blue circles). In the lower left corner a small number of (red) perfume molecules will be released when we open the bottle (when you start the demonstration animation below).
What is the quantity of information we have about the perfume molecules? At the start we know their location in the lower left square, a bit less than 1/64th of the container. The quantity of information is determined by the minimum number of yes/no questions it takes to locate them. The best questions are those that split the locations evenly (a binary tree). For example:
If the room had no air, the perfume would rapidly reach an equilibrium state, since the molecular velocity at room temperature is about 400 meters/second. Collisions with air molecules prevent the perfume from dissipating quickly. This lets us see the approach to equilibrium. When the perfume has diffused to onesixteenth of the room, the entropy will have risen 2 bits for each molecule, to onequarter of the room, four bits, etc. Click here to start a computer visualization of the equilibration process in a new window.
Entropy as Evolution to the Most Probable Macrostate
In 1877, Boltzmann simply ignored classical dynamics and instead made the assumption that all phase space cells were equally probable. Classical dynamics could not prove that the path of the system in phase space would move through all the cells, let alone spend equal time in all cells. Boltzmann described a system he called "ergode," later called the canonical ensemble by J. Willard Gibbs. Equal a priori probabilities for all the phase space cells came to be called the ergodic hypothesis. Paul and Tatiana Ehrenfest made the ergodic hypothesis the central question in statistical mechanics. Mathematicians took up the problem of ergodicity in continuous mathematics, which has questionable relevance for problems in discrete particle physics. In modern quantum statistical mechanics, the same ergodic hypothesis (equiprobability of phase space cells) shows up in an assumption about transition probabilities between phase space cells. The transition probability for any microstate A to jump to microstate B is assumed to be the same as the reverse quantum jump from B to A. The matrix element for the A  B transition is the complex conjugate of the reverse transition B  A. This is called Fermi's Golden Rule, although it was first derived by Paul Dirac. We can see how any system with equal transition probabilities to and from any other state will quickly establish equilibrium populations. If 1000 systems are in state A and none in B, the early transitions will overwhelmingly be from A to B. An equal number of transitions back from B to A is not likely until the populations of A and B are about the same. That is the basic idea behind the statistical formulation of Boltzmann's Htheorem. When all phase space cells are equally populated, the number of ways this can be achieved (the number of microstates) is at its maximum. Although cell populations will fluctuate away from this equilbrium condition, it corresponds to the maximum entropy.
Number of systems
The initial distribution of 500 systems in the upper left corner evolves rapidly to the normal distribution function for occupation numbers
Normal  Teacher  Scholar
