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6 G. K. WERTHEIM

switching devices to separate positive from
negative velocity data). The disadvantages are
the requirement of a large-area absorber and the
fact that the velocity is not uniform over the
whole area.

The gamma-ray counting equipment is usually
a scintillation or proportional counter in con-
junction with a single-channel pulse-height
analyzer and a scaler-timer.

See R. L. MOsSBAUER's original papers (item 4) for
descriptions of a velocity spectrometer.

45. G. DePasquaLl, H. FRAUENFELDER, S. MARGULIES,
axD R. N. PEacock. Phys. Rev. Letters 4, 71 (1960).
Shows the inclined disk motion.

46. R. V. Pouxp AnD G. A. REBXA, Jr. Phys. Rev. Letters
3, 554 (1959). Describes a motion based on an electro-
mechanical transducer for which a loudspeaker may
be substituted.

Further details on instrumentation may be found in
items 11 and 12.

Some of the required equipment is available from the
following suppliers:
Sources containing the radioisotope Co® and absorbers
containing stable Fe®:

Nuclear Science and Engineering

P. O. Box 10901, Pittsburgh, Pennsylvania.
Thin-window scintillation crystals (x-ray type):

Harshaw Chemical Company

Cleveland, Ohio.
Low-noise photomultipliers (EMI 9536S):

Hoffman Electron Tube Corporation

Westbury, Long Island, New York.
Complete scintillation counter spectrometers are available
from many suppliers, such as:

Baird-Atomic, Inc., Cambridge, Massachusetts;

Hamner Electronics Company, Inc., Princeton, New

Jersey;
Radiation Instrument Development Laboratory, Inc.,
Melrose Park, Illinois.

The Problem of Measurement

EvGeNe P. WIGNER
Princeton University, Princeton, New Jersey
(Received 14 September 1962)

The standard theory of measurements in quantum mechanics is reviewed with special
emphasis on the conceptual and epistemological implications. It is concluded that the standard
theory remains the only one which is compatible with present quantum mechanics. Hence, if
one wants to avoid the conclusion that quantum mechanics only gives probability connections
between subsequent observations, the quantum-mechanical equations would have to be modi-
fied. Particular attention is paid to the case that the measuring apparatus is macroscopic and
its state vector not accurately known before the measurement.

INTRODUCTION

HE last few years have seen a revival of
interest in the conceptual foundations of
quantum mechanics.! This revival was stimu-

1 Some of the more recent papers on the subject are: Y.
Aharonov and D. Bohm, Phys. Rev. 122, 1649 (1961);
Nuovo cimento 17, 964 (1960) ; B. Bertotti, Nuovo cimento
Suppl. 17, 1 (1960); L. de Broglie, J. phys. radium 20,
963 (1959); J. A. de Silva, Ann. Inst. Henri Poincaré 16,
289 (1960); A. Datzeff, Compt. rend. 251, 1462 (1960);
J. phys. radium 21, 201 (1960); 22, 101 (1961); J. M.
Jauch, Helv. Phys. Acta 33, 711 (1960); A. Land¢, Z.
Physik 162, 410 (1961); 164, 558 (1961); Am. J. Phys. 29,
503 (1961); H. Margenau and R. N. Hill, Progr. Theo-
ret. Phys. 26, 727 (1961): A. Peres and P. Singer, Nuovo
cimento 15, 907 (1960); H. Putnam, Phil. Sci. 28, 234
(1961); M. Renninger, Z. Physik 158, 417 (1960); L.
Rosenfeld, Nature 190, 384 (1961); F. Schisgl, Z. Physik
159, 411 (1960); J. Schwinger, Proc. Natl. Acad. Sci.
U. S. 46, 570 (1960); J. Tharrats, Compt. rend. 250, 3786
(1960); H. Wakita, Progr. Theoret. Phys. 23, 32 (1960);
27, 139 (1962); W. Weidlich, Z. Naturforsch 15a, 651

lated by the attempts to alter the probabilistic
interpretation of quantum mechanics. However,
even when these attempts turned out to be less
fruitful than its protagonists had hoped,?* the
interest continued. Hence, after the subject had
been dormant for more than two decades, we
again hear discussions on the basic principles of
quantum theory and the epistemologies that are
compatible with it. As is often the case under
similar circumstances, some of the early thinking
had been forgotten; in fact, a small fraction of

(1960); J. P. Wesley, Phys. Rev. 122, 1932 (1961). See
also the articles of E. Teller, M. Born, A. Landé, F. Bopp,
and G. Ludwig in Werner Heisenberg und die Physik
unseger Zeit (Friedrich Vieweg und Sohn, Braunschweig,
1961).

2 See the comments of V. Fock in the Max Planck
Festschrift (Deutscher Verlag der Wissenschaften, Berlin,
1958), p. 177, particularly Sec. 11
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it remains as yet unrediscovered in the modern
literature. Equally naturally, some of the lan-
guage has changed but, above all, new ideas and
new attempts have been introduced. Having
spoken to many friends on the subject which
will be discussed here, it became clear to me that
it is useful to review the standard view of the
late ““Twenties” and this will be the first task of
this article. The standard view is an outgrowth
of Heisenberg’s paper in which the uncertainty
relation was first formulated.? The far-reaching
implications of the consequences of Heisenberg's
ideas were first fully appreciated, I believe, by
von Neumann,* but many others arrived inde-
pendently at conclusions similar to his. There is
a very nice little book, by London and Bauer,*
which summarizes quite completely what I shall
call the orthodox view.

The orthodox view is very specific in its
epistemological implications. This makes it de-
sirable to scrutinize the orthodox view very
carefully and to look for loopholes which would
make it possible to avoid the conclusions to
which the orthodox view leads. A large group
of physicists finds it difficult to accept these con-
clusions and, even though this does not apply
to the present writer, he admits that the far-
reaching nature of the epistemological conclu-
sions makes one uneasy. The misgivings, which
are surely shared by many others who adhere
to the orthodox view, stem from a suspicion that
one cannot arrive at valid epistemological con-
clusions without a careful analysis of the process
of the acquisition of knowledge. What will be
analyzed, instead, is only the type of informa-
tion which we can acquire and possess concern-
ing the external inanimate world, according to
quantum-mechanical theory.

We are facing here the perennial question

3'W. Heisenberg, Z. Physik 43, 172 (1927), also his
article in Niels Bohr and the Development of Physics
(Pergamon Press, London, 1955); N, Bohr, Nature 121,
580 (1928); Naturwissenschaften 17, 483 (1929) and par-
ticularly Atomic Physics and Human Knowledge (John
Wiley & Sons, Inc., New York, 1958).

4See J. von Neumann, Mathematische Grundlagen der
Quantenmechanik (Verlag Julius Springer, Berlin, 1932),
English translation by the Princeton University Press,
Princeton, New Jersey, 1955. See also P. Jordan, Anschau-
liche Quantentheorie (Julius Springer, Berlin, 1936),
Chapter V.

5. London and E. Bauer, La Théorie de I'observation en
mécanique quantigue” (Hermann et Cie., Paris, 1939); or
E. Schrédinger, Naturwissenschaften 23, 807 ff. (1935);
Proc. Cambridge Phil. Soc. 31, 555 (1935).

whether we physicists do not go beyond our
competence when searching for philosophical
truth. I believe that we probably do.% Neverthe-
less, the ultimate implications of quantum
theory’s formulation of the laws of physics.
appear interesting even if one admits that the
conclusions to be arrived at may not be the
ultimate truth.

THE ORTHODOX VIEW

The possible states of a system can be charac-
terized, according to quantum-mechanical theory,
by state vectors. These state vectors—and this is
an almost verbatim quotation of von Neumann—
change in two ways. As a result of the passage of
time, continuously, according to Schrédinger’s
time-dependent equation—this equation will be
called the equation of motion of quantum me-
chanics. The state vector changes, however, also
discontinuously, according to probability laws,
if a measurement is carried out on the system.
This second type of change is often called the
reduction of the wavefunction. It is this reduc-
tion of the state vector which is unacceptable to
many of our colleagues.

The assumption of two types of changes of the
state vector is a strange dualism. It is good to
emphasize at this point that the dualism in ques-
tion has little to do with the oft-discussed wave-
versus-particle dualism. This latter dualism is
only part of a more general pluralism or even
“infinitesilism’’ which refers to the infinity of
noncommuting measurable quantities. One can
measure the position of the particles, or one can
measure their velocity, or, in fact, an infinity of
other observables. The dualism here discussed
is a true dualism and refers to the fwo ways in
which the state vector changes. It is also worth
noting, though only parenthetically, that the
probabilistic aspect of the theory is almost di-
ametrically opposite to what ordinary experi-
ence would lead one to expect. The place where
one expects probability laws to prevail is the
change of the system with time. The interaction
of the particles, their collisions, are the events
which are ordinarily expected to be governed
by statistical laws. This is not at all the case

% This point is particularly well expressed by H. Mar-

genau, in the first two sections of the article in Phil. Sci.
25, 23 (1958).
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here: the uncertainty in the behavior of a sys-
tem does not increase in time if the system is
left alone, that is, if it is not subjected to meas-
urements. In this case, the properties of the
system, as described by its state vector, change
causally, no matter what the period of time is
during which it is left alone. On the contrary,
the phenomenon of chance enters when a meas-
urement is carried out on the system, when we
try to check whether its properties did change
in the way in which our causal equations told
us they would change. However, the extent to
which the results of all possible measurements
on the system can be predicted does not decrease,
according to quantum-mechanical theory, with
the time during which the system was left alone;
it is as great right after an observation as it is a
fong time thereafter. The uncertainty of the
result, so to say, increases with time for some
measurements just as much as it decreases for
others. The Liouville theorem is the analog
for this in classical mechanics. It tells us that,
if the point which represents the system in phase
space is known to be in a finite volume element
at one given time, an equally large volume ele-
ment can be specified for a given later time which
will then contain the point representing the
state of the system. Similarly, the uncertainty
in the result of the measurement of Q, at time
0, is exactly equal to the uncertainty of the meas-
urement of Q,=exp(—¢H/h)Qoexp(tHi/B) at
time ¢ The information which is available at a
later time may be less valuable than the informa-
tion which was available on an earlier state of
the system (this is the cause of the increase of
the entropy); in principle, the amount of infor-
mation does not change in time.

CONSISTENCY OF THE ORTHODOX VIEW

The simplest way that one may try to reduce
the two kinds of changes of the state vector to a
single kind is to describe the whole process of
measurement as an event in time, governed by
the quantum-mechanical equations of motion.
One might think that, if such a description is
possible, there is no need to assume a second
kind of change of the state vector; if it is im-
possible, one might conclude, the postulate of
the measurement is incompatible with the rest

WIGNER

of quantum mechanics. Unfortunately, the situa-
tion will turn out not to be this simple.

If one wants to describe the process of meas-
urement by the equations of quantum me-
chanics, one will have to analyze the interaction
between object and measuring apparatus. Let
us consider a measurement from the point of
view of which the ‘sharp”’ states are o,
o® ... For these states of the object the meas-
urement will surely yield the values Aj, Mg, -,
respectively. Let us further denote the initial
state of the apparatus by ¢, then, if the initial
state of the system was ¢, the total system—
apparatus plus object—will be characterized,
before they come into interaction, by aXe®.
The interaction should not change the state of
the object in this case and hence will lead to

aXa® —a Xa), (1)

The state of the object has not changed, but the
state of the apparatus has and will depend on
the original state of the object. The different
states ¢® may correspond to states of the ap-
paratus in which the pointer has different posi-
tions, which indicate the state of the object. The
state a¢® of the apparatus will therefore be
called also ‘‘pointer position ».” The state vec-
tors a®, a®, . . . are orthogonal to each other
—usually the corresponding states can be dis-
tinguished even macroscopically. Since we have
considered, so far, only ‘“‘sharp” states, for each
of which the measurement in question surely
vields one definite value, no statistical element
has yet entered into our considerations.”

Let us now see what happens if the initial
state of the object is not sharp, but an arbitrary
linear combination a10®W +aw®+---. It then
follows from the linear character of the quantum-
mechanical equation of motion (as a result of the
so-called superposition principle) that the state
vector of object-plus-apparatus after the meas-
urement becomes the right side of

aX[Y ae™]— 3 a,[a® Xa®]. (2)

Naturally, there is no statistical element in this
result, as there cannot be. However, in the state
(2), obtained by the measurement, there is a

7 The self-adjoint (Hermitean) character of every ob-
servable can be derived from Eq. (1) and the unitary
nature of the transformation indicated by the arrow. Cf.
E. Wigner, Z. Physik 133, 101 (1952), footnote 2 on p. 102.
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statistical correlation between the state of the
object and that of the apparatus: the simul-
taneous measurement on the system—object-
plus-apparatus—of the two quantities, one of
which is the originally measured quantity of the
object and the second the position of the pointer
of the apparatus, always leads to concordant
results. As a result, one of these measurements
is unnecessary: The state of the object can be
ascertained by an observation on the apparatus.
This is a consequence of the special form of the
state vector (2), of not containing any a® X¢®
term with v yu.

It is well known that statistical correlations
of the nature just described play a most im-
portant role in the structure of quantum me-
chanics. One of the earliest observations in this
direction is Mott’s explanation of the straight
track left by the spherical wave of outgoing «
particles.® In fact, the principal conceptual dif-
ference between quantum mechanics and the
earlier Bohr-Kramers-Slater theory is that the
former, by its use of configuration space rather
than ordinary space for its waves, allows for
such statistical correlations.

Returning to the problem of measurement, we
see that our alternatives either of conflict be-
tween the theory of measurement and the equa-
tions of motion, or an explanation of that theory
in terms of the equations of motion, have been
cleverly dodged. The equations of motion permit
the description of the process whereby the state
of the object is mirrored by the state of an ap-
paratus. The problem of a measurement on the
object is thereby transformed into the problem
of an observation on the apparatus. Clearly,
further transfers can be made by introducing a
second apparatus to ascertain the state of the
first, and so on. However, the fundamental point
remains unchanged and a full description of an
observation must remain impossible since the
quantum-mechanical equations of motion are
causal and contain no statistical element, where-
as the measurement does.

It should be admitted that when the quantum
theorist discusses measurements, he makes many
idealizations. He assumes, for instance, that the
measuring apparatus will vield some result, no
matter what the initial state of the object was.

8 N. F. Mott, Proc. Roy. Soc. (London) 126, 79 (1929).

This is clearly unrealistic since the object may
move away from the apparatus and never come
into contact with it. More importantly, he has
appropriated the word ‘‘measurement’” and used
it to characterize a special type of interaction
by means of which information can be obtained
on the state of a definite object. Thus, the meas-
urement of a physical constant, such as cross
section, does not fall into the category called
“measurement”’ by the theorist. His measure-
ments answer only questions relating to the
ephemeral state of a physical system, such as,
“What is the x component of the momentum of
this atom?”’ On the other hand, since he is unable
to follow the path of the information until it
enters his, or the observer’s, mind, he considers
the measurement completed as soon as a sta-
tistical relation has been established between
the quantity to be measured and the state of
some idealized apparatus. He would do well to
emphasize his rather specialized use of the word
“measurement.”’

This will conclude the review of the orthodox
theory of measurement. As was mentioned before,
practically all the foregoing is contained, for
instance, in the book of London and Bauer.?

CRITIQUES OF THE ORTHODOX THEORY

There are attempts to modify the orthodox
theory of measurement by a complete departure
from the picture epitomized by Egs. (1) and
(2). The only attempts of this nature which
will be discussed here presuppose that the result
of the measurement is not a state vector, such
as (2), but a so-called mixture, namely one of
the state vectors

a® X W, 3)

and that this particular state vector will emerge
from the interaction between object and appa-
ratus with the probability |a,|2. If this were so,
the state of the system would not be changed
when one ascertains—in some unspecified way—
which of the state vectors (3) corresponds to the
actual state of the system, one would merely
“ascertain which of various possibilities has oc-
curred.”” In other words, the final observation
only increases our knowledge of the system; it
does not change anything. This is not true if
the state vector, after the interaction between
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object and apparatus, is given by (2) because
the state represented by the vector (2) has properties
which neither of the states (3) has. It may be
worthwhile to illustrate this point, which is
fundamental though often disregarded, by an
example.

The example is the Stern-Gerlach experiment?
in which the projection of the spin of an incident
beam of particles, into the direction which is
perpendicular to the plane of the drawing, is
measured. (See Fig. 1.) The index » has two
values in this case; they correspond to the two
possible orientations of the spin. The “apparatus”
is that positional coordinate of the particle which
is also perpendicular to the plane of the drawing.
If this coordinate becomes, in the experiment
iltustrated, positive, the spin is directed toward
us; if it is negative, the spin is directed away
from us. The experiment illustrates the statis-
tical correlation between the state of the “appa-
ratus’’ (the position coordinate) and the state
of the object (the spin) which we have discussed.
The ordinary use of the experiment is to obtain
the spin direction, by observing the position,
i.e., the location of the beam. The measurement
is, therefore, as far as the establishment of a
statistical correlation is concerned, complete
when the particle reaches the place where the
horizontal spin arrows are located.

What is important for us, however, is the
right side of the drawing. This shows that the
state of the system—object-plus-apparatus (spin
and positional coordinates of the particle, i.e.,
the whole state of the particle)—shows char-
acteristics which neither of the separated beams
alone would have. If the two beams are brought

9 The same experiment was discussed recently from
another point of view by H. Wakita, Progr. Theoret.
Phys. 27, 139 (1962).

pP.
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together by the magnetic field due to the current
in the cable indicated, the two beams will inter-
fere and the spin will be wvertical again. This
could be verified by letting the united beam
pass through a second magnet which is, how-
ever, not shown on the figure. If the state of the
system corresponded to the beam toward us, its
passage through the second magnet would show
that it has equal probabilities to assume its ini-
tial and the opposite directions. The same is
true of the second beam which was deflected
away from us. Even though the experiment in-
dicated would be difficult to perform, there is
little doubt that the behavior of particles and
of their spin conforms to the equations of motion
of quantum mechanics under the conditions con-
sidered. Hence, the properties of the system,
object plus apparatus, is surely correctly repre-
sented by an expression of the form (2) and
shows, #n this case, properties which are different
from those of either alternative (3).

In the case of the Stern-Gerlach experiment,
one can thus point to a specific and probably
experimentally realizable way to distinguish be-
tween the state vector (2), furnished by the
orthodox theory, and the more easily visualiza-
ble mixture of the states (3) which one would
offhand expect. There is little doubt that in this
case the orthodox theory is correct. It remains
remarkable how difficult it is, even in this very
simple case, to distinguish between the two, and
this raises two questions. The first of these is
whether there is, in more complicated cases, a
principle which makes the distinction between
the state vector (2), and the mixture of the
states (3), impossible. As far as is known to the
present writer, this question has not even been
posed seriously heretofore, and it will be con-
sidered in the present discussion also only ob-
liquely. The second question is whether there is
a continuous transition between (2) and the
mixture of states (3) so that in simpler cases (2)
is the result of the interaction between object
and measuring apparatus, but in more compli-
cated and more realistic cases the actual state
of object-plus-apparatus more nearly resembles
a mixture of the states (3). Again, this question
can be investigated within the framework of
quantum mechanics, or one can postulate devia-
tions from the quantum-mechanical equations
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of motion, in particular from the superposition
principle.

More complicated and more realistic means
in the present context that the measuring appa-
ratus, the state of which is to be correlated with
the quantity to be measured, is of such a nature
that it is easy to measure ifs state, i.e., correlate
it with the state of another “apparatus.” If this
1s done, the state of that second ‘‘apparatus’
will be correlated also to the state of the object.
The ease of establishing correlations between
the state of the apparatus which came into
direct contact with the object and another ‘“‘ap-
paratus’ is usually greatest if the first one is of
macroscopic nature, i.e., complicated from the
quantum-mechanical point of view. The ease
with which the secondary correlations can be
established is a direct measure of how realistically
one can say that the measurement has been
completed, Clearly, if the state of the apparatus
which carried out the primary measurement is
just as difficult to ascertain as the state of the
object, it is not very realistic to say that the
establishment of a correlation between its and
the object’s state is a fully completed measure-
ment. Nevertheless, it is so regarded by the
orthodox theory. The question which we pose is,
therefore, whether it is consistent with the prin-
ciples of quantum mechanics to assume that at
the end of a realistic measurement the state of
object-plus-apparatus is not a wavefunction, as
given by (2), but a mixture of the states (3).
We shall see that the answer is negative. Hence,
the modification of the orthodox theory of meas-
urement mentioned at the beginning of this
section is not consistent with the principles of
quantum mechanics.

Let us now proceed with the calculation. Even
though this point is not usually emphasized, it
is clear that, in order to obtain a mixture of
states as a result of the interaction, the initial
state must have been a mixture already.?® This

1 This point is disregarded by several authors who have
rediscovered von Neumann’s description of the measure-
ment, as given by (1) and (2). These authors assume that
it follows from the macroscopic nature of the measuring
apparatus that if several values of the ‘‘pointer position”
have finite probabilities [as is the case if the state vector
is (2)], the state is necessarily a mixture (rather than a
linear combination) of the states (3)—that is, of states in
each of which the pointer position is definite (sharp). The
argument given is that classical mechanics applies to
macroscopic objects, and states such as (2) have no

follows from the general theorem that the char-
acteristic values of the density matrix are con-
stants of motion. The assumption that the initial
state of the system, object-plus-apparatus, is a
mixture, is indeed a very natural one because
the state vector of the apparatus, which is under
the conditions now considered usually a macro-
scopic object, is hardly ever known. Let us as-
sume, therefore, that the initial state of the ap-
paratus is a mixture of the states A®, A @ | |
the probability of 4% being p,. The vectors
A® can be assumed to be mutually orthogonal.
The equations of motion will yield, for the state
A of the apparatus and the state ¢ of the
object, a final state

A@Xg 5 4 g®), (4)

Every state AW, 4@ . . | will indicate the
same state ¢¢? of the object, the position of the
pointer is » for all of these. For different », how-
ever, the position of the pointer is also different.
It follows that the A®, for different », are
orthogonal, even if the p are also different. On
the other hand, A% and A4©», for p#o, are
also orthogonal because A4®)X¢® and 4V
X o are obtained by a unitary transformation
from two orthogonal states, 4@ X¢® and 4
Xo© and the scalar product of 4®)Xe® with
A Xa® is (A A@?), Hence, the A form
an orthonormal (though probably not complete)
system

(A ARy =35,.5,,. 5)

It again follows from the linear character of
the equation of motion that, if the initial state
of the object is the linear combination }_ a,c®,
the state of object-plus-apparatus will be, after
the measurement, a mixture of the states

A (A)XZ a0 — Zy ay[A (pV)XO-(V)]:q;(p)’ (6)

counterpart in classical theory. This argument is contrary
to present quantum-mechanical theory. It is true that the
motion of a macroscopic body can be adequately described
by the classical equations of motion if its state has a
classical description. That this last premise is, according to
present theory, not fulfilled, is clearly, though in an ex-
treme fashion, demonstrated by Schrédinger’s cat-paradox
(cf. reference 5). Further, the discussion of the Stern-
Gerlach experiment, given in the text, illustrates the fact
that there are, in principle, observable differences between
the state vector given by the right side of (2), and the
mixture of the states (3), each of which has a definite posi-
tion. Proposals to modify the quantum-mechanical equa-
tions of motion so as to permit a mixture of the states
(3) to be the result of the measurement even though the
initial state was a state vector, will be touched upon later.
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with probabilities p,. This same mixture should
then be, according to the postulate in question,
equivalent to a mixture of orthogonal states

I (wk) = Zp xp(#lc)[A (pu) XO—(M)]_ (7)
These are the most general states for which the
originally measured quantity has a definite
value, namely A,, and in which this state is
coupled with some state (one of the states
> ox, B 4 m) with a pointer position g. Further,
if the probability of the state ¥ is denoted by
Py, we must have

ZkPusz’Olui?- (7&)

The x,®% will naturally depend on the a.

It turns out, however, that a mixture of the
states ) cannot be, at the same time, a mix-
ture of the states ¥®# (unless only one of the
a is different from zero). A necessary condition
for this would be that the ¥®® gre linear com-
binations of the ®%) so that one should be able
to find coefficients # so that

>, 2, WA X g W =T wh) =3 gy B

=3 [ AP Xe®] (8)

From the linear independence of the 4 #* it then
follows that

Uty = By, B8 | (8a)
which cannot be fulfilled if more than one « is
finite. It follows that it is not compatible with
the equations of motion of quantum mechanics
to assume that the state of object-plus-apparatus
is, after a measurement, a mixture of states each
with one definite position of the pointer.

It must be concluded that measurements which
leave the system object-plus-apparatus in one of the
states with a definite position of the pointer cannot
be described by the linear laws of quantum me-
chanics. Hence, if there are such measurements,
quantum mechanics has only limited validity.
This conclusion must have been familiar to
many even though the detailed argument just
given was not put forward before. Ludwig, in
Germany, and the present writer have inde-
pendently suggested that the equations of mo-
tion of quantum mechanics must be modified
so as to permit measurements of the aforemen-
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tioned type.!! These suggestions will not be dis-
cussed in detail because they are suggestions and
do not have convincing power at present. Even
though either may well be valid, one must con-
clude that the only known theory of measure-
ment which has a solid foundation is the ortho-
dox one and that this implies the dualistic theory
concerning the changes of the state vector. It
implies, in particular, the so-called reduction of
the state vector. However, to answer the ques-
tion posed earlier: yes, there is a continuous
transition between the state vector (2), fur-
nished by orthodox theory, and the requisite mix-
ture of the states (3), postulated by a more
visualizable theory of measurement.!!

WHAT IS THE STATE VECTOR?

The state vector concept plays such an im-
portant part in the formulation of quantum-
mechanical theory that it is desirable to discuss
its role and the ways to determine it. Since,
according to quantum mechanics, all informa-
tion is obtained in the form of the results of
measurements, the standard way to obtain the
state vector is also by carrying out measure-
ments on the system.?

In order to answer the question proposed, we
shall first obtain a formula for the probability
that successive measurements carried out on a
system will give certain specified results. This
formula will be given both in the Schrédinger
and in the Heisenberg picture. Let us assume
that # successive measurements are carried out
on the system, at times #y, #2, . . . , tn. The op-
erators of the quantities which are measured
are, in the Schrodinger picture, Q1, Q2 . . . , Qa.
The characteristic vectors of these will all be
denoted by ¢ with suitable upper indices. Simi-
larly, the characteristic values will be denoted by

11 See G. Ludwig’s article “Solved and Unsolved Prob-
lems in the Quantum Mechanics of Measurement” (refer-
ence 1) and the present author’s article in The Scientist
Speculates, edited by J. Good (William Heinemann, Lon-
don, 1962), p. 284.

2 There are, nevertheless, other procedures to bring a
system into a definite state. These are based on the fact
that a small system, if it interacts with a large system in a
definite and well-known state, may assume itself a definite
state with almost absolute certainty. Thus, a hydrogen
atom, in some state of excitation, if placed into a large
container with no radiation in it, will almost surely transfer
all its energy to the radiation field of the container and gc
over into its normal state. This method of preparing a
state has been particularly stressed by H. Margenau.



THE PROBLEM OF MEASUREMENT 13

g so that
Qb =g D ©)
The Heisenberg operators which correspond to

these quantities, if measured at the correspond-
ing times, are

Q¥ = eiHtiQ el

(10)

and the characteristic vectors of these will be
denoted by ¢, where

O 0,1 =g, @ D,

If the state vector is originally &, the proba-
bility for the sequence ¢.@, ¢s®, . . ., ¢.'™ of
measurement results is the absolute square of

(e NP, V) (¢ iH (tamt)yy (1) g ). . .
(g7 (nmtn—1yfy (n=1) o (W)Y - (11)

The same expression in terms of the character-
istic vectors of the Heisenberg operators is
simpler

(@’g‘%(l)) (¢a(1)’¢ﬁ(2>) e (99)‘(”_1),%‘(”)).

It should be noted that the probability is not
determined by the n Heisenberg operators Q;%
and their characteristic vectors: the ime order
in which the measurements are carried out enters
into the result essentially. Von Neumann al-
ready derived these expressions as well as their
generalizations for the case in which the char-
acteristic values ¢.,@, ¢®, . . . have several
characteristic vectors. In this case, it is more
appropriate to introduce projection operators for
every characteristic value ¢ of every Heisen-
berg operator Q;¥. If the projection operator in
question is denoted by P, the probability for
the sequence ¢.®, ¢s®, . . ., ¢, of measure-
ment-results is

oD =i iy, (), (10a)

(i1a)

(Pnp' * 'PQﬁPIaq)y Pnp.' ¢ 'P23P1a¢)- (12)

The expressions (11) or (11a) can be obtained
also by postulating that the state vector became
%@ when the measurement of Q@ gave the
result ¢.’. Indeed, the statement that the state
vector is ¢, is only a short expression for the
fact that the last' measurement on the system,
of the quantity Q?, just carried out, gave the
result ¢,. In the case of simple characteristic
values the state vector depends only on the re-
sult of the last measurement and the future

behavior of the system is independent of the
more distant past history thereof. This is not
the case if the characteristic value ¢’ is multiple.

The most simple expression for the Heisen-
berg state vector, when the jth measurement
gave the value ¢.(?, is, in this case

Pj,;‘ . 'PzﬂPlaCIJ, <128.)

properly normalized. If, after normalization, the
expression (12a) is independent of the original
state vector ®, the number of measurements has
sufficed to determine the state of the system
completely and a pure state has been produced.
If the vector (12a) still depends on the original
state vector ®, and if this was not known to
begin with, the state of the system is a mixture,
a mixture of all the states (12a), with all pos-
sible ®. Evidently, the measurement of a single
quantity Q the characteristic values of which
are all nondegenerate, suffices to bring the sys-
tem into a pure state though it is not in general
foreseeable which pure state will result.

We recognize, from the preceding discussion,
that the state vector is only a shorthand expres-
sion of that part of our information concerning
the past of the system which is relevant for
predicting (as far as possible) the future be-
havior thereof. The density matrix, incidentally,
plays a similar role except that it does not pre-
dict the future behavior as completely as does
the state vector. We also recognize that the laws
of quantum wmechanics only furnish probability
connections between resulls of subsequent observa-
tions carried out on a system. 1t is true, of course,
that the laws of classical mechanics can also be
formulated in terms of such probability connec-
tions. However, they can be formulated also in
terms of objective reality. The important point
is that the laws of quantum mechanics can be ex-
pressed only in terms of probability connections.

PROBLEMS OF THE ORTHODOX VIEW

The incompatibility of a more visualizable in-
terpretation of the laws of quantum mechanics
with the equations of motion, in particular the
superposition principle, may mean that the ortho-
dox interpretation is here to stay; it may also
mean that the superposition principle will have
to be abandoned. This may be done in the sense
indicated by Ludwig, in the sense proposed by
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me, or in some third, as yet unfathomed sense.
The dilemma which we are facing in this regard
makes it desirable to review any possible con-
ceptual weaknesses of the orthodox interpreta-
tion and the present, last, section will be devoted
to such a review.

The principal conceptual weakness of the or-
thodox view is, in my opinion, that it merely
abstractly postulates interactions which have the
effect of the arrows in (1) or (4). For some ob-
servables, in fact for the majority of them
(such as xyp.), nobody seriously believes that a
measuring apparatus exists. [t can even be shown
that no observable which does not commute with
the additive conserved quantities (such as linear
or angular momentum or electric charge) can be
measured precisely and in order to increase the
accuracy of the measurement one has to use a
very large measuring apparatus. The simplest
form of the proof heretofor was given by Araki
and Yanase.’® On the other hand, most quanti-
ties which we believe to be able to measure, and
surely all the very important quantities such as
position, momentum, fail to commute with all
the conserved quantities so that their measure-
ment cannot be possible with a microscopic ap-
paratus. This raises the suspicion that the macro-
scopic nature of the apparatus is necessary in
principle and reminds us that our doubts con-
cerning the validity of the superposition prin-
ciple for the measurement process were corn-
nected with the macroscopic nature of the appa-
ratus. The joint state vector (2), resulting from
a measurement with a very large apparatus,
surely cannot be distinguished as simply from a
mixture as was the state vector obtained in the
Stern-Gerlach experiment which we discussed.

A second, though probably less serious, difh-
culty arises if one tries to calculate the proba-
bility that the interaction between object and
apparatus be of such nature that there exist
states ¢® for which (1) is valid. We recall that
an interaction leading to this equation was
simply postulated as the type of interaction
which leads to a measurement. When 1 talk
about the probability of a certain interaction,

B H. Araki and M. Yanase, Phys. Rev. 120, 666 (1961);
cf. also E. P. Wigner, Z. Physik 131, 101 (1952).

14 This point was recognized already by D. Bohm. See
Section 22.11 of his Quantum Theory (Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1951).
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I mean this in the sense specified by Rosenzweig
or by Dyson who have considered ensembles of
possible interactions and defined probabilities for
definite interactions.’ If one adopts their defini-
tion (or any similar definition) the probability
becomes zero for the interaction to be such that
there are states ¢ ® satisfying (1). The proof for
this is very similar to that!® which shows that
the probability is zero for finding reproducing
systems—in fact, according to (1), each ¢® is
a reproducing system. The resolution of this
difficulty is presumably that if the system with
the state vector a—that is, the apparatus—is
very large, (1) can be satisfied with a very small
error. Again, the large size of the apparatus
appears to be essential for the possibility of a
measurement.

The simplest and least technical summary of
the conclusions which we arrived at when dis-
cussing the orthodox interpretation of the quan-
tum laws is that these laws merely provide
probability cennections between the results of
several consecutive observations on a system.
This is not at all unreasonable and, in fact, this
is what one would naturally strive for once it is
established that there remains some inescapable
element of chance in our measurements. How-
ever, there is a certain weakness in the word
“consecutive” as this is not a relativistic con-
cept. Most observations are not local and one
will assume, similarly, that they have an irre-
ducible extension in time, that is duration. How-
ever, the ‘‘observables” of the present theory
are instantaneous, and hence unrelativistic,
quantities. The only exceptions from this are
the local field operators and we know, from the
discussion of Bohr and Rosenfeld, how many
extreme abstractions have to be made in order
to describe their measurement.'” This is not a
reassuring state of affairs.

The three problems just discussed—or at least

15C, E. Porter and N. Rosenzweig, Suomalaisen
Tiedeakatemian Toimotuksia VI, No. 44 (1960); Phys.
Rev. 120, 1698 (1960); F. Dyson, J. Math. Phys. 3, 140,
157, 166 (1962). See also E. P. Wigner, Proceedings of the
Fourth Canadian Mathematics Congress (University of
Toronto Press, Toronto, 1959), p. 174.

16 Cf, the writer’s article in The Logic of Personol Knowl-
edge (Routledge and Kegan Paul, London, 1961), p. 231.

17 N. Bohr and L. Rosenfeld, Kgl. Danske Videnskab.
Selskab, Mat.-fys. Medd. 12, No. 8 (1933); Phys. Rev.
78, 194 (1950); E. Corinaldesi, Nuovo cimento 8, 494
(1951); B. Ferretti, bid. 12, 558 (1954).



THE PROBLEM OF MEASUREMENT 15

two of them—are real. It may be useful, there-
fore, to re-emphasize that they are problems of
the formal mathematical theory of measure-
ment, and of the description of measurements
by macroscopic apparatus. They do not affect
the conclusion that a ‘“‘reduction of the wave
packet”’ (however bad this terminology may be)
takes place in some cases. Let us consider, for
instance, the collision of a proton and a neutron
and let us imagine that we view this phenomenon
from the coordinate system in which the center
of mass of the colliding pair is at rest. The state
vector is then, if we disregard the unscattered
beam, in very good approximation (since there
is only S-scattering present)

1

¢(rl)r7’n) :heikrw(rx (13)
¥

where r=|r,—r,| is the distance of the two
particles and w(r) some very slowly varying
damping function which vanishes for r<rp—%¢
and 7>re+3%c, where 7o is the mean distance of
the two particles at the time in question and ¢
the coherence length of the beam. If a measure-
ment of the momentum of one of the particles is
carried out—the possibility of this is never
questioned—and gives the result p, the state
vector of the other particle suddenly becomes a
(slightly damped) plane wave with the momen-
tum —p. This statement is synonymous with
the statement that a measurement of the mo-
mentum of the second particle would give the
result — p—as follows from the conservation law
for linear momentum. The same conclusion can
be arrived at also by a formal calculation of the
possible results of a joint measurement of the
momenta of the two particles.

One can go even further’®: instead of measuring
the linear momentum of one particle, one can
measure its angular momentum about a fixed
axis., If this measurement yields the value m#,
the state vector of the other particle suddenly
becomes a cylindrical wave for which the same
component of the angular momentum is —m#.
This statement is again synonymous with the
statement that a measurement of the said com-
ponent of the angular momentum of the second
particle certainly would give the value —mi.
This can be inferred again from the conservation
law of the angular momentum (which is zero
for the two particles together) or by means of
a formal analysis. Hence, a ‘“‘contraction of the
wave packet” took place again.

It is also clear that it would be wrong, in the
preceding example,!® to say that even before any
measurement, the state was a mixture of plane
waves of the two particles, traveling in opposite
directions. For no such pair of plane waves would
one expect the angular momenta to show the
correlation just described. This is natural since
plane waves are not cylindrical waves or, since
(13) is a state vector with properties different
from those of any mixture. The statistical corre-
lations which are clearly postulated by quantum
mechanics {and which can be shown also experi-
mentally, for instance in the Bothe-Geiger ex-
periment) demand in certain cases a ‘‘reduction
of the state vector.” The only possible question
which can yet be asked is whether such a reduc-
tion must be postulated also when a measure-
ment with a macroscopic apparatus is carried
out. The considerations around Eq. (8) show
that even this is true if the validity of quantum
mechanics is admitted for all systems.

18 See, in this connection, the rather similar situation

discussed by A. Einstein, B. Podolsky, and N. Rosen, Phys.
Rev. 47, 777 (1935).



