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§ 1. The Physics of Models. 

In the second half of the last century an idealized description of the physical sciences 
emerged from the great successes of the kinetic theory of gases and the mechanical 
theory of heat. It was the crown on centuries of research and was the ultimate realization 
of millenia of expectation. It is called the classical description of physics and has the 
following main characteristics. 
 
Using the experimental data, but without neglecting the imagination, one constructs a 
picture of the physical objects of which one wants to explain the experimentally observed 
behaviour. This picture is far more detailed than any careful observation could ever 
reveal. In all its exactness it is like a mathematical construct or a geometrical figure, 
which can be completely determined from a number of determining  elements, just like in 
a triangle for example, one side and its adjacent angles completely determine the third 
angle, the other two sides, the three heights, the radius of the inscribed circle, etc. There 
is an important difference between this picture and a geometrical figure, however, namely 
that it is also fully determined in the fourth dimension, i.e. the time.  That is to say, it is a 
construct that changes with time (as is obvious), that is, it can be in different states, and 
when one such state is given by the necessary determining elements, then not only are all 
other characteristics determined at a given moment in time, but even at any later time; 
similarly to how the configuration at the basis of a triangle determines that at the top. It is 
part of the nature of the construct to change in a certain way. That is, when it is left 
undisturbed in a particular initial state, it will traverse a particular sequence of states in a 
continuous manner, attaining each successive state at a certain fully determined point in 
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time. This is the nature of its being, it is the hypothesis, as mentioned above, which was 
assumed for intuitive reasons.  
 
Obviously, one was not so naive as to think that one could actually determine exactly 
what would happen in the world. To make clear that this is not the case, the precise 
description as given above, is called a model. The extreme precision stipulated, though it 
can in practice never be attained, has the simple justification that the consequences of any 
particular hypothesis about the model can be checked without introducing new 
assumptions in the middle of the long calculations needed to derive these consequences. 
The way to go is in principle completely determined, and a 'clever clog' might be able to 
read them straight from the given data. In that way, one knows at least where the arbitrary 
assumptions have been made, and hence where they have to be improved if the model 
does not agree with the observations. If, after many different types of experiments, the 
object behaves just like the model, then one is pleased, and believes that the model is in 
essence a true picture of the real system. If, on the other hand, it no longer agrees with a 
new or refined experiment, this does not mean that one is then less pleased. For, in 
principle this is the way in which the model, and thus our understanding of reality,  is 
constantly improved and adjusted  
 
The main aim of the classical method using a precise model is to isolate the necessary 
arbitrariness in the assumptions, almost like the yolk and the white of an egg, to allow for 
the adjustment to improved experience. Perhaps this method is based on the belief that 
somehow the initial state really determines the evolution completely, i.e. that a complete 
model which corresponds exactly with reality would determine the outcome of all 
experiments precisely. It is, however, rather more probable that the adjustment process is 
infinite, and that a "complete model" is a contradiction in terms, a bit like "the largest 
integer".  
 
A clear understanding of what is meant by a classical model, its determining elements, 
and its state, is fundamental in all the following. Especially, one must not confuse a 
particular model with a particular state thereof. It is perhaps best to give an example. 
Rutherford's model of the hydrogen atom consists of two point masses. One can take as 
determining elements for example the two sets of 3 right-angled coordinates of the two 
points, and the two sets of 3 components of their velocities in the direction of the 
coordinate axes - twelve in total. Instead, one can also choose: the coordinates and 
velocity components of the centre of mass, and in addition, the distance between the two 
point masses, the two angles determining the direction of the line connecting the points in 
space, and the velocities (i.e. derivatives w.r.t. time) with which these quantities are 
changing in time at a given moment of time. These are of course also twelve in total. It is 
not part of the concept of "Rutherford model of the hydrogen atom", that these 
determining elements should have particular values. Such values would determine a 
given state of the model. A clear description of the entire set of possible states - without 
any relation between them - constitutes the model, or the model in an arbitrary state. But 
the model consists of more than two points in arbitrary position and with arbitrary 
velocities. It also determines how every state changes in time, as long as no exterior 
influence is present. This knowledge is given by the following statements: the points have 
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masses m resp. M, and charges -e and e, and therefore attract each other with a force e2/r2, 
when r is their distance. 
These statements, with particular values for m, M, and e (but not for r of course) are part 
of the description of the model (not just that of a particular state). m, M, and e are not 
determining elements, whereas r is. In the second choice of elements above, r is in fact 
the seventh, and if we use the first set of determining elements, it is given by  
 

r = √  [(x1 - x2)
2  + (y1 - y2)

2  + (z1 - z2)
2 ]. 

 
The number of determining elements (often also called variables, as opposed to model 
constants like m, M, and e) is unlimited. Twelve suitably chosen variables determine all 
others, and hence the state, but no twelve are privileged. Other particular examples are: 
the energy, the three components of the angular momentum and the kinetic energy of the 
centre of mass. These latter elements have in fact a special property: although they are 
variables, i.e. they have different values in different states, they are constant in time. 
They are also called constants of the motion, as opposed to model constants. 
 

§ 2. The Statistics of Model Variables in Quantum Mechanics. 
 
At the heart of the present theory of Quantum Mechanics (Q.M.) is a new principle 
which, although it may still need reformulation, will in my opinion, remain at the heart of 
the theory. It says that models with determining elements which completely determine all 
other variables in the classical sense as outlined above, cannot describe Nature faithfully.  
 
It might seem that for anybody who believes this, classical models are of no further use. 
But this is not the case. In fact, the classical models are used not just to show the contrast 
with the new principle, but also to express the reduced relation that remains between the 
same variables in these same models. This goes as follows. 
 
A. The classical concept of state is lost, in the sense that at most a well-chosen half of the 
complete set of variables can be assigned a definite value; in Rutherford's model for 
example the 6 right-angled coordinates, or the 6 velocity components (there are other 
possible groups). The other half remains completely indeterminate, while other quantities 
can have various degrees of indeterminateness. In general all variables in a complete set 
(twelve variables in Rutherford's model) will have inaccurately determined values. The 
easiest way to describe the degree of inaccuracy is  to choose the variables in so-called 
canonically conjugate pairs as in classical mechanics. A simple example is the 
coordinate x of a point mass and the component of the momentum px  (mass times 
velocity) in the same direction. Such variables restrict each other in the accuracy with 
which they can be known simultaneously in that the product of their standard deviations 
(indicates by the suffix ∆) cannot be less than a certain universal constant, i.e.   

 
∆ x • ∆ px  > h  

(Heisenberg's uncertainty relation.) 

(h = 1.041 x 10-27 ergsec.  In the literature one usually denotes this by an h with a stroke 
through it, whereas h stands for ours multiplied by 2π.) 
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B.  When, at a given moment in time, not all variables are fully determined by a subset, 
then of course they cannot be determined either at a later moment in time from accessible 
data at an earlier time. This might be called a breach of causality, but it is basically 
nothing new compared to A. When at no time a classical state is fully determined, its time 
evolution cannot be defined. What does change in time is the statistics or probabilities, 
and those in a fully deterministic way. During the time evolution, some variables can 
become more accurately defined, others less so. Overall, one can say that the total 
indeterminateness does not change, as follows from the fact that the restriction on the 
accuracies as described under A are the same at every instant of time. 
 
What do the expressions "inaccurate", "statistics", "probability" refer to? Q.M. tells us the 
following. It accepts all possible variables from the classical model and declares each to 
be directly measurable, even with arbitrary accuracy, as long as it is considered in 
isolation. If, after a suitably chosen, restricted number of measurements, a maximal 
knowledge has been obtained as allowed by the rule under A, then the mathematical 
apparatus of the new theory can give us a well-defined probability distribution for every 
variable at the same time as well as any later time. This means that it gives the fraction of 
the number of times that each variables takes a certain value or lies in a certain small 
interval. It suggests that this is indeed the probability that the given variable, at a given 
moment in time, will assume the particular value or lie in the particular interval. A single 
experiment can verify this probabilistic prediction at best in an approximate way, namely 
only when the variable is reasonably sharply determined, i.e. it lies in all probability 
within a small interval. To check the prediction fully, the complete experiment, including 
preparatory measurements, has to be repeated many times, and can only take into 
consideration those cases in which the preparatory measurements had given exactly the 
same results. In those cases, the predicted statistics for a given variable, given the 
measured values in the preparatory measurements, should then agree with those obtained 
in the experiment. This is the theory.  
 
One should be careful not to criticize this theory just because it is difficult to express: that 
is caused by the inadequacy of our language. However, another objection suggests itself. 
Hardly any classical physicist dared to propose, when constructing a model, that its 
determining elements are actually directly measurable at the object. Only derived 
consequences from the model were actually experimentally verifiable. And all experience 
has shown that long before the wide gap between theory and experimental technique had 
been bridged, the model would have changed substantially by constant adjustments to 
new experimental results. While the new theory declares on the one hand that the 
classical model is unsuitable for describing the relation between determining elements, it 
is on the other hand so bold as to prescribe what measurements could in principle be 
performed on the object. To those that invented the classical picture, this must have 
seemed like an incredible exaggeration of their abilities, a thoughtless presumption of 
future development.  
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Was it not a remarkable predestination that the researchers from the classical period, who 
did not even know what measurement really means, nevertheless, in their innocence, 
were able to give us a map to orient us as to what one can basically measure on a 
hydrogen atom, for example !? 
 
I hope to clarify later that the current theory was forced upon us. For the moment, I shall 
continue the exposition. 
 

§ 3. Examples of Probabilistic Predictions. 
 

All predictions, therefore, are as before about determining elements of a classical model, 
positions and velocities of point masses, energies, angular momenta, etc. But, unlike the 
classical theory, only probabilities of results can be predicted. Let us have a closer look a 
this. Officially, it is always the case that by means of a number of presently performed 
measurements and their results, the probabilities of results of other measurements, either 
performed immediately or after some time, are derived. How does this work in practice? 
In some important and typical cases it is as follows.  
 
If the energy of a Planckian oscillator is measured, the probability that one finds a value 
between E and E' can only be nonzero if the interval between E and E' contains a value 
from the sequence  3πhν,  5πhν,  7πhν,  9πhν,   • • • • • • 
 
For each interval which does not contain any of these values, the probability is zero, that 
is, other values are excluded. These numbers are odd multiples of the model constant  
πhν  (h = Planck's constant,  ν = the oscillator frequency).  Two things attract the 
attention.  First of all, there is no reference to previous measurements; these are not 
necessary. Secondly, the statement certainly does not lack in precision, on the contrary, it 
is far more accurate than any real measurement could ever be. 
 
Another typical example is the value of the angular momentum. In Fig. 1, let M be a 
moving point mass, where the arrow represents the length and direction of its momentum 
(i.e. mass times velocity). O is an arbitrary fixed point in space, the origin of a coordinate 
system say; not a point with physical meaning therefore, but a geometrical point of 
reference. In classical mechanics, the value of the angular momentum of  M w.r.t. O is 
the product of the length of the arrow for the momentum and the length of the 
perpendicular OF.  
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 Fig. 1.   Angular momentum: 
M is a material point, O is a geometric point of reference. 
The arrow represents the momentum ( = mass times 
velocity) of M. The angular momentum is then the product 
of the length of the arrow and the length of OF. 

 
 
In Q.M. the angular momentum behaves quite similarly to the energy of the oscillator. 
Again, the probability is zero for every interval that does not contain a value from the 
following sequence:  

 
 
That is, only values from this sequence can appear. Again, this holds without reference to 
any prior measurement. And one can well imagine how important this precise statement 
is: much more important than the knowledge of which of these values actually occurs, or 
with what probability each value occurs in particular cases. Moreover, notice that the 
point of reference does not play any role: no matter where it is chosen, the result is 
always a value from this sequence. For the model, this claim makes no sense, for the 
perpendicular OF changes continuously as the point O is shifted, whereas the momentum 
arrow remains unchanged. We see from this example how Q.M. does make use of the 
model to read off which quantities can be measured and about which sensible predictions 
can be made, but on the other hand does not consider it suitable for expressing relations 
between these quantities.  
 
Does one not get the feeling that in both cases the essence of what can be said has been 
forced into the straightjacket of a prediction for the probability that a classical variable 
has one or another measurement value?  Does one not get the impression that this is in 
fact about fundamentally new properties, which have only the name in common with 
their classical counterparts? These are by no means exceptional cases; on the contrary, 
precisely the most valuable predictions of the new theory have this character. There are 
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indeed also problems of a type for which the original description is approximately valid. 
But these are not nearly as important. And those that one could construct as examples 
where this description is completely correct, have no meaning. "Given the position of the 
electron in a hydrogen atom at time t=0; construct the statistics of the positions at a later 
time."  This is of no interest.  
 
It may sound as if all predictions are about the visual model. But in fact, the most 
valuable predictions cannot be easily visualised, and the most easily visualised 
characteristics are of little value.  
 

§ 4. Can the Theory be Built on Ideal Quantities? 
 

In Q.M. the classical model plays the role of Proteus. Each of its determining elements 
can in certain circumstances become the subject of interest and acquire a certain 
authenticity. But never all at the same time; sometimes these and sometimes those, but 
always at most half of a complete set of variables, which would provide a clear picture of 
the instantaneous state of the model. What happens in the mean time with the others? Are 
they not real at all, or do they perhaps have a fuzzy reality; or are they always all real, 
but is it simply impossible to have simultaneous knowledge about them as in Rule A of   
§ 2 ? 
 
The latter interpretation is extremely attractive to those who are familiar with the 
statistical viewpoint developed during the second half of the last century, especially if 
one realises that it was this viewpoint that gave rise to the quantum theory, namely in the 
form of a central problem of the statistical theory of heat: Max Planck's theory of thermal 
radiation, Dec. 1899. The essence of that theory is exactly that one almost never knows 
all determining elements of a system, but usually far fewer. To describe a real object at 
any given moment, one therefore uses not just one state of the model, but rather a so-
called Gibbs ensemble. This is an ideal, i.e. imaginary, collection of states mirroring our 
restricted knowledge about the real object. The object then is supposed to behave in the 
same way as an arbitrary state from this collection. This idea has had tremendous 
success. Its greatest triumph was in those cases where not all states from the collection 
correspond to an identical observed behaviour of the object. It turned out that the object 
in that case indeed varies in its behaviour exactly as predicted (thermodynamic 
fluctuations). It is tempting equally to relate the often fuzzy predictions of Q.M. to an 
ideal collection of states, one of which applies in any individual case, but one does not 
know which.  
The one example of  angular momentum shows for all that this is impossible. Imagine 
that in Fig. 1, the point M is placed in all possible positions w.r.t. O, and the arrow of 
momentum has all possible lengths and directions. Consider the collection of all these 
possibilities. Then one can choose the positions and arrows in such a way that, in each 
case, the product of the length of the arrow and the length of the perpendicular OF has 
one of the allowed values w.r.t. the point O. But then they do not have allowed values 
with respect to other points O' of course. The use of a collection of states therefore does 
not help.  
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Another example is the energy of an oscillator. In one case it has a perfectly determined 
value, e.g. the ground state 3πhν. The distance between the two point masses which make 
up the oscillator is then very undetermined.  But, to relate this result to a statistical 
collection of states, the statistics of the distances should at least be bounded by that 
distance for which the potential energy attains the value 3πhν.  This is not the case, 
however: even arbitrarily large distances are possible, albeit with rapidly decreasing 
probability. And that is not simply an inconsequential result of calculations, which can be 
ignored without seriously affecting the theory: it is, among other things, the quantum 
mechanical explanation of radioactivity (Gamov).  There are infinitely many other 
examples. Notice that changes in time have not been considered. It would not help us if 
we were to allow the model to change in a very "unclassical" way, for example to 
"jump". Even for a single moment in time, it does not work. At no time is there a 
collection of classical model states which can describe all quantum mechanical 
predictions. In other words: if we want to prescribe a given (unknown) state to the model 
at every instant of time, or, equivalently, prescribe certain values (not exactly known to 
us) to all determining variables, then there is no conceivable assumption about these 
values which would not contradict at least part of the quantum theoretical assertions. 
 
This is not exactly what one might expect if one is told that the statements of the new 
theory are always imprecise compared with the classical theory. 
 

§ 5. Are the Variables in Fact Smeared Out? 
 

The other alternative was to assume that the previously sharply defined variables are real, 
or more generally that each of these variables is realised in such a way that it exactly 
matches the quantum mechanical statistics of this variable at any given moment in time.  
 
The fact that Q.M. actually makes use of an instrument, i.e. the wave function or ψ-
function, that describes the amount and nature of the smearing of all variables in a 
consistent way, shows that this is not unrealistic. We will speak much more about this 
wave function below. As is usual with new concepts, it is an abstract, difficult to visualise 
mathematical construct, but this is of no importance. In any case, it is an imaginary entity 
which describes the smearing-out of all variables at an arbitrary moment in time equally 
clearly and precisely as their values are given in a classical model. The law for its 
evolution, or change in time, is also just as clear and definite as the laws of motion in the 
classical models, provided the system is left undisturbed. Hence the ψ-function could 
replace the classical variables as long as the fuzziness is restricted to atomic dimensions, 
which escape direct control. Indeed, one has derived from the wave function various 
easily visualised conceptions like for example the "cloud of negative electricity" around a 
positive nucleus, etc. Doubts arise, however, when we notice that the uncertainty can also 
pertain to coarse things that can be felt and seen, where the designation "smeared out" is 
simply wrong. The state of a radioactive nucleus is probably smeared out in such a way 
and to such an extent that neither the time of its decay nor the direction in which the α-
particle leaves the nucleus is determined. Inside the nucleus, this smearing out does not 
bother us. The particle exiting the nucleus can be visualised as a spherical wave steadily 
moving away from the nucleus in all directions and hitting a nearby screen in its full 



 9

extent. The screen does not light up in a steady, dim way, however. Instead, it flashes up 
in one instant at one particular place. To be fair, it flashes sometimes here, and sometimes 
there, because it is impossible to do the experiment with a single radioactive atom. If we 
use, instead of the screen, a spatially extended detector, for example a gas which is 
ionized by the α-particle, then we find that the ion pairs are aligned along straight 
columns, which, when extended backwards, hit the grain of matter from which the 
radiation is emitted  (Wilson tracks made visible by vapour droplets condensing on the 
ions).  
 
It is also possible to construct very burlesque cases. Imagine a cat locked up in a room of 
steel together with the following hellish machine (which has to be secured from direct 
attack by the cat): A tiny amount of radioactive material is placed inside a Geiger 
counter, so tiny that during one hour perhaps one of its atoms decays, but equally likely 
none. If it does decay then the counter is triggered and activates, via a relais, a little 
hammer which breaks a container of prussic acid. After this system has been left alone 
for one hour, one can say that the cat is still alive provided no atom has decayed in the 
mean time. The first decay of an atom would have poisoned the cat. In terms of the 
ψ−function of the entire system this is expressed as a mixture of a living and a dead cat.  
 
Typical about these cases is that an originally atomic uncertainty has been transformed 
into a coarse-grained uncertainty, which can then be decided by direct observation. This 
prevents us from considering a smeared-out model naively as an image of the real world. 
This does not represent anything vague or contradictory in itself. It is the difference 
between a blurred or poorly focussed photograph and a photograph of clouds and wafts of 
mist.  
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§ 6. The Deliberate Change of Knowledge-Theoretical Viewpoint. 

 
In Section 4, we have seen that it is not possible to simply adopt the classical models, and 
assign definite values to the previously unknown or inexactly known variables after all, 
but which are unknown to us.   In § 5 we saw that the uncertainty is not a true fuzziness 
either because there are cases where a simple observation can supply the missing 
information.  Where do we now stand?  The prevailing opinion takes refuge in 
knowledge theory to escape from this difficult dilemma. We are told that there is no 
distinction between the true state of an object and all that we know about it, or more 
precisely, all that we could know about it if we tried.  Factual, it is said, are only: 
observation, experiment, measurement.  When, at a certain moment in time, I have 
obtained the optimal knowledge about the state of a physical object as allowed by the 
laws of physics, then any further question about the "true state" has to be rejected as 
superfluous. This is provided I am satisfied that any further observation cannot extend my 
knowledge about the state in certain respects without reducing it in others (namely, by 
changing the state, see below).  
 
This throws some light on the origin of the statement made at the end of § 2, which I 
claimed was very far-reaching: that all model variables are in principle measurable. One 
can hardly argue against this belief after having been forced  to take heed of the 
philosophical principle mentioned above, which as patron of all empiricism, cannot deny 
the validity of any reasonable measurement. 
 
Reality refuses to be copied by a model. One therefore has to relinquish naive realism and 
rely instead directly on the unquestionable thesis that (for a physicist) reality in the end 
lies in observation and measurement. Then all our future physical theories must be based 
entirely on the results of measurements  which can in principle be carried out. Our 
thinking should explicitly exclude any reference to other types of reality or any model. 
All numbers that occur in our calculations must be declared to be possible measurement 
results. However, we have not arrived on this world with a clean sheet to start science 
afresh, but are using a certain calculational  apparatus which we do not wish to discard, 
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especially since the successes of Q.M. We are therefore forced to dictate from our desks 
which measurements should be possible in principle in order to sufficiently support our 
calculational schemes. This allows a sharply defined value for each individual model 
variable (and even "half a determining set"), so each individual variable must be 
measurable to arbitrary accuracy. We cannot be satisfied with anything less because we 
have lost our naive-realistic innocence. Only our calculational scheme can indicate where 
Nature draws the line of ignorance, i.e. what is the best possible knowledge about an 
object. If not, then our measurement reality would depend on the diligence or laziness of 
the experimenter, how much effort he makes to get the information. We will have to tell 
him how far he could get if he were skillful enough. Otherwise, we would have to fear 
that, wherever we forbid any further investigation, there would in fact be more valuable 
information to acquire.  
 

§ 7. The ψ-Function as a Catalogue of Expectations. 
 

Continuing with the exposition of the official teaching, let us turn to the ψ-function 
mentioned above (§ 5). It is now the instrument for predicting the probability of 
measurement outcomes. It embodies the totality of theoretical future expectations, as laid 
down in a catalogue. It is, at any moment in time, the bridge of relations and restrictions 
between different measurements, as were in the classical theory the model and its state at 
any given time. The ψ-function has also otherwise much in common with this classical 
state. In principle, it is also uniquely determined by a finite number of suitably chosen 
measurements on the object, though half as many as in the classical theory.  Thus is the 
catalogue of expectations laid down initially. From then on, it changes with time, as in 
the classical theory, in a well-defined and deterministic ("causal") way - the development 
of the ψ-function is governed by a partial differential equation (of first order in the time 
variable, and resolved for dψ/dt).  This corresponds to the undisturbed motion of the 
model in the classical theory. But that lasts only so long until another measurement is 
undertaken. After every measurement, one has to attribute to the ψ-function a curious, 
somewhat sudden adaptation, which depends on the measurement result and is therefore 
unpredictable. This alone already shows that this second type of change of the ψ-function  
has nothing to do with the regular development between two measurements. The sudden 
change due to measurement is closely connected with the discussion in § 5, and we will 
consider it in depth in the following. It is the most interesting aspect of the whole theory, 
and it is precisely this aspect that requires a breach with naive realism. For this reason, 
the ψ−function cannot immediately replace the model or the real thing. And this is not 
because a real thing or a model could not in principle undergo sudden unpredictable 
changes, but because from a realistic point of view, measurements are natural phenomena 
like any other, and should not by themselves cause a sudden interruption of the regular 
evolution in Nature.  
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§ 8. Theory of Measurement; Part I. 
 

The rejection of realism has logical consequences. A variable does not have a value 
before it is measured. This implies that its measurement does not mean: determining the 
value that it has. So, what does it mean? There must surely be a criterion as to whether a 
measurement is good or bad, right or wrong, accurate or inaccurate - whether it deserves 
the name "measurement" at all. Playing round with a dial instrument near another body 
and now and again making a reading, surely cannot be called a measurement on the body. 
Now, it is rather obvious that if reality does not determine the measurement value, then at 
least the measured value must determine reality. That is, after the measurement, the only 
acceptable value is such as has just been measured. This means that the desired criterion 
can be as follows: repetition of the measurement should result in the same value. By 
repeating the measurement several times, I can test the accuracy of the method and show 
that I am not just playing a game. It is pleasing to realise that this instruction agrees 
exactly with the experimental procedure, in which the "true value" is also unknown 
beforehand. We can formulate the main point as follows: 
The organised interaction of two systems (measurement object and measurement 
instrument) is called a measurement on the first when a sensitive variable characteristic 
of the second (dial position) reproduces itself, within certain error bounds,  upon 
immediate repetition of the procedure (with the same measurement object, which in the 
mean time has not been subjected to other influences).  
 
This explanation still leaves much more to be added, it is not a perfect definition. 
Empiricism is more complicated than mathematics and cannot be easily captured by 
smooth theorems. Before the first measurement, there could have been an arbitrary 
quantum mechanical prediction about it. After the measurement, the prediction is always: 
within the error bounds the same value. The catalogue of predictions (= the ψ−function) 
has therefore been modified by the measurement corresponding to the measured variable. 
If the measurement device was already known to be reliable then the first measurement 
immediately reduces the theoretical expectation of the variable to within the error bounds 
around the value found, irrespective of what the expectation was before the measurement. 
This is the typical abrupt change in the ψ−function upon measurement discussed above. 
But the catalogue of expectations in general also changes in an unpredictable way for 
other variables, esp. the “canonically conjugate” variable.  For example, when the 
momentum of a particle could be predicted quite accurately before a measurement of its 
position, the latter more accurately than  Prop. A of § 2 allows, then the prediction for the 
momentum must have been modified. The quantum mechanical calculational machinery 
does this automatically though: there is no ψ−function which contradicts Prop. A. when it 
is used properly to read off the expectations.  Since the catalogue of expectations changes 
radically during a measurement, the object is then no longer suited to verify all statistical 
predictions in their complete extent prior to the measurement.  This holds at the very least 
for the variable itself as it will now constantly have (nearly) the same value. That is the 
reason for the prescription that was given in § 2: the predictions for the probability can be 
checked completely, but one has to repeat the entire experiment ab ovo. The 
measurement object  (or one identical to it) must be pretreated in exactly the same way so 
that the same catalogue of expectations (=ψ−function) exists as before the first 
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measurement. Then it is “repeated”. (Therefore, repeating now has a quite different 
meaning than previously !) All this has to be done many times. Then the predicted 
statistics will apply – according to the accepted view.  
 
Notice the difference between the error bounds and error statistics of the measurement on 
the one hand, and the theoretically predicted statistics on the other. They have nothing to 
do with one another. They apply to the two entirely different types of repetition just 
considered.  
 
Here we have an opportunity to further  sharpen  the above delimitation of a 
measurement. There are measurement instruments which get stuck in the position reached 
after a measurement. The dial could also have got stuck due to an accident. In that case 
one would always get the same reading, and according to our description, this would be a 
very accurate measurement. That is true, but it is a measurement of the instrument itself!. 
Indeed, our description is lacking an important point, which could not easily have been 
given before, namely, what exactly is the difference between the object and the 
instrument (the fact that the latter is being read, is merely superficial). We have just seen 
that the instrument must, when necessary, be returned to its neutral position before a 
control measurement is performed. Experimenters know this very well.  Theoretically, 
this is best described by demanding that before every measurement the instrument is 
pretreated in the same way so that it has the same catalogue of expectations 
(=ψ−function) every time it is brought into contact with the object. The object, however, 
must not be tampered with in any way when a control measurement has to be made, a 
"repetition of the first kind"  (which leads to the error statistics). That is the characteristic 
distinction between object and instrument. For a "repetition of the second kind" (intended 
to check the quantum predictions), there is no difference. In that case the distinction is 
indeed insignificant.  
 
We conclude from this further that for a second measurement another, similar, and 
equally pretreated instrument can also be used; it need not be exactly the same. This is in 
fact often done to check the first instrument. It can even happen that two quite different 
instruments are related in such a way that if one makes a measurement with one after the 
other (repetition of the first kind!) their two indicators are in one-to-one correspondence. 
In that case they measure essentially the same variable of the object - the same after 
appropriate mapping of the scales.  
 

§ 9. The ψ-Function as Description of the State. 
 

The rejection of realism also creates obligations. From the point of view of the classical 
model, the predictive content of the ψ−function is very incomplete, it contains only about 
50% of a complete description. From the new point of view, it must be complete, for 
reasons that have already been outlined in § 6. It must be impossible to add new correct 
statements without changing it otherwise.  If not, then one does not have the right to 
declare all questions which it cannot answer as meaningless.  
It follows that two different catalogues which are valid for the same system in different 
circumstances or at different times, can perhaps overlap but never in such a way that one 
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is entirely contained in the other. For otherwise it could be completed by additional 
statements, namely those in its complement. The mathematical structure of the theory 
satisfies this requirement automatically. There is no ψ−function  which contains the same 
statements as another and more besides. Therefore, when the ψ-function of a system 
changes, either by itself or through measurement, the new function must lack certain 
statements contained in the original. The catalogue cannot only have new entries, it must 
also have deletions.  But knowledge cannot not be forfeited. The deletions therefore infer 
that some previously correct statements have subsequently become false. A correct 
statement can only become false if the subject which it concerns has changed. I consider 
it indisputable to conclude the following: 
 Theorem 1. Different ψ-functions represent different states of a system.  
If one only considers systems for which there is a ψ−function, then the converse of this 
theorem can be formulated as: 
 Theorem 2. Identical ψ-functions represent the same state of a system. 
This converse does not follow from Theorem 1, but rather immediately from the 
completeness or maximality. If one were to still admit various possibilities for identical 
catalogues of expectations, this would be an admission that these do not provide an 
answer to all legitimate questions. Almost all authors assume that the above two theorems 
hold. They do construct a new kind of reality, completely legitimately, I believe. By the 
way, they are not trivial tautologies, simply new words for "state".  Without the 
assumption of maximality of the catalogue of expectations, the change in the ψ−function 
could have been caused by the gathering of new information.  
 
We have to counter another objection to Theorem 1.  All the statements or knowledge 
that we are dealing with here are in the form of probabilities, to which the designation 
right or wrong does not actually apply in individual cases, but rather in a collective which 
is formed when the system is prepared thousands of times in the same way  (followed by 
the same measurement, cf. § 8). That is true, but we have to declare all members of the 
collective to be similar since for each the same ψ−function applies, the same catalogue of 
statements, and we cannot make distinctions that are not included in the catalogue 
(compare the justification for Theorem 2). The individual cases in a collective are 
therefore all identical. When a statement about the collective is false, then the individual 
cases must also have changed; otherwise the collective would have remained the same. 
 

§ 10. Theory of Measurement. Part II. 
 

It has been said before (§ 7) and explained (§ 8) that every measurement suspends the law 
governing the steady change in time of the ψ-function, and brings about an entirely 
different change, which is not governed by a law but by the result of the measurement. 
However, it cannot be that during a measurement, other Laws of Nature hold than usual, 
because, objectively considered, a measurement is a natural phenomenon like any other 
and cannot interrupt the normal course of natural events. Since it interrupts that of the  y-
function, the latter  cannot serve as a provisional image of the objective reality as in the 
classical model. But in the last chapter, something like that has nevertheless crystallized.  
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I'll try once again, staccato-like, to contrast the two: 1.  The jumping of the catalogue of 
expectations is unavoidable, because, if the measurement is to make sense at all then the 
measured value must hold after the measurement.  2.  The jump-like change is definitely 
not governed by the normal causal law because it depends on the measured value, which 
is unpredictable.  3.  The change definitely entails a loss of knowledge (by maximality). 
But knowledge cannot be lost, so the subject must have changed - also during jump-like 
changes and for those also in an unpredictable manner, not as usual.  
 
How can we make sense out of this? Things are not so simple. It is the most difficult and 
most interesting point of the theory. We obviously have to grasp the interaction between 
the measurement object and the measurement instrument in an objective fashion. For this 
we have to begin with some very abstract considerations.  
 
It is as follows. When, for two completely separate bodies, more precisely for each 
individually, a complete catalogue of expectations - a maximal complement of 
knowledge − a ψ−function − is given, then it is obviously also given for the two together, 
i.e. if we consider them, not individually, but together as subject of our interest in 
formulating questions about the future1. But the reverse is not true. Maximal knowledge 
about the total system does not necessarily imply maximal knowledge about all its parts, 
not even when these parts are completely separated and cannot influence one another at 
the given time. It could be that part of the knowledge concerns relations between the two 
systems (we restrict ourselves here to two), as follows: when a certain measurement on 
the first system has a particular result then a measurement on the second has this or that 
statistics of expectations; if the same measurement has another result the second has a 
different expectation; for a third result, again another expectation holds for the second, 
etc. Thus one can go through the whole set of values that the given measurement on the 
first system could possibly produce. In this way, any particular measurement process, or 
equivalently any particular variable of the second system, can be linked to the as yet 
unknown value of a certain variable of the first, and vice versa of course.  
When this is the case, when the total catalogue contains such conditional statements, then 
it cannot be maximal w.r.t. the individual systems. For, the content of two maximal 
individual catalogues would already form a maximal catalogue for the two combined, 
there could not be additional conditional statements. 
 
By the way, these particular predictions are not sudden new additions to the theory. They 
exist in every catalogue of expectations. When the ψ-function is known, and a 
measurement is made, yielding a certain outcome, then the new ψ-function is again 
known; that is all. It is simply that, in the present case, when the total system consists of 
two separated parts, the matter seems unusual. For, as a result, it makes sense to 
distinguish between measurements on the first and measurements on the second 
subsystem. This gives each a rightful claim to their own private maximal catalogue. On 
the other hand, it remains possible that part of the obtainable information for the total 
system has been wasted, in a manner of speaking, on conditional statements linking the 
                                                 
1 Obviously.  We cannot have a shortage of statements about the relation between the two.  Because that 
would mean that something could be added to the ψ-function of at least one of the bodies. And that is not 
possible. 
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two subsystems - even though the total catalogue is maximal, that is, even though the ψ-
function of the total system is known. 
Let's hold on a minute. This conclusion, in all its abstraction, says it all: The best possible 
knowledge about the whole does not necessarily imply the same for its parts. If we 
translate this into the language of § 9 it reads: If the whole is in a definite state, the parts 
might not be.  
___  How come? A system must surely be in some state or other. 
=== No. A state is a ψ-function, its maximal amount of knowledge. I might not have 
obtained this, I might have been lazy. Then the system is in no definite state. 
___  OK. But then the agnostic ban on asking questions is not yet in force, and I could 
convince  myself in this case that the part system must be in some state or other even 
though I don't know it. 
===  Stop. Unfortunately not.  "I just don't know" does not exist because there is 
maximal knowledge about the total system. 
 
The insufficiency of the ψ-function as replacement of a model is based entirely upon the 
fact that one does not always possess it.  If one does, then it gives a good description of 
the state. But on occasions one does not have it, even though one might expect to. And in 
those cases one cannot postulate that "in truth it is well-defined, but we just don't know 
it". The established point of view forbids it. For, the ψ-function is a sum of knowledge, 
and knowledge that nobody knows is no knowledge. 
Let us continue. It can surely not happen that part of the knowledge floats between the 
two systems in the form of joint conditional statements if the two have been brought 
together from opposite ends of the Earth without interaction. Because then the two 
systems don't know anything about each other. A measurement on one can then 
impossibly give a clue about the other.  If an "entanglement of statements" exists then 
this can apparently only have come about if the two systems previously were in a proper 
sense one system, i.e. they interacted, and have left remnants on one another. When two 
separated bodies that each are maximally known come to interact, and then separate 
again, then such an entanglement of knowledge often happens. The combined catalogue 
of expectations consists initially of the logical sum of the two catalogues; during the 
interaction it develops deterministically according to a known law (there is no 
measurement taking place). The knowledge remains maximal, but the result is that, after 
the bodies have separated again, it cannot be split into a logical sum of knowledge about 
the individual bodies. What remains of the latter may have become very far below 
maximal. - Notice the big difference with the classical model theory, where for given 
initial states and known interaction, the final states are individually known.  
 
The measurement process described in § 8 falls exactly within this general scheme when 
it is applied to the total system of measurement object and measurement instrument. 
When making the same objective picture of this procedure as of any other, we might hope 
to clarify, if not do away with, the curious jumping of the ψ-function. One of the bodies 
is thus the measurement object, the other is the instrument. To avoid any external 
disturbance, we engineer it in such a way that the instrument automatically acts on the 
object and retracts from it at set times by means of an inbuilt clock. We delay the reading 
of the instrument, because we first want to investigate what happens "objectively". But 
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we make sure that the result is automatically registered by the instrument, as is 
commonly done nowadays. 
What is now the situation after the automatically executed measurement?  As before we 
possess a maximal catalogue of expectations for the total system. The registered 
measurement value is not part of it of course. With regard to the instrument, the catalogue 
is very incomplete therefore: it does not even tell us where the writing feather has left its 
traces. (Remember the poisoned cat !)  That is, our knowledge has been dissolved into 
conditional statements: if the marker is at number 1 then this or that holds for the 
measurement object, if it is at number 2, then this or the other, if at number 3 then 
something else again, etc. Did the ψ-function of the measurement object make a jump?   
Or has it evolved deterministically (according to the partial differential equation)?  
Neither. It ceased to exist. It has got entangled with that of the measurement instrument 
as a result of the deterministic law of the combined ψ-function. The catalogue of 
expectations of the object has split into a conditional division of catalogues, like a map 
that has been carefully dissected.  In addition, each section is given a probability for it to 
occur, derived from the original catalogue of the object. But which of the possibilities 
actually occurs, which part of the map is used for the onward journey, that can only be 
learnt by actual inspection.  
 
And if we do not inspect ?  Say, it has been registered photographically, and the film is 
exposed to light before it was developed. Or we inserted black paper instead of a film by 
mistake. Well, then we did not just learn nothing as a result of the failed experiment, we 
have actually lost information. That is not so surprising. Of course an external 
disturbance spoils the knowledge about a system. The disturbance has to be organised 
very carefully in order that it can later be recovered. 
 
What did we gain by this analysis? First of all an insight into the branched splitting of the 
catalogue of expectations, which happens entirely continuously by embedding into a 
combined catalogue of object and instrument. The object can only be resolved from this 
immersion if the living subject actually takes note of the measurement result. This will 
have to happen at some stage if we want to call the procedure a measurement - no matter 
how much we try to treat the whole process objectively. And that is the second insight 
that we have gained: Only after inspection, which decides which branch is taken, does 
something discontinuous, a jump, take place. One could call it a mental act, since the 
object has already been turned off, is no longer physically involved. What happened to it 
has passed. But it would not be correct to say that the ψ-function of the object now 
changes abruptly as a result of the mental act, while it otherwise changes according to a 
partial differential equation, independently of the observer. Because it had been lost, it 
was no more. That which does not exist cannot change. It is reborn, reconstituted from 
the entangled knowledge. It is resolved by an act of observation which is definitely not a 
physical disturbance of the object. There is no continuous route from the form in which 
the ψ-function was last known to the new form in which it re-emerges - it leads via 
annihilation. Contrasting the two forms, they appear as a jump. In fact, something 
important has happened in between, namely the interaction of the two bodies during 
which the object has no private catalogue of expectations, nor has it a right to one, as it is 
not independent. 
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§ 11. The Lifting of Entanglement. The Result Depends on the Will of the Experimenter. 
 

We return to the general case of entanglement, not just the special case of a measurement 
process. Suppose that the catalogues of expectations of two bodies A and B have been 
entangled as a result of interaction in the past. Then I can take one, say B, and complete 
my knowledge about it, which has become submaximal, by successive measurements. I 
claim that as soon as I have succeeded in doing this, and no sooner, the entanglement 
with A has been rescinded and, moreover, the measurements on B combined with the 
conditional statements allow us to obtain maximal knowledge of A as well.  
 
To see this, note first of all that the knowledge about the total system will remain 
maximal, as it will not be spoilt by good and accurate measurements.  Secondly, 
conditional statements of the form "when for A ... then for B ..."  no longer exist as soon 
as we have a maximal catalogue for B. For such a catalogue is not conditional, and 
nothing concerning B can be added to it.  Thirdly, conditional statements in the reverse 
direction  ("when for B ... then for A ...") can be converted into statements about A alone 
since all probabilities for B are already known unconditionally. The entanglement has 
therefore been completely removed. And since the knowledge about the total system has 
remained maximal, the only possibility is that the maximal catalogue for B is 
complemented by one for A.  
 
Nor can it happen that A has become maximal through measurements on B, while B is 
not yet maximal.  Because then all the above reasoning can be reversed, and it follows 
that B is also maximal. Both systems will be maximal at the same time, as claimed. 
Notice, by the way, that this would also be true if the measurements are not restricted to 
one of the two systems. Most interesting is, however, that one can restrict it to one of the 
two; that this already has the desired effect. 
 
Which measurements on B are used is entirely up to the experimenter. He does not need 
to use particular variables to be able to make use of the conditional statements. He can 
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simply make a plan to arrive at a maximal knowledge of B, even when he knew nothing 
about B. It is also no harm if he carries out this plan to the end. To save himself 
superfluous work, he might consider if he has already achieved his aim, however.  
 
Which A-catalogue is thus obtained depends of course on the measured values for B 
(before the entanglement has vanished completely; not on those of the superfluous 
measurements). Now suppose that in a certain case I have found a catalogue for A in this 
way. Then I can think and wonder if I might have found a different catalogue if I had 
used a different plan for measuring B. Since I did not touch A in the actual experiment 
nor in the imaginary experiment, the statements in the other catalogue must also be 
correct, whatever they are. They must also be entirely contained in the first, and vice 
versa. It must therefore be identical to the first.  
 
Strangely enough, the mathematical structure of the theory does not satisfy this condition 
automatically. Even stronger, one can construct examples in which this condition is 
necessarily violated. It is true that in each experiment, only one set of measurements can 
actually be performed (on B) after which the entanglement has vanished and one does not 
learn any more about A with further measurements on B. But there are types of 
entanglement for which there exist two specific measurement programmes for B such that  
1. the entanglement is lifted,  2.  the one leads to an A catalogue to which the other 
cannot possibly lead, no matter what values the measurements result in. The fact is that 
the two classes of A catalogues that can turn up in the one respectively the other 
programme, are purely separated and cannot have any element in common.  
 
Only in very special cases is the situation so clear. In general a more precise analysis is 
needed. Given two programmes for measurements on B and two sets of A-catalogues to 
which these can lead, the fact that the two sets have some elements in common is no 
reason to think that probably one of those will happen, so the condition is "probably 
satisfied". That is not enough. For, considered as measurement of the total system, the 
probabilities of all measurement outcomes for B are known, and after a large number of 
measurements, the corresponding frequencies of occurrence must establish themselves. 
The two sets of catalogues therefore must agree elementwise, and moreover the 
probabilities in the two sets must be the same.  And that holds not just for two 
programmes, but for the infinity of possible programmes. But this is not at all the case. 
The condition that the A catalogue obtained always be the same, whatever measurements 
on B have brought it about, is absolutely never satisfied.  
 
We will consider an suitable example below.  
 

§ 12. An Example2. 
 

For simplicity we consider two systems with only one degree of freedom, i.e. each is 
characterised by one coordinate variable q, and one canonically conjugate variable, the 
momentum p. The classical picture would be a point mass which can only move on a line 

                                                 
2 A. Einstein, B. Podolsky and N. Rosen, Phys. Rev. 47, 777 (1935). The appearance of this work was the 
impetus to the present - shall I say paper or general confession? 
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like a bead on an abacus. p is the product of the mass and the velocity.  For the second 
system we denote the corresponding variables by Q and P. Whether the two are threaded 
on the same string or not, will not concern us here. But, whatever the case may be, it may 
still be useful to assume that q and Q are zero at different points. The equality q = Q 
therefore does not necessarily mean that the two points coincide; the systems can still be 
completely separate. 
 
In the cited work it is shown that there can be an entanglement between the two systems 
at a certain moment in time, to which we constantly refer in the following, described by 
the equations  

q = Q and  p= − P. 
That is, I know that when a measurement of q is performed yielding a certain value, then 
an immediately executed Q-measurement will result in the same value and vice versa; 
and when a measurement of p is performed yielding a certain value, then an immediately 
executed P-measurement will result in the negative of that value and vice versa. One 
single measurement of q or p or Q or P lifts the entanglement and yields maximal 
knowledge about both systems. A second measurement on the same system affects only 
that system, not the other. The two identities can therefore not both be checked in the 
same experiment. But the measurement can be repeated a thousand times ab ovo; each 
time the same entanglement has to be reproduced and at will one or the other equality 
checked.  Every time the selected equality will be confirmed.  
 
Now suppose that in the thousand-and-first experiment, one decides not to do any more 
checks, but instead measures q on the first system and P on the other, and the results are  

q = 4;  P = 7. 
Is there then any doubt that for the first system, we have 
     q = 4;    p = −7;  
and for the second system 
     Q = 4;   P = 7 ? 
This cannot be fully verified in a single experiment, for that is never the case with 
quantum statements, but it is true nonetheless, because, whoever might have had doubts 
and decided to check anyway, could not be disappointed.  
 
This is undoubtedly true.  Each measurement is the first on its system, and measurements 
on separated systems cannot affect one another directly, that would be magic. It cannot be 
pure luck either when a thousand experiments show that fresh measurements must 
coincide. 
 
The catalogue of expectations  q=4, p=−7  would of course be hypermaximal. 
 
§ 13. Continuation of the Example: All Possible Measurements are Uniquely Entangled.  

 
In fact, according to Q.M., which we examine in all detail here, a prediction of this kind 
is not possible. Many of my friends have passified themselves with this and declare: what 
a system would have told an experimenter if ....., has nothing to do with a real 
measurement, and, from our knowledge-theoretical point of view, is of no consequence.  
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But let us make the situation absolutely clear.  Let us concentrate the attention on the 
system with variables given by small letters q and p, and call it the "small system". It is as 
follows. I can ask the small system, through direct measurement, one of two questions, 
either about q or about p. Before doing so, I may decide to obtain the answer to one of 
these questions by measurement on the other, fully separate system (to be considered as 
auxiliary apparatus). Alternatively, I may have the intention to do so later. The small 
system, like a pupil at an exam, cannot possibly know whether I did so and for which 
question, or for which one I intend to do so later.  From arbitrarily many previous 
experiments, I know that the pupil will always answer the first question I ask him 
correctly.  It follows that he knows the answer to both!  The fact that answering this first 
question makes the pupil so tired or confused that his subsequent answers are worthless, 
does not change this conclusion. No secondary school master would, when this scenario 
is repeated with thousands of pupils of equal ability, come to any other conclusion, much 
as he might wonder what makes these pupils so stupid or forgetful after answering the 
first question. He would not think that the fact that he looked up the answer in a 
handbook himself would have suggested it to the pupil, or indeed, that if he looked it up 
after the pupil gave an answer, the text in the pupil's notebook would have changed in the 
pupil's favour.  
 
The small system must therefore have a definite answer ready for both the q-question and 
the p-question, just in case it is the first I am posing directly.  This readiness cannot be 
affected one little bit by any measurement I might make on the auxiliary system (in the 
analogy: that the teacher looks up the question in his notebook and in doing so spoils the 
other side, where the other answer is, by an inkblot). Advocates of quantum mechanics 
claim that after a Q-measurement on the auxiliary system, the small system will have a 
ψ-function in which "q  is sharply defined but p is completely undetermined". And yet, as 
we said before, this has not changed one little bit the fact that the small system also has a 
definite answer ready  for the p-question, namely the same as before. 
 
 
The matter is in fact even more serious. Not only to the q-question and the p-question 
does the pupil have a definite answer ready, but also to thousands of other questions. And 
this without us being able to understand the mnemonics with which he achieves this feat.  
p and q are not the only quantities that can be measured. Any combination like  

p2 + q2  
also corresponds to a particular measurement according to Q.M. Now, it can be shown3 
that for this variable the answer can also be determined by a measurement on the 
auxiliary system, namely   P2 + Q2 , and the answers are in fact equal. According to the 
rules of Q.M., this sum of squares can only take a value from the sequence 

h,  3 h,  5 h,  7 h,  ........... 
The answer that my small systems has ready for the (p2 + q2 )-question (in case it is the 
first one to be answered), must also be a number from this sequence.  − The same holds 

                                                 
3 E. Schrödinger, Proc. Cambridge Philos. Soc. 31, 555 (1935). 
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for the measurement of  
p2 + a2 q2 , 

where a is an arbitrary positive constant. In this case the answer must be a number from 
the sequence 

a h,  3 a h,  5 a h,  7 a h,  ........... 
For each value of a  we get a new question, and for each of these our small system has an 
answer ready from the appropriate sequence.  
 
The remarkable thing is that these answers cannot possibly be related in the way 
suggested by these formulas !  For, suppose that q' is the answer for the q-question and p' 
that for the p-question, then  

      

p' 2+ a2 q' 2

a h
   an odd integer=

 
  
 

can impossibly be true for given values of  p' and q'  and all arbitrary positive numbers a. 
This is not just an operation with fictitious numbers, which one cannot actually obtain. 
Two of these numbers, e.g.  q'  and p',  can be obtained; one by direct measurement, the 
other by indirect measurement. And then one can convince oneself that the above 
expression with arbitrary a, is not an odd integer.  
 
The lack of insight into the relation between the different prepared answers (the 
mnemonics of the pupil) is total, it cannot be resolved by a new type of algebra for Q.M.  
It is all the more disconcerting because one can prove on the other hand that the 
entanglement is fully determined by the two relations q = Q and  P = - p.  When we 
know that the coordinates are equal and the momenta are opposite, then there follows 
quantum mechanically a very definite one-to-one correspondence between all possible 
measurements of the two systems. For each measurement on the "small" system one can 
obtain the measured value by a measurement on the "large" system, and each 
measurement on the large system gives immediate information about the result of a 
particular measurement on the small system, which may or may not have been performed 
already  (of course always in the same sense: only virgin measurements on both systems 
count).  As soon as the two systems have been prepared in a state such that  (broadly 
speaking) coordinates and momenta agree, then all other variables also agree (broadly 
speaking).  
 
But we do not know how all these variables hang together in one system, even though the 
system must have a very definite value ready for each: for we can, if we wish, get 
practical knowledge of it from the auxiliary system and have it confirmed by direct 
measurement.  
 
Should we now conclude that, since we do not know anything about the relation between 
the values of variables in one system, that no such relation exists; i.e. that arbitrary 
combinations can occur?  That would mean that such a system, with only one degree of 
freedom, would need not just two numbers for its complete description, as in classical 
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mechanics, but many more, perhaps infinitely many. But then it is hardly likely that two 
systems for which two variables are the same, agree automatically on all others. One 
would have to also assume therefore that this is due to our clumsiness; that we are in 
practice unable to bring two systems into a situation in which they agree in two variables 
without nolens volens also making all other variables equal, although this would in 
principle not be necessary.  These two assumptions would have to be made in order not to 
be embarrassed by the lack of understanding of the relation between the values of 
variables within one system. 
 
 

§ 14. The Time-Evolution of Entanglement. Objections to the Special Role of Time. 
 

One might need to be reminded that everything that was said in Chapters 12 and 13 
concerned a single moment in time. Entanglement is not constant in time. Although it 
remains a one-to-one entanglement of all variables, the particular relations vary. That 
means the following. At a later time one can still get to know the values of q or p by a 
measurement on the auxiliary system, but these are in general different measurements. 
Which measurements they are can in simple cases be easily seen. Of course, this depends 
on the forces operating within both systems. Let us assume that there are no forces. For 
simplicity we assume that the masses of both systems are equal, denoted by m. In the 
classical model, the momenta p and P would remain constant as they are the velocities 
multiplied by the mass; and the coordinates at time t, which we denote by a subscript t,  
(qt , Qt ), would be related to the initial values q and Q as follows: 

qt = q + (p/m) t  
 

Qt = Q + (P/m) t . 
 
Let us first discuss the small system. The most natural way to describe it classically at 
time t is in terms of the coordinate and momentum at this time, i.e. by qt  and p. But one 
can also do it differently. One can replace qt  by q.   q is also a determining element at 
time t, and even at every time t, and in fact one that does not change in time. This is 
similar to a certain determining element of my own person, namely my age, which can be 
given as the number 48, which changes in time and corresponds to qt  for the system, or 
by the number 1887, which is usual in official documents and corresponds to q. Now, by 
the above equations, 

q = qt  - (p/m) t . 
A similar relation holds for the second system.  We therefore take as determining 
elements  

for the first system     qt  - (p/m) t   and  p 
for the second system      Qt  - (P/m) t   and  P. 

 
The advantage is that between these constantly the same entanglement persists: 

 qt  - (p/m) t  =  Qt  - (P/m) t  
p = - P,  

or, equivalently, 
 qt  = Qt  - 2 (P/m) t   ;   p = - P. 
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What changes in time is therefore simply this: the coordinate of the small system is not 
simply determined by a coordinate measurement on the auxiliary system, but by a 
measurement of the aggregate quantity 

Qt  - 2 (P/m) t. 
 
One must not think that this means a measurement of  Qt  and P, for that is impossible, 
remember. Instead, one has to imagine, as usual in Q.M., that there exists a direct 
measurement apparatus for this combination. For the rest, everything that was said in 
Chapters 12 and 13 holds for every point in time modulo this adjustment.  In particular, 
the one-to-one entanglement of all variables at every time, with its nasty consequences.  
 
The same holds when within each system a force operates, but in that case qt  and p are 
entangled with more complicated combinations of Qt  and P.  
 
I explained all this briefly so that we can consider the following.  The fact that the 
entanglement changes in time gives us food for thought.  Do all measurements that we 
talked about have to be performed instantaneously to justify all the arguments?  Could we 
perhaps exorcise the ghost by the remark that all measurements take time?  No. For there 
is only one measurement needed on each system; only the first one counts, subsequent 
ones are anyway irrelevant. How long the measurement takes need also not concern us, as 
we do not intend to follow up with a second. We only have to organise the measurements 
in such a way that they give us the values of the variables at the same, previously known, 
point in time, because we have to direct the measurements to a pair of variables which is 
entangled at the given point in time.  
__  Perhaps it is not possible to organise the measurements in this way? 
==  Perhaps.  I even suspect so.  But: the present theory of Q.M. must require it. Because 
it has been so constructed that its predictions always refer to a particular point in time. 
Since these predictions are about measurement values, they would make no sense if the 
corresponding variables could not be measured at a particular time, irrespective of how 
long the measurement itself might take.  
 
It does not matter, of course, when we actually get to know the result. That is 
theoretically of as little importance as the fact that it takes several months to integrate the 
differential equation for the weather of the next three days.  The drastic comparison with 
the school exam is, taken literally, inaccurate in several respects, but in spirit it is correct.  
The expression "the system knows" perhaps no longer means that the result follows from 
the situation at one moment in time, but rather is created from a succession of situations 
within a finite stretch of time. But even if that were the case, it need not worry us as long 
as the system can somehow create the answer without any help other than that we tell it 
which question we wish to have answered; and when the answer itself refers to a definite 
point in time. This has to be assumed, good or bad, for every measurement in the present 
theory of Q.M; otherwise the quantum mechanical predictions would have no meaning.  
 
However, we have hit upon  a new possibility in our discussion. If we could implement 
the idea that the quantum mechanical predictions do not refer to, or do not always refer to 
a definite point in time, then this would not be required for measurements either. The 
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composition of counter intuitive statements would then be much more difficult as the 
entangled variables change in time.  
 
The sharp definition in time of quantum predictions is also for other reasons probably 
mistaken. The time variable is, like any other, the result of a measurement. Can the 
measurement with a clock be given an exceptional status?  Should it not be like any other 
variable, which in general does not have a sharp value, at least not together with any 
arbitrary other variable?  When the value of another variable is predicted at a definite 
point in time, would it not be more reasonable if both were in fact inaccurate?  Within the 
present Q.M. this suspicion can hardly be investigated. Because the time is a priori 
considered to be constantly accurate even though one has to admit that every time one 
looks at the clock, its motion will be disturbed in an uncontrollable way.  
 
I would like to repeat that we do not have a Q.M. whose predictions do not hold for a 
well-defined point in time. It seems to me that this shortcoming comes to the fore in 
exactly the above problems. Which is not to say that it is the only trouble with these 
problems.  
 

§ 15. Law of Nature or Computational Trick? 
 

The last few years I have constantly pointed out4  the fact that the "precise time" is a 
contradiction within Q.M., and moreover, that the special status of time is a serious 
obstacle to adjusting Q.M. to the relativity principle.  Unfortunately without a shadow of 
a useful counter proposition.  In assessing the whole present situation, as I have tried to 
describe it here, another remark comes to mind about the very sought-after, but not yet 
really attained  "relativisation" of Q.M. The strange theory of measurement, the apparent 
jumping of the ψ-function, and finally the counter intuitive entanglement, all arise from 
the simple way in which the calculational apparatus of Q.M. allows two separate systems 
to be mentally combined into one, and for which it seems to be predestined. We have 
seen that, when two systems start to interact, their ψ-functions do not start to interact, but 
instead they cease to exist and a new ψ-function for the total system takes their place. 
Briefly, it consists initially of the product of the two individual functions. Since these 
functions depend on entirely different variables, the product function depends on all these 
variables; it exists in a space of much higher dimension than the individual functions. As 
soon as the systems start to interact, the total function will no longer be a product, and 
also after the systems have separated, does not decompose into factors corresponding to 
the individual systems. As a result, one temporarily (until the entanglement is lifted by an 
actual measurement) only possesses a composite description of both in this region of high 
dimension. That is the reason why the knowledge of the individual systems can be 
reduced to the essential, yes even zero, while that of the total system remains maximal. 
Best possible knowledge of the total does not imply best possible knowledge of its parts - 
and that is at the root of the whole problem. 
 
                                                 
4 Berliner Ber., 16 April 1931; Ann. Inst. Poincare, p. 269 (Paris 1931); Cursos de la universidad 
internacional de verano en Santander, 1, p. 60 (Madrid, Signo, 1935). 
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When thinking about it, the following matter does make one wonder. The imagined act of 
combining two or more systems into a single one leads to great problems as soon as one 
tries to introduce the special principle of relativity into Q.M. The problem of a single 
relativistic was solved by  P. A. M. Dirac5 already seven years ago,  in a remarkably 
simple and elegant way.  A number of experimental confirmations, indicated by the 
headwords electron spin, positive electron and pair creation, leave no doubt about the 
essential correctness of this solution.  But, first of all, it is goes very much beyond the 
current scheme6 of Q.M. (the one that I have tried to describe here), and secondly, it runs 
into strong resistance as soon as one tries to fathom the problem of more than one 
electron, using the nonrelativistic theory as an example. (That already shows that the 
solution lies outside the general scheme, for in this scheme the combination of 
subsystems is very simple, as we have seen.)  I do not claim to have an opinion about the 
attempts made in this direction7. However, I do not think they have attained their goal, 
especially since the authors themselves do not claim this.  
 
The situation is similar with another system, namely the electromagnetic field.  Its laws 
are "the embodiment of relativity theory", a nonrelativistic treatment is not even possible.  
All the same, it was this field which was the first to be quantized.  As classical model of 
thermal radiation, it gave the first impetus to the development of the quantum theory.  
That this could be done by simple means is due to the fact that it is slightly easier here 
because the photons, the "atoms of light", do not interact directly with one another at all, 
but only through the medium of charged particles8. Nevertheless, we still don't have a 
truly consistent quantum theory of the electromagnetic field9. It is true that one can get a 
long way by building it up from subsystems in the mold of nonrelativistic theory  (Dirac's 
theory of light10), but it is not complete.  
Perhaps, the simple procedure of the nonrelativistic theory is only a convenient 
calculational trick, but it has at the moment attained a tremendous influence over our 
basic view of Nature.  
 
With warm gratitude I acknowledge Imperial Chemical Industries Limited, London, for 
giving me the courage to complete this paper. 
                                                 
5 Proc. Roy. Soc. London, A 117, 610 (1928). 
6 P. A. M. Dirac, The principles of quantum mechanics, 1st Ed., p. 239;  2nd Ed., p. 252. Oxford: 
Clarendon Press 1930, resp. 1935. 
7 Here are some important references to the literature: G. Breit, Phys. Rev. 34, 553 (1929) and 616 (1932). 
- C. Møller, Z. Physik 70, 786 (1931). - P. A. M. Dirac, Proc. Royal Soc. London, A 136, 453 (1932) and 
Proc. Cambridge Philos. Soc. 30, 150 (1934). - R. Peierls, Proc. Royal Soc. London, A 146, 420 (1934). - 
W. Heisenberg, Z. Physik 90,  209 (1934). 
8 This is probably only approximately true. Cf. M. Born and L. Infeld, Proc. Royal Soc. London, A 144, 
425 and 147, 522 (1934); 150, 141 (1935). This is the most recent attempt at a quantum electrodynamics.  
 
9 Here again some of the most important works, they belong partly also to the previous citation: P. Jordan 
and W. Pauli, Z. Physik 47, 151 (1928). - W. Heisenberg and W. Pauli, Z. Physik 56, 1 (1929); 59,  168 
(1930). - P. A. M. Dirac, V. A. Fock and B. Podolsky, Phys. J. Sov. Union 6, 468 (1932). - N. Bohr and L. 
Rosenfled, Danske Vidensk. Selskab, math.-phys. Med. 12, 8 (1933). 
 
10 A suitable reference: E. Fermi, Rev. Mod. Phys. 4, 87 (1932). 
 


