
7. On the theory of the Energy Distribution Law 
of the Normal Spectrum20 

by M. Planck 

(read at the meeting of 14 December 1900) 
(cf. above p. 235)20a 

Gentlemen: when some weeks ago 1 had the honour to draw 
your attention to a new formula which seemed to me to be 
suited to express the law of the distribution of radiation energy 
over the whole range of the normal spectrum,* 1 mentioned 
already then that in my opinion the usefulness of this equation 
was not based only on the apparently close agreement of the 
few numbers, which I could then communicate to you, with 
the available experimental data,t but mainly on the simple21 

structure of the formula and especially on the fact that it 
gave a very simple logarithmic expression22 for the dependence 
of the entropy of an irradiated monochromatic vibrating 
resonator on its vibrational energy. This formula seemed to 
promise in any case the possibility of a general interpretation 
much better than other equations which have been proposed, 
apart from Wien's formula which, however, was not confirmed 
by experiment. 

Entropy means disorder, and 1 thought that one should find 
this disorder in the irregularity with which even in a completely 
stationary radiation field the vibrations of the resonator change 
their amplitude and phase, as long as one considers time inter­
vals long compared to the period of one vibration, but short 
compared to the duration of a measurement. The constant 
energy of the stationary vibrating resonator can thus only be 
considered to be a time average,24 or, put differently, to be an 
instantaneous average of the energies of a large number of 
identical resonators which are in the same stationary radiation 
field, but far enough from one another not to influence each 
other directly. Since the entropy of a resonator is thus deter­
mined by the way in which the energy is distributed at one 
time over many resonators, I suspected that one should evaluate 

* M. Planck, Verh. D. Phys. Ges. 2, 202 (1900). 
t In the meantime Mr. H. Rubens and Mr. F. Kurlbaum have given a 

direct confirmation for very long wave lengths. (S.B. Kdnigl. Preuss. Akad. 
Wiss. of 25 October, p. 929 (1900).)23 
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this quantity by introducing probability considerations into 
the electromagnetic theory25 of radiation, the importance of 
which for the second law of thermodynamics was originally 
discovered by Mr. L. Boltzmann.* This suspicion has been 
confirmed; 1 have been able to derive deductively an expression 
for the entropy of a monochromatically vibrating resonator 
and thus for the energy distribution in a stationary radiation 
state, that is, in the normal spectrum. To do this it was only 
necessary to extend somewhat the interpretation of the 
hypothesis of "natural26 radiation" which has been introduced 
by me into electromagnetic theory. Apart from this I have 
obtained other relations which seem to me to be of considerable 
importance for other branches of physics and also of chemistry. 

1 do not wish to give today this deduction—which is based 
on the laws of electromagnetic radiation, thermodynamics and 
probability calculus—systematically in all details, but rather to 
explain to you as clearly as possible the real core of the theory. 
This can probably be done most easily by describing to you a 
new, completely elementary treatment through which one can 
evaluate—without knowing anything about a spectral formula 
or about any theory—the distribution of a given amount of 
energy over the different colours of the normal spectrum using 
one constant of nature only and after that also the value of the 
temperature of this energy radiation using a second constant of 
nature. You will find many points in the treatment to be 
presented arbitrary and complicated, but as I said a moment 
ago I do not want to pay attention to a proof of the necessity 
and the possibility to perform it easily and practically, but to 
the clarity and uniqueness of the given prescriptions for the 
solution of the problem. 

Let us consider a large number of linear, monochromatically 
vibrating resonators—N of frequency v (per second),28 N' of 
frequency v, N" of frequency v"',..., with all N large numbers— 
which are properly separated and are enclosed in a diathermic27 

medium with light velocity c and bounded by reflecting walls. 
Let the system contain a certain amount of energy, the total 
energy £",(erg) which is present partly in the medium as 
travelling radiation and partly in the resonators as vibrational 

* L. Boltzmann, especially S.B. Kais. Ak. Wiss. Wien II, 76, p. 373 (1877 
= 1878]). 
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energy. The question is how in a stationary state this energy is 
distributed over the vibrations of the resonators and over the 
various colours of the radiation present in the medium, and 
what will be the temperature of the total system. 

To answer this question we first of all consider the vibrations 
of the resonators29 and try to assign to them certain arbitrary 
energies, for instance, an energy E to the N resonators v, E' to 
the N' resonators v , ... . The sum 

E+E' + E" + ... = E0 

must, of course, be less than Et. The remainder Et — E0 

pertains then to the radiation present in the medium. We must 
now give the distribution of the energy over the separate 
resonators of each group, first of all the distribution of the 
energy E over the N resonators of frequency v. If E is con­
sidered to be a continuously divisible quantity, this distribution 
is possible in infinitely many ways. We consider, however— 
this is the most essential point of the whole calculation—E to 
be composed of a well-defined number of equal parts and use 
thereto the constant of nature /? = 6-55 x 10~27 erg sec.30 This 
constant multiplied by the common frequency v of the 
resonators gives us the energy element31 e in erg, and dividing 
E by e we get the number P of energy elements which must be 
divided over the TV resonators. If the ratio thus calculated is 
not an integer, we take for P an integer in the neighbourhood.32 

It is clear that the distribution of P energy elements over N 
resonators can only take place in a finite, well-defined number 
of ways. Each of these ways of distribution we call a "com­
plexion",33 using an expression introduced by Mr. Boltzmann 
for a similar concept. If we denote the resonators by the 
numbers 1, 2, 3, ..., N, and write these in a row, and if we 
under each resonator put the number of its energy elements, 
we get for each complexion a symbol of the following form 

1 2 3 4 5 6 7 8 9 10 

7 38 11 0 9 2 20 4 4 5 

We have taken here 7V= 10, P= 100. The number of all possible 
complexions is clearly equal to the number of all possible sets of 
numbers which one can obtain in this way for the lower 
sequence for given N and P. To exclude all misunderstandings, 
we remark that two complexions must be considered to be 
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different if the corresponding sequences contain the same 
numbers, but in different order. From the theory of permuta­
tions we get for the number of all possible complexions 

N(N+l).(N+2) ... (N+P-\)_(N + P-1)\ 
1 . 2 . 3 ...P (/V-1)LP! 

or to a sufficient approximation,34 

__(N+P)N+P 

NNPP ' 

We perform the same calculation for the resonators of the 
other groups, by determining for each group of resonators the 
number of possible complexions for the energy given to the 
group. The multiplication of all numbers obtained in this 
way gives us then the total number R of all possible com­
plexions for the arbitrarily assigned energy distribution over all 
resonators. 

In the same way any other arbitrarily chosen energy distri­
bution35 E, E', E", ... will correspond to the number R of all 
possible complexions which must be evaluated in the above 
manner. Among all energy distributions which are possible 
for a constant E0=E+E' + E"+... there is one well-defined 
one for which the number of possible complexions R0 is larger 
than for any other distribution. We then look for this energy 
distribution, if necessary by trial, since this will just be the 
distribution taken up by the resonators in the stationary 
radiation field, if they together possess the energy E0. The 
quantities E, E', E", ... can then be expressed in terms of one 
single quantity E0. Dividing E by N, E' by N', ... we obtain 
the stationary value of the energy U„, Uv', [/,/', ... of a single 
resonator36 of each group, and thus also the spatial density of 
the corresponding radiation energy in a diathermic medium 
in the spectral range v to v + dv,31 

uv dv = — . Uv dv, 
c6 

so that the energy of the medium is also determined. 
Of all quantities which occur only E0 seems now still to be 

arbitrary. One sees easily, however, how one can finally 
evaluate E0 from the given total energy E„ since if the chosen 
value of E0 leads, for instance, to too large a value of E„ we 
must decrease it appropriately, and the other way round.38 
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After the stationary energy distribution is thus determined 
using a constant h, we can find the corresponding temperature 
i? in degrees absolute* using a second constant of nature 
k= 1-346 x 10"16 erg degree -1 through the equation 

1 d In R0 

& dE0 ' 

The product k In R0 is the entropy39 of the system of resona­
tors; it is the sum of the entropy of all separate resonators. 

It would, to be sure, be very complicated to perform 
explicitly the above-mentioned calculations, although it would 
not be without some interest to test the truth of the attainable 
degree of approximation in a simple case. A more general 
calculation which is performed very simply, using exactly the 
above prescriptions shows much more directly40 that the 
normal energy distribution determined in this way for a medium 
containing radiation is given by the expression41 

8 T 7 « V 3 d v • 

uvdv = -

which corresponds exactly to the spectral formula which I 
gave earlier 

CjA" 5 

Ex dX = — dX. 

The formal differences are due to the differences in the 
definitions of uv and Ex.. The first formula is somewhat more 
general inasfar as it is valid for an entirely arbitrary diathermic 
medium with light velocity c. I calculated the numerical values 
of h and k which I mentioned from that formula using the 
measurements by F. Kurlbaum and by O. Lummer and 
E. Pringsheim.t 

I shall now make a few short remarks about the question of 
the necessity of the above given deduction. The fact that the 
chosen energy element c for a given group of resonators must 
be proportional to the frequency v follows immediately from 

* The original states "degrees centigrade" which is clearly a slip 
[D. t. H.]. 

t F. Kurlbaum {Ann. Phys. 65 [ = 301], 759 (1898)) gives SlQo~S0 

= 0-0731 Watt cm - 2 , while O. Lummer and E. Pringsheim (Verh. Deutsch. 
Physik Ges. 2, 176 (1900)) give A,„r> = 2940 /* degree. 
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the extremely important so called Wien displacement law.42 

The relation between u and U is one of the basic equations of 
the electromagnetic theory of radiation. Apart from that, the 
whole deduction is based upon the single theorem that the 
entropy of a system of resonators with given energy is pro­
portional to the logarithm of the total number of possible 
complexions for the given energy. This theorem can be split 
into two other theorems: (1) The entropy ol the system in a 
given state is proportional to the logarithm of the probability 
of that state, and (2) The probability of any state is proportional 
to the number of corresponding complexions, or, in other 
words, any given complexion is equally probable as any other 
given complexion. The first theorem is, as far as radiative 
phenomena are concerned, just a definition of the probability 
of the state, insofar as we have for energy radiation no other 
a priori way to define the probability than the determination 
of its entropy. We have here one of the distinctions43 from 
the corresponding situation in the kinetic theory of gases. The 
second theorem is the core of the whole of the theory presented 
here: in the last resort its proof can only be given empirically. 
It can also be understood as a more detailed definition of the 
hypothesis of natural radiation which I have introduced. This 
hypothesis I have expressed before only in the form that the 
energy of the radiation is completely "randomly" distributed 
over the various partial vibrations present in the radiation.* 
I plan to communicate elsewhere in detail the considerations, 
which have only been sketched here, with all calculations and 
with a survey of the development of the theory up to the 
present. 

* M. Planck, Ann. Phys. 1 [ = 306], 73 (1900). When Mr. W. Wien in 
his Paris report (Rapports II, p. 38, 1900) about the theoretical radiation 
laws did not find my theory on the irreversible radiation phenomena 
satisfactory since it did not give the proof that the hypothesis of natural 
radiation is the only one which leads to irreversibility, he surely demanded, 
in my opinion, too much of this hypothesis. If one could prove the 
hypothesis, it would no longer be a hypothesis, and one did not have to 
formulate it at all. However, one could then not derive anything 
essentially new from it. From the same point of view one should also 
declare the kinetic theory of gases to be unsatisfactory since nobody has 
yet proved that the atomistic hypothesis is the only one which explains 
irreversibility. A similar objection could with more or less justice be 
raised against all inductively obtained theories. 
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To conclude I may point to an important consequence of 
this theory which at the same time makes possible a further 
test of its admissibility. Mr. Boltzmann* has shown that the 
entropy of a monatomic gas in equilibrium is equal to coRlnP0, 
where P0 is the number of possible complexions (the "permut-
ability") corresponding to the most probable velocity distri­
bution, R being the well known gas constant (8-31 x 107 for 
0 = 16), w the ratio of the mass of a real molecule to the mass 
of a mole, which is the same for all substances. If there are any 
radiating resonators present in the gas, the entropy of the 
total system must according to the theory developed here be 
proportional to the logarithm of the number of all possible 
complexions, including both velocities and radiation. Since, 
however, according to the electromagnetic theory of radiation 
the velocities of the atoms are completely independent of the 
distribution of the radiation energy, the total numbers of 
complexions is simply equal to the product of the numbers 
relating to the velocities and the number relating to the 
radiation. For the total entropy we have thus 

f In (P0R0) = f In P0 + f In R0, 
where/is a factor of proportionality. The first part of the sum 
is the kinetic, the second part the radiation entropy. Com­
paring this with the earlier expressions we find 

f=<aR=k, 
k 

or co = - = l - 6 2 x l 0 - 2 4 , 

that is, a real molecule is 1 -62 x 10~24 of a mole, or, a hydrogen 
atom weighs44 T64x 10~24 g, since H = 1-01, or, in a mole of 
any substance there are l/cu = 6T75 x 1023 real molecules.45 

Mr. O. E. Meyerf gives for this number 640 xlO2 1 which 
agrees closely.45 

Loschmidt's number L, that is, the number of gas molecules 
in 1 cm3 at 0°C and 1 atm is46 

, 1 013 200 
R . 273 . to 

Mr. Drudet finds L = 2-l x 1019 

= 2-76 xlO1 9 . 

* L. Boltzmann, S.B. Kais. Akad. Wiss. Wien II, 76,428 (1877 [= 1878]). 
t O. E. Meyer, "Die kinetische Theorie der Gase" 2nded.,p. 337(1899). 
X P. Drude, Ann. Phys. 1 [=306], 578 (1900). 
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The Boltzmann-Drude constant a, that is, the average kinetic 
energy of an atom at the absolute temperature 1 is 

a = fa)jK = fAi = 2-02x \0~i6. 

Mr. Drude* finds a = 2-65x lO"16 . 
The elementary quantum of electricity e, that is, the electrical 

charge of a positive monovalent ion or of an electron is, if 
e is the known charge of a monovalent mole,47 

e = e a j = 4-69xl0- ! Oe.s.u. 

Mr. F. Richarzf finds l-29x l f r 1 0 and Mr. J. J. Thomson:! 
recently 6-5 xlO" 1 0 . 

If the theory is at all correct, all these relations should be not 
approximately, but absolutely, valid.48 The accuracy of the 
calculated numbers is thus essentially the same as that of the 
relatively worst known, the radiation constant k, and is thus 
much better than all determinations of those quantities up to 
now. To test it by more direct methods should be both an 
important and a necessary task for further research. 

* loc. cit. 
t F. Richarz, Ann. Phys. 52 [=288], 397 (1894). 
X J. J. Thomson, Phil. Mag. (5)46, 528 (1898). 
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