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ON THE HYDROGEN SPECTRUM 

FROM THE STANDPOINT OF THE 
NEW QUANTUM MECHANICS

W. PAULI JR

I t  is shown that the Balmer terms of an atom with a single electron are yielded 
correctly by the new quantum mechanics and that the difficulties (particularly 
evident in the case of crossed fields) which arose in the earlier theory through 
the extra prohibition of singularities in the motion, disappear in the new theory. 
The influence of external electric and magnetic fields of force, too, on the 
hydrogen spectrum is discussed from the standpoint of the new quantum 
mechanics. However, relativistic corrections have not been taken into account 
and the calculation of transition probabilities (intensities) has for the present 
been omitted from consideration.

1. The fundamentals of the new quantum mechanics
Heisenberg1 has recently published a formulation of the principles of 
quantum theory which represents a considerable advance over the 
previous theory of multiply-periodic systems. Heisenberg’s form of 
quantum theory completely avoids a mechanical-kinematic visual­
ization of the motion of electrons in the stationary states of an atom. 
Apart from time averages of classical kinematic quantities, only 
harmonic partial vibrations are introduced, which are associated with 
each transition between two stationary states and which are directly 
related to the spontaneous transition probabilities of the system. If

xm =  am exP [> i(r“f +  <$“ )] 
is the partial vibration of the Cartesian coordinate x of a given electron 
in an atom, associated with the transition from a state n to another 
state m, then it contributes an amount

hvn
2

~3
Editor’s note. This paper was published as Zs. f. Phys. 36 (1926) 336-363. 
i  W. Heisenberg, Zs. f. Phys. 33 (1925) 879.
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to the value of the coefficient of the spontaneous emission probability 
belonging to this transition. Whereas in the earlier theory this 

relation could, according to the correspondence principle, be regarded 
only as asymptotically valid in the limit of large quantum numbers, 
it can now be taken as a universally valid definition of the amplitudes 
Xn. More generally, the partial vibrations assigned to each of the 
transition processes are physically defined by the intensity and 
polarization of the emitted radiation. These partial vibrations however 
can no longer be combined into definite ‘orbits’ of the atomic electrons, 
since they are assigned to transition processes, and not to stationary 
states.

Heisenberg’s formulation of the quantum theory was further 
extended by Bom and Jordan,1 Dirac,2 and Bom, Heisenberg and 
Jordan.3 A consistent mathematical system thus ensued, in which all 
relations formerly taken from classical mechanics were replaced by 
analogously constmcted quantum-theoretical relations between the 
time averages x* and the partial vibrations x” of the coordinates 
of each of the atomic particles. In order to formulate these relations, 
it proved convenient to assign a matrix to each classical kinematic 
quantity x. The diagonal terms of such a matrix are the time averages 
x* belonging to the individual stationary states, and the (n, w) and 
(ra, n) elements (wth row, rath column, and rath row, «th column, 
respectively) are complex conjugate vibrations

The harmonic vibration x™ belongs to the transition from ra to n and 
the harmonic vibration x* to the reverse transition from n to ra, so 
that one of these transitions betokens an emission, and the other an 
absorption.

To the time derivative x we assign the matrix whose individual 
elements are time derivatives of the corresponding elements of the 
matrix x, i.e.,

1 M. Bom and P. Jordan, Zs. f. Phys. 34 (1925) 858.
2 P. A. M. Dirac, Proc. Roy. Soc. 109 (1925) 642.
3 M. Bom, W. Heisenberg and P. Jordan, Zs. f. Phys. 35 (1926) 557; hereafter 
quoted as 'Quantenmechanik I I ’.

(3)



16 T H E  H Y D R O G E N  S P E C T R U M 389

In particular, we have 0, i.e., the diagonal terms of x vanish. 
Since v™= — v", it also follows that i ” and x™ are conjugate complex 
(the matrices are Hermitian in character). To the energy E we have to 
assign a diagonal matrix, i.e., one whose off-diagonal terms vanish. 
The energy value of the quantum state characterized by the index n 
is given by £ „ = £ " , whence follows the frequency condition,

hv “ = E»n - E Z ,  (I)

in agreement with the above prescription v” = —r” , v”= 0.
The essential point, as stressed by Heisenberg, lies in the fact that 

the multiplication of two matrices x and y has now acquired a proper 
meaning, in view of the frequency condition. The product xy of the 
two matrices x and y is defined by

(*y)m =  2  (4)i
From (I) follows the combination rule

v? +  vlm =  C  (5)

and therefore the quantity (x y indeed again represents a harmonic 
vibration of frequency , if xf and ylm are harmonic vibrations having 
frequencies vf and vlm, respectively. For the phases d” , too, a combi­
nation rule

V  +  <t =  C  (6)
has to be assumed.

All the normal calculational rules apply to the multiplication of 
two matrices, with the exception of the commutation law: in general 
xy differs from yx. Thus, e.g., the difference Ex—xE (where £ denotes 
the diagonal energy matrix and products are to be formed according 
to the general prescription (4)) can be simply related to the matrix 
x, the time derivative of x:

Ex - xE - A . , .  (7)

using (3) and the frequency condition (I). This relation holds for any 
arbitrary matrix x.

The requisite relations for calculating the matrices x for a given 
mechanical system, i.e., the basic physical laws of the new quantum 
mechanics, have been brought by Bom and Jordan into the following 
form (which we immediately write down for systems having arbitrarily
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many degrees of freedom). We denote the Cartesian coordinates and 
the respective momenta of the atomic particles by q0 andp0I (g = l.../) 
with px=mx, etc. Then, in addition to the frequency condition (I), 
we have the ‘quantum conditions’

Pepa — papo — 0, q0qa — q„q0 =  0,
0 for g ^  a,

pgq<r — q<jpe for q — a.

(II)

Here the symbol 1 denotes the unit matrix (whose off-diagonal terms 
vanish and whose diagonal terms are each equal to 1). As Kramers1 
has shown, these relations can be interpreted from the standpoint of 
the quantum-theoretical dispersion formulae of Ladenburg, Kramers, 
and Kramers and Heisenberg, if one postulates that the individual 
atomic particles behave as free particles with respect to external 
short-period forces. Finally, as the last of the quantum laws, one has 
the energy conservation law:

H(p, q) =  £ (diagonal matrix). (Ill)

The matrix function H(p, q) characterizes a given mechanical system 
and the most obvious assumption to make is to expect this function 
to coincide formally with the classical function when Cartesian 
coordinates are used. It suffices to consider the case in which it 
comprises two parts, corresponding to kinetic and potential energy, 
of which the one depends only on p and the other only on q. According 
to the multiplication rule (4), only those matrix functions are defined 
in the first instance which can be written in form of a power series in p 
and q (with positive and negative powers). Bom, Heisenberg and 
Jordan have shown that in this case the basic laws (I), (II) and (III) 
lead to matrix relations that are completely analogous to the equations 
of motion in classical mechanics. They can be written as

qe = SH(p, g) 
8pe ’ Pe — —

8H(p, q) 
8qe ’ (8)

by appropriately defining the partial differential coefficients which 
occur on the right-hand side.

1 H. A. Kramers, Physica 5 (1925) 369.
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It may further be remarked that the sequence in which the station­
ary states of the system under consideration are arranged within the 
matrices is immaterial and that in the new theory the concept of 
‘quantum number’ does not enter into the basic laws. Furthermore, in 
the new theory, by contrast with the treatment used hitherto, the 
values of the transition probabilities are in principle quantitatively 
determined even for small quantum numbers.

2. General survey of methods and results of subsequent 
calculations

The present paper sets out to apply the new theory to an atom having 
a single electron. However, up to the present we have not, in the case 
of such a hydrogen-like atom, succeeded in developing all the conse­
quences of the basic laws of the new theory, and in particular we have not 
yet attempted to evaluate transition probabilities for hydrogen-like 
spectra. We have confined ourselves to calculation of the energy 
values of stationary states of the hydrogen atom for the unperturbed 
case, and for the case where external electric and magnetic fields are 
present (with elimination of the transition probabilities). The rela­
tivistic correction terms have for the present not been taken into 
consideration. As a result, the terms of the Balmer series and the 
Stark effect are obtained in agreement with observation. Furthermore, 
difficulties disappear which had arisen in the old theory through the 
additional exclusion of singular motions in which the electron comes 
arbitrarily near the nucleus, and which became particularly evident 
for the case of crossed electric and magnetic fields. In view of this, we 
explain these difficulties in some detail.

We start by considering the case of parallel electric and magnetic 
fields. With e and mo as the electron charge and mass, Ze the nuclear 
charge, a the semi-axis of the electron orbit and F  and H the field 
strengths of the electric and magnetic fields, respectively, the Larmor 
frequency is given by

eH
AnvtQC (9)

and the secular Stark effect frequency, of, by

47i ' Zmo
( 10)



392 W . P A U L I  J R 16

where the quantity «i, given by
h2

1 4n2Ze2mo
represents the radius of the circular first quantum orbit in the atom. 
In the presence of external fields, we have two additional quantum 
conditions which fix the projection z of the distance of the orbit’s 
electric midpoint from the nucleus along the field direction, viz.

z =  |a(s/w), (11)

and which fix the moment of momentum Pz parallel to the field, viz.
Pz =  m(A/2»). (12)

For given n and \m\<n, the Stark-effect quantum number s here
ranges over the sequence of values1

s = —(«—|m|), — (»—\tn\—2),..., («—\m\—2), n—\m\, (13)

where \m\ s! n, which he symmetrically with respect to zero and 
differ by two units from one another (for the moment, we have 
ignored additional restrictions). The extra energy in presence of a 
field is then given by

Ei =  (s o f  +  mon)h. (14)

In generalizing this to the case of crossed fields, it is appropriate to 
introduce frequencies

o)i =  oh of, cd 2 =  | oh — of |

in place of Op and Ojj. The relations (13) and (14) are then equivalent to

with
Ei — — ni)(oih +(£«  — n%)<D%h

O ^ n i ^ n ,  0 «2 ^

(15)

(16)
Since on and <02 are always defined as positive quantities, i.e..

o>2 =  oh — of for ojj >  op, 
0)2 = op — oh for oh <  of,

1 This follows from the connection between s and n with the quantum numbers 
ttf, w„ of the parabolic coordinates £, rj, viz.

»  =  » (  +  * , +  |m |,  s  =  n ( —

0 O S « , S * .
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the connection between the numbers s and m, and the numbers n\ and 
«2, is given by

m =  n — (n\ -f- nz), s =  nz — »i for Oh > op,
(17)

m =  nz — n\, s =  n — («i -f- nz) for oh < of)

(for oh=of it follows that to2=0, and the system is degenerate).
Now, in the general case of crossed electric and magnetic fields, the 

results of Klein1 and Lenz2 imply that the expression (15) for the 
perturbation energy in the quantum states of the system remains 
valid provided the frequencies coi and wz are defined as follows. We 
take oj? and Oh to be vectors parallel to the directions of the applied 
electric and magnetic fields, respectively, whose magnitudes coincide 
with the secular frequencies (10) or (9) which would be produced by 
either of these fields alone. We then form the vectorial sum and dif­
ference of Of and Off, and take the respective moduli, to obtain

CO 1 =  |0ff +  0f|, CO 2 =  (Off — Off|. (18)

For parallel electric and magnetic fields, this agrees with the earlier 
prescription.

This result leads to considerable difficulties if one relates it to the 
exclusion of such orbits as would cause the electron either to fall 
into the nucleus or to come arbitrarily near it in the course of its 
motion. The first of such additional exclusion rules already appeared 
in Sommerfeld’s relativistic theory of fine structure. There, states 
with vanishing momentum quantum number k, in which the electron 
would oscillate forwards and backwards along a rectilinear path 
through the centre of the nucleus, had to be excluded as unsuitable 
for stationary states:

k ^ O .  (19)

Correspondingly, in the case of the Stark effect, the value |s |= «  of 
the Stark-effect quantum number represents such a rectilinear oscil-

1 O. Klein, Is.  f. Phys. 22 (1924) 109.
2 W. Lenz, Zs. f. Phys. 24 (1924) 197. The numbers designated as «i and nz 
in that paper are non-integers for odd «; with a common difference of one unit, 
they run from — to \n, including the extreme values (if one adheres to the 
quantum rules for periodic systems).
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latory motion, and empirically it is certain that it can never occur 
in reality:

1*1 #  *• (20)

By comparing the number of relativistic fine-structure stationary 
states under the influence of weak axially-symmetric fields of force 
with that for the Stark effect, Bohr was able to demonstrate quite 
generally that all orbits with m—0 had to be excluded as well, because 
of the additional restriction (19) when applied to axially-symmetric 
fields. Incidentally, for such orbits the electron would in the case of 
the Stark effect approach the nucleus arbitrarily closely. Thus

m =£ 0. (20')

Condition (2) is contained in (20') as a special case, since for s= «  the 
number m can only take the value zero, according to (13). Now, for 
crossed fields it is possible to carry orbits allowed as stationary states 
over continuously into orbits excluded by (20) or (20'). For this, one need 
merely carry out the following adiabatic process: Assume both fields 
to be parallel in the first instance and Oh to differ from op, e.g., oh> of- 
Then, after having slowly rotated the field directions with respect to 
one another, reduce the magnetic field intensity until a point is 
reached when |o^|<|Of|; finally, re-align the fields parallel to one 
another. In this process, coi and a>2 always remain nonzero according 
to (18) and the quantum numbers n\ and n% therefore retain the same 
values throughout. Since, however, initially oh>Of and finally oh< of, 
it follows from (17) that the process has the effect of transforming 
into each other states in which the electric quantum number s and the 
magnetic quantum number m are interchanged. In particular, the 
oscillatory orbit s=n, m = 0 is converted into the circular orbit s = 0, 
m=n, whose plane lies perpendicular to the field direction. It thus 
becomes apparent that the additional exclusion rules which have the 
effect of forbidding rectilinear oscillatory orbits cannot be consistently 
applied within the framework of a quantum theory of multiply- 
periodic systems.

The calculation carried out below (§ 5) now shows that special 
additional exclusion rules become superfluous in the new quantum 
mechanics, in which we have not conceived the stationary states as 
represented by particular electron orbits; hence the difficulties indi­
cated above disappear automatically. Thus, for the wth quantum
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state of the unperturbed atom, with energy

E n =  -  RhZ*jn* (21)

(R — Rydberg constant), we obtain once more the values (14) and (15) 
for the extra energy in presence of external parallel and of crossed 
electric and magnetic fields, respectively. The quantities o h  and o p  

are again given by (9) and (10), and coi, C02 by (18). However, according 
to the new mechanics, n has to be replaced throughout by

m* — n — 1 (22)

in equations (13), (16) and (17). This value now acts as a maximum 
limit for the values of s, m and n\, M2, so that we now have

s=  — (m*—|mi|), — (m*—\m\—2), ... (m*—\m\— 2), m* — \m\,
with \m\ sS m*,

0 ^  Ml ^  M*, 0 ^ M 2^  m*,

MI =  M* — (Ml -f M2), S — M2 — Ml, for Off >  Of ,

m =  m2 — Mi, s =  m* — (mi +  M2), for oh < of-

In particular, we have for the Stark effect, according to (10) and (14),

Ei =  fePaiMS, with 0 g  s g  m‘, (23)

as demanded by experiment. Further, one sees that the set of values 
taken on by m and s is now entirely symmetric, as required by the 
above-mentioned adiabatic process for crossed fields.

When the degeneracy of the unperturbed atom is removed by an 
additional central field of force (e.g., the field arising from the rela­
tivistic corrections) and an external magnetic field, the Mth quantum 
state of the atom, whose energy is given by (21), decomposes according 
to the new quantum mechanics into states which can be characterized 
by quantum numbers k and m, satisfying the familiar selection rules

Ak =  ±  1, Am =  0, ±  1.

The integer m again specifies, according to (12), the atomic momentum 
component parallel to the field, whereas no such direct dynamical 
meaning can be ascribed to the number k which determines the value 
of the perturbation energy of the central field. For a quantized state 
of order n, the number k takes on m— 1 consecutive values whose

(13*)

(16*)

(17*)
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common difference is unity. Thus the number of fine-structure levels 
comes out correctly in any event, without any additional restric­
tions being introduced (though we cannot as yet make any predictions 
about their energy values). We want to normalize the quantum 
number k in just such a way that for each state characterized by n and k 
in presence of an external magnetic field, the quantum number m 
assumes an integral value within the range

— k < m < k. (24)
In an wth-order quantum state, the number k normalized in this way 
can take the values

k =  0, 1,2, (25)
It is possible to set up a unique correspondence between the states 
classified by (24) and (25) and those classified by (13*). The weight 
of the Mth-order quantum state is (in each case) equal to n2.

In particular, it follows from the above set of terms for a hydrogen­
like atom in external fields, as furnished by the new theory, that for 
the ground state of such an atom, where » =  1, n*=0, the quantum 
number m can have no value other than m = 0, and hence that this 
state is non-magnetic. This conclusion may appear surprising, es­
pecially in analogy with the behaviour of alkali atoms. In this con­
nection, it should be stressed that the present version of the new 
quantum mechanics apparently cannot, as yet, account for the 
anomalous Zeeman effect (breakdown of Larmor’s theorem) and that 
it might accordingly still require some modification. It may not be 
impossible that such modifications of the theory could become appa­
rent even in the case of atoms having but a single electron. We shall 
revert to this point toward the end of this paper (§ 6).

As for the method employed below to solve the matrix equations of 
the new theory in the case of an atom having only one electron, we 
must first (in § 3) develop the requisite rules for simultaneously 
operating with matrices x, y, z of the Cartesian coordinates of the 
electron (combined into a vector matrix t), the matrix r of the magni­
tude of the radius vector, and their time derivatives. The present 
version of the laws of the new quantum mechanics requires that we 
avoid the introduction of a polar angle <p. Since this is not confined 
within finite limits, it cannot, namely, be formally represented as a 
matrix in the same way as the above-mentioned coordinates, which 
execute librations in classical mechanics.
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For just this reason, the following special integration method, 
applicable to Coulomb forces in classical mechanics, and previously 
utilized by Lenz,1 proves to be particularly suitable for going over to 
the new quantum mechanics. If

sp =  m0[rt)] (26)

denotes the time-independent angular momentum of the electron 
about the nucleus, and

p =  W0t)

the linear momentum, then it can be shown directly from the equations 
of motion in classical mechanics that the vector

31 =
1

Zezmo [*p] +  - (27)

is constant in time. Scalar multiplication with t  then gives

(* t) =
1

Ze2mo
%2 +  r. (28)

This is the equation of a conic section, and it can from this be seen 
that 91 lies along the direction from the nucleus to the aphelion of the 
ellipse and that its magnitude is equal to the numerical eccentricity 
of the ellipse. Squaring (27), one obtains

1 _  912 =  - 2 E 
woZ2e4 $ 2, (29)

where E represents the energy.
In § 4 it will be shown that in the new mechanics, too, a time- 

independent vector matrix 91 analogous to (27) can be introduced for 
which, together with the vector matrix of angular momentum ^  
(also constant in time), relations analogous to (28) and (29) hold. If, 
in addition, one uses the quantum conditions (II) which are charac­
teristic of the new mechanics, together with the relations derived in 
§ 3, one obtains a system of matrix equations that comprise only the 
time-independent matrices 9t, ^  and £; the coordinates (i.e., the 
transition probabilities) are eliminated. The solution of these latter 
equations which can be effected by elementary methods (§ 5), then 
leads to the results already discussed in the present section.
i W. Lenz, Zs. f. Phys. 24 (1924) 197.
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3. Calculational rules fojr the radius-vector matrix. Momentum 
conservation law for central forces

We start by setting up the rules of calculation for the matrices x, y, z 
of the Cartesian coordinates of the electron, which make up the 
components of the vector matrix t, and for the matrix r which repre­
sents the magnitude of the radius vector. Obviously, they must 
satisfy the relation

r2 =  *2 _|_ y _|_ z2 (30)

The quantum conditions (II) not only express the commutability 
of x and y, of x and y, and of x and y (and correspondingly for the 
remaining coordinates),

xy =  yx, xy=yx ,  ...; xy =  y x ,.... (31a)

They also contain relations for the product of x with the momentum 
component px (and similarly for the other canonical quantities):

h
Pxx — xpx =  1, ... (31b)2m

(|px=mx denotes the x-component of the linear momentum p=mi), a 
vector matrix with the components px, Py, pz)- Here and in what 
follows, we shall denote by ‘...’ the presence of analogous equations 
for the remaining coordinates, obtained by cyclic permutation of the 
coordinates in the expressions cited.

These rules can be extended by the following additional relations, 
on making use of the matrix r. Firstly, r also commutes with x, y, z. 
This can be written in the form of a vector equation:

rt =  tr. (32)

Secondly, for any arbitrary rational function f  of r, x, y, z, the relation

h df
(33)

holds, and in particular for f=r:

p r - r p  = h X
2m r

(34)

Conversely, (33) follows generally from (31) and (34) for every function 
which can be expressed as a series of positive and negative powers of
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x, y, z and r, as can easily be shown by induction. Relation (34) is also 
in accord with (30). For this reason, the existence of relations (32) and 
(33) constitutes a necessary requirement for the energy conservation 
law,

|m t>2 +  F(x, /, z, r) — £ (diagonal matrix) (35)

(for simplicity, we assume here that there is only a single particle), 
together with the frequency condition (leading to the equation

E<P -  <PE =

for any quantity 0) to yield the equations of motion

df>s _____
d t 8x ’ (36)

We therefore postulate the existence of a matrix r which satisfies 
relations (30), (32), (34).

We now introduce a vector matrix S> which represents the angular 
momentum of the particle about the origin. Let us first of all remark 
that we shall define, as in ordinary vector algebra, the scalar product 
of two vector matrices S  and ® as the expression

(*») =  « s« s  +  * ,* „  +  *UB«,
and the vector product [US], as a new vector matrix having compo­
nents

=  . . . .  (37)

In general, the order of the factors for and S  is important: the 
expressions (KS) —(SH) and [SS] +  [SS] do not in general vanish 
here, since the commutation law for multiplication does not apply. 
Also, the components of the vector product [fW] of a matrix S  with 
itself are in general different from zero:

[««]* =  * » * , -  KM y.......  (37')
However, a special case is obtained if we form the vector product [tt>], 
since this is equal to — [t»r] because of the commutability of x with y. 
We can thus define the vector matrix

S  =  m[tt>] =  — m\p r] (38)

to be the angular momentum of the particle.
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This matrix satisfies the following commutation rules, which are a 
direct consequence of (31a) and (31b):

h
xPx =  Pxx, ...; xPy — PyX = Pxy — yPx =  — -^ -r z>

2m

and also
(**) =  (W  =  o,

(39)

PxPX   PXpXt •••

PxP y — P ypx =  PxPy — Py^x — 2m (40)

=  ( W  =  o.
From this it follows that v2= x 2+ y 2+ z 2 commutes1 with Px> Py, Pz:

=  5pv2. (41)

Further, we deduce from (34) the commutability of r with Px, Py, Pz,
rqj =  ^ r; (42)

therefore every function F(r) of r alone commutes with SJS. If we are
dealing with a central force, for which the potential energy depends 
only on r,

-|wt)2 +  F(r) =  £ (diagonal matrix), (35')
it follows that

ES£ =  $E,
and hence the vector matrix $  remains constant with time (angular 
momentum integral).

For the vector product of $  with itself (cf. (37')), it is easy to 
obtain a relation which will be of use2 later on,

m i - - - - - - as.
2?ri

(43)

For example, from (39) and (40) we obtain for the ^-component of
rasasi:

P xF y — PyPx — P x(zPx — Xf>z) — (zPx xPz)P x

— (F xz — ZP x)Px — X{P xPz PzPx)
h h

=  3 d  ^  =  -  3 d
1 Note the identity a2b — ba2 =a(ab—ba) + (ab—ba)a.
2 Cf. ‘Quantenmechanik I I ’, p. 597, eq. (3). The quantities denoted by Mx, 
My, M2 there, represent the negative angular momentum components.
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We are now in a position to evaluate the radial momentum pr=mr, 
for this is in fact equal to

m l  +  pI +  p ly  -  r(pl + p2v +  pm
2ni 2m

P, =  —  m ( £ r - r E ) =  —

2m
= - j -  i[P*(P*r ~  rpx) + py(pyr -  rpy) +  pz(pzr -  rpz)

+  (Pxr — rPx)Px +  (Pyr — rPy)Py +  (Pzr — rPz)Pz], 
.nd hence, because of (34),

Now, from (33)

(p  —)  -  (— * )  =  —  div — =  —  — ,\  r )  \  r /  27ii r 2m r

so that (44) can also be written
1 h 1 1 , 4 h 1

Pr =  (W 7 - 7 7 7  =  7  ( t«  + 7 7 7 .r 2m r r 2m r

Multiplying this by r, we obtain, first, the relation

prr + rpr =  (pc) +  (tW,

(44)

(44')

(45)

which is also obtained directly by differentiating (30) with respect to 
time. Also

prr -  rpr = (ft) -  (*» - - ^ r  2.

The meaning of (pv)—(vp) is now (pxx—xpx) +  (pyy—ypy)+ (pzz —zpz). 
From (31b), each of the bracketed terms has the value

h
2m

1.

We thus obtain the overall result

prr — rpr =
2n:i

(46)

Finally, in preparation for the application which follows, we evaluate 
the time-derivative of t/r. For example, for the ^-component we make
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use of (34) to obtain

Thus, generally,

4. Introduction of the vector matrix 91, constant in time, for 
Coulomb forces. Elimination of the coordinates

Let us now consider an atom consisting of a fixed nucleus having 
charge +Ze and exerting a Coulomb attraction on a single orbital 
electron of mass mo and charge — e. For the Hamiltonian, we have 
to set

1 Ze2------ to2 ---------- =  £ (diagonal matrix), (48)
2m o  r

i.e., for this special case we set

F(r) =  -  Ze2/r

in (35'). The equations of motion (36) derived from energy-conser­
vation with the aid of the quantum rules assume the same form here 
as in classical mechanics:

Ze2
p =  m0t  = ------- X. (49)

r6

Analogously to classical mechanics (cf. (27)), it follows from (47)
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that the vector matrix % defined by

(50>
is constant with time in the special case of a Coulomb field of force. 
Using (40), we can also write

* =  z i r { [W  + ^ r ^ } + T  

= ~ ^ k r 0{m ] + ^ i ^ } +J7- (5I'}
The remaining calculations are quite elementary when use is made 

of the rules collected in the preceding section. In the first instance, 
in analogy with equation (28) of a conic in classical mechanics, we 
obtain the relation

*[(«*) +  m i
i

Ze2mo
and also the commutation rule

*([«r] +  m i )  =  -

r  3 h2 ~\
I *  + 2 4jr2 J +  r,

2 jz i

3
~2 Ze2mo

(51)

(52)

Furthermore, the following relations are found to be valid, in which 
the coordinates x, y, z, r have been entirely eliminated, leaving only 
the matrices 91, $  and £ which are constant with time:

2n\
A x ? X  ---- £ X ^ X t  • • • !

Aa■? y  —  P y ^ x  —  P x ^ y  — [A yP x  —  ~z ~  As,  . . . ,2m
(«W =  (V«0 =  0

z> o
[ m i  =

1 _  «2 =  _

2jri moZ2eA 
2

moZ2e4

( I )

(II)

(HI)

(IV)

Equation (I) is identical with equation (43) of the previous section, 
(II) is analogous with (39) in form, (IV) is analogous to the classical
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equation (29), though the occurrence of the additional term A2/4jr2 
(as also of the additional term §A2/4jr2 in (51)) is characteristic of 
the new mechanics.

From the existence of the vector matrix $1, constant in time, we 
can infer that an atom with a single electron constitutes a degenerate 
system, even apart from the spatial orientation of the atom (a situ­
ation similar to Kepler motion in classical mechanics). Namely, we 
can readily conclude from the relations derived above that in general 

cannot vanish. Since, on the other hand, 3l£—£91 vanishes, 
it is obvious that for every value of the energy £ there is not just a 
single value of $|J2; the system is thus in fact degenerate.

As discussed in detail by Born, Heisenberg and Jordan,1 when such 
a system is treated from the standpoint of the new quantum mechanics 
the amplitudes of the various partial vibrations belonging to transitions 
between states of predetermined energy are not uniquely established 
by the quantum-mechanical equations. Furthermore, matrices which 
are constant with time need not in general be diagonal, inasmuch as 
non-zero elements can occupy positions (n, m) which correspond to a 
vanishing frequency vrjn={En—Em)lh=0. In our case, to each energy 
value (to each value of the principal quantum number) there belongs a 
matrix which contains the time-independent parts of a quantity 
(e.g., x or r) and whose number of rows or columns is equal to the 
weight of that particular energy state. This matrix is obtained by 
setting equal to zero all those elements in the original matrix that are 
located in positions relating to a transition process associated with a 
change in the energy value. It is called the time-average of the corre­
sponding quantity and is denoted by a bar above that quantity, (e.g., 
x or 7).

Even though in the case of a degenerate system the individual 
partial vibrations of a kinematic quantity which belong to the same 
frequency r” are not uniquely determined, nevertheless the energy 
values and statistical weights of these states are.2 Thus in principle 
it should be possible to derive the Balmer terms and the corresponding 
statistical weights from equations (I) to (IV) without any further 
specifying assumptions as to the type of solution. This we have, 
regrettably, not succeeded in doing and in the following we sidestep

1 Quantenmechanik II, Chapter 2, § 2.
2 Quantenmechanik II, Chapter 2, § 2 and Chapter 3.
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this difficulty by introducing additional requirements (in various 
ways) which render the solution of equations (I) to (IV) unique.

If the degeneracy is removed by an additional perturbing field 
whose Hamiltonian is Hi, then the time-average of the perturbation 
function Hi, taken over the unperturbed motion, must be a diagonal 
matrix, as can be shown by carrying through the perturbation cal­
culation according to the method of Bom, Heisenberg and Jordan.1 
In our case, this mean value depends in general not only on the energy 
£ of the unperturbed motion but also on ip and %.

If, in particular, the perturbing field is due to an additional non- 
Coulomb central force, the above time average depends only on $P2 
(apart from its E-dependence), since there exists no preferred direction 
in space here. Further, the perturbation energy of a magnetic field 
in the 2-direction depends only on the momentum component Pz, 
which is parallel to the field. The requirement that $P2 and Pz are to 
be diagonal matrices therefore leads to a special solution of equations 
(I) to (IV), adapted to the relativistic fine structure and to an additional 
weak magnetic field. We shall treat this case in the next section.

A second case of particular interest is furnished by the Stark 
effect. Here, we are concerned with the existence of a diagonal matrix 
z which is the component in the field direction (2-direction) of the time- 
independent vector matric r  representing the electrical centre of the 
orbit. It can, however, be shown that this matrix i  is connected with 
the matrix 51 in just the same way as in classical theory, viz. by the 
relation

X =
Ze23

2 2\E\-  -zr=r% (53)

(classically, Ze2/2\E\ represents the semi-major axis a of the Kepler 
ellipse). Namely, in the first place the same commutation rules apply 
to V and fp as to and $P, from (39) and (II). Further, if we next 
compare (52) with (III), we obtain the relations

L ' 2 2|£|
involving the difference

3 Ze2 
V ~2\E\

]
=  0

1 Quantenmechanik II, Chapter 2, § 2 and Chapter 3.
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As is shown by the more detailed discussion based on the solutions of 
equations (I) to (IV) derived in the next section, these constitute a 
sufficient number of homogeneous linear equations to permit us to 
conclude that

3 Ze2
2 2[£j

vanishes. If we supplement the electric field in the ^-direction by a 
parallel magnetic field along the same direction, we can use (53) to 
characterize this case by stipulating that Az and Pz are diagonal matrices.

Finally, at the end of the next section we also treat the case of 
crossed electric and magnetic fields. As explained in detail in § 2, 
this is of especial interest because of the occurrence of additional 
exclusion conditions for singular motions, which appeared in the 
earlier theory.

5. Solution of equations (I) to (IV). Derivation of the Balmer 
terms

(a) Pz and ip2 are diagonal matrices. For this first case, where the 
degeneracy is removed by superimposing an additional central field 
and a weak magnetic field in the z-direction, we make the following 
Ansatz in order to satisfy equations (I) and (II). For a given value of 
^ 2, let the possible values of Pz be

Pz$:Z =  mhl2n, (54)
where m runs from —k to -\-k:

— k g; m 5S k. (54')
Further, let the partial vibrations of ip, which belong to a change in 
m by ± 1, be left- and right-circular in the (x, y)-plane:

p k ,m    I ip  k ,m  /crc;\
yk,mdtzl

It then follows from (I) that
1 A2

\P*ZZ?i\* =  l ^ Til2 =  T  [k(k +  1) -  m(m =F 1)]

=  T  T T  ±  m^ k +  1 T  m). (56)4 4
h2

(5 7 )
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Next we set for the matrix 91,

=  ±  i ^ a ± i  (*' =  * +  1 or k ~  1), (58)
=  \Ay% k£\2 =  iC£+1(£ =F *»)(* =F »  +  1), (59)

in accordance with the Honl-Kronig formula for the intensity of the 
Zeeman components. When m is replaced by m— 1 or m-\-1, it further 
follows that

I A k <m  12 __. I A k -m  12
\/ i % k + l , m ± l \  —  \/ i y k + l , m ± l \

=  i  Ckk+l(k ± m +  \)(k ± m +  2). (59a)
Finally, we have for Az,

\Azk*m’m\2 =  Ckk+1[(k +  1)2 -  mz]. (60)

It still remains to be seen whether m (and thus also k) is an integer or 
half-integer; also, the C\+1 remain for the time being undetermined 
functions of k which can never take on negative values and which 
satisfy the symmetry relation

Ci+1 =  CU v (61)
A further remark concerning the signs of $1 relative to those of 
if Px and Az are assumed to be positive and real, then Ax has to be taken 
as positive or negative (and real) depending on whether one is dealing 
with transitions that correspond to changes of k and m in the opposite 
sense (as for and A x%’™l m+1) or in the same sense (as for
4 j t +”  m+i and A x%,™l m_1). When the calculations are carried through, 
it is evident that this approach satisfies equations (I) and (II) of the 
previous section. Moreover, it follows conversely from considerations 
by Born, Heisenberg and Jordan1 that if ip2 and Pz are assumed to 
be diagonal matrices, the expression chosen here for 91 and ip is a 
necessary consequence of (I) and (II).

In order now to determine the normalization of m and k and the 
function C*+1, we make use of equation (III) from the preceding 
section. It suffices, however, to use just the 2-component,

AXAy -- AyAx
h 2 

2ni moZ2ei £PZ. (62)

1 Quantenmechanik II, Chapter 4, § 1. Cf. also the discussion of the Zeeman
effect in Chapter 4, § 2.
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Namely, if we form the expression

Py(AxAy — AyAx) — (AxAy — AyAx)Py — ~maZ 2ei ^z^v)

and use (I) and (II), we obtain an equation which agrees with the 
x-component of (III). Similarly, the y-component of (III) also follows 
from the z-component of this vector equation and equations (I) and 
(II).

If we form the element of equation (62) which occupies the (k, m) 
position in the diagonal series, we first obtain, for the left-hand side, 
from (58) and (59),

(AxAy -  AyAx)t:Z  =  2i{\Axkk^ , m-x\2 -  Ma*’+i,»+ila
+

=  im {- (2k +  3)C*+1 +  (2k -  l)C*_i}.

Noting further that E has a negative sign, and introducing the Ryd­
berg constant

R — 2ji2e4mojh3 (63)

together with the value of Pz given by (54), we see that equation (62) 
yields the condition

LEI
w{_  {2k +  3)C*+1 +  (2k -  l)Cj_i} =  (64)

Let us first of all consider the smallest possible value of k for a 
given |£|. Obviously the contribution from the transition k-+k—\ 
on the left-hand side vanishes for this value of k, and the coefficient 
of m on the left-hand side can therefore certainly not be positive, 
whereas the coefficient of m on the right-hand side is positive. Hence 
equation (64) can be satisfied for the minimum value of k only if 
m = 0. But according to (54), this means that the minimum value of 
k must itself vanish, since otherwise m could assume other, non-zero, 
values. Hence k and m are necessarily integer, and k assumes the values

k =  0, 1, 2, ... n*, (65)

the integer n* being the largest value of k that can be attained for a 
given |£|. Now (64) implies

(2k -  1 )C‘_! ~  (2k +  3)C*+1 = |£ |
RhZ2 for k =  1, ... »*. (64')
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Furthermore, we have to set

q :+1 =  o, (64")

since obviously the contribution from the transition &+1 ->k (second 
term) disappears for k—n*. Beginning with k—n* and reducing k 
stepwise, we can successively calculate the values of

f 'n *  r n *—1 /~1
un*-l> W*-2> •••» u 0

from (64'). The result can be expressed by the formula

|E\ n*(n* +  2) -  k(k +  2)Ck+1 —
k RhZ2 (2k +  I) (2k +  3)

\E\ (n* -  k)(n* +  k +  2)
RhZ* (2k +  \)(2k +  3) ‘

Replacing k by k— 1, we also obtain

\E\ n*(n* +  2) -  (k -  1)(£ +  1)

(66)

6 * - i  — RhZ2 (2& -  \)(2k +  1)

l-g| (»* -  k +  \)(n* +  k +  1) 
RhZ2 (2k -  \)(2k +  1) (66')

With the help of these formulae, we can confirm directly that relations 
(64') and (64") are satisfied.

Finally, in order to derive the energy value itself, we make use of 
the last equation (IV). First of all, we determine the value of 2t2 at 
the (k, m) position of the diagonal series. Because of (59) and (60), we 
obtain

= 2M**fi,m+1|2 + 2\Axk-™,m- i\2 +
+  2 \A * ”1>m+1\2 +  2M *t”U - 1l2 +
=  (k +  l)(2k +  3)C*+1 +  k(2k -  1)C*_1(

and on substitution from (66), (66'),

\E\m t'Z  = RhZ2
0 * 2  +  2n* -  £(£ +  1)]. (67)

This expression for St2 and the expression (57) for ^$2 now have to
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be substituted in (IV), giving

1 =  - J ^ L  (m*2 +  2n* +  1) =  - ~ r -  (n* +  l)2,RhZ2
and hence

|£ | =
RhZ2 

(»* +  I)2

i?AZ2

i?AZ2
(68)

(setting w=w*+l), as in §2. This demonstrates that the Balmer 
terms result correctly from the new quantum mechanics and that the 
weight n2 is associated with the «th quantum state in the new theory.

(b) Az and Pz are diagonal matrices (Stark effect). If a homogeneous 
electric field of strength F  acts in the z-direction, the time-average 
of the perturbation energy is given by (53),

Ze2
£ i  =  f eFz =  f  eF — —  Az. (69)

z \ t \

For this case, therefore, we seek a solution of equations (I) to (IV) for 
which Az is a diagonal matrix. The added condition that Pz, too, 
should be a diagonal matrix has the physical meaning that we consider 
the degeneracy of the secular perturbation of the Stark effect to be 
removed by an additional weak magnetic field parallel to the electric 
field.

We shall confine ourselves here simply to quoting the result, without 
going through the individual calculations in detail and without 
supplying the proof that the given solution of equations (I) to (IV) 
is the only one meeting the requirement that Az and Pz be diagonal 
matrices. The states which belong to a definite value of the unper­
turbed energy as given by (68), have to be classified by two quantum 
numbers s and m, of which the former determines the value of Az (and 
of the additional energy Ei), according to

Azs’Z  =  sln- =  feFaiws { 0 < s <  n*), (70)
(where a\=h2\An2Ze2m^) and the latter determines that of Pz, according 
to

PzsZ =  mhf 2k. (71)
The range of values taken on by s and m has already been given in 
§ 2 by the relation (13*). The matrices Px, Py, Ax, Ay have non-zero
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elements only in those positions which correspond to a change of 
±  1 in s and m. Their values are given by

P 8,m    I :p  s ,m  a s ,m    i \ A s>m  (7 0 \
Vs',m ±X  " y s ' ,m ± l  ***X8',m± 1 V

(s' =  s +  1 or s — 1).
2n 1A 8, m  __ i______p  8,m

^■ % 8 ± l,m ± l "T r J rZ s± l,m ± l>n n  
2ji 1A 8,m      p  8,m tT X \

— z. „ ,m±l> V ° )n n

(in these last relations either the upper or the lower sign is to be taken 
throughout), and

IP 8,m |2 _

I W i .— il* =

I W m - l l 2
1 h2

—  —— [n* +  2 -  (m +  s)][»* +  (w +  s)],
16 47t2

s ,m  122/8+1,m-lll-P:
1 h2 

16 An2

(74)

[n* +  2 — (m — s)][«* + *)]•

It is easy to verify that equations (I) to (IV) are indeed satisfied when 
expressions (70) to (74) are used.

(c) Crossed fields. If the vectors © and §  represent the strengths of 
the external electric and magnetic field respectively, the time-average 
of the perturbation energy when both fields are simultaneously present 
is given by

Ei =  |  ea(m ) +  ($*). (75)

The quantity a, which in the earlier theory represented the semi-axis 
of the Kepler ellipse, is now to be regarded simply as an abbreviation 
for

Ze2a = -------. (76)
2\E\ K ’

We introduce the vectors Oj? and oh, which are respectively parallel 
to © and §  and whose magnitudes are equal to the secular frequencies 
that would be obtained if just one of the homogeneous external
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fields were to act by itself, so that (cf. (9) and (10))

e$ 3 ] /  a _  3 eg
°H 4nmoc ’ °F 4n ' Zmo 4n y / (2m^\E\)

We can then write (75) in the form

Ex =  ] / ..(%0j?)/i +  27t(^Joh).
|2i|

(77)

(75a)

It is now expedient1 to introduce vector matrices 3 i and 32 which 
are defined by

231 =

232 =

275
T
2ji

■V

Y

Z 2Rh
\E\

Z 2Rh
! e \~

%

so that
2n

~h~ = 3i + 32. Y Z2Rh
«  =  3 i -  32,

and to introduce the two vectors 

Oi =  Oh  +  Of , 02 =  Off — Of ,

(78)

(78a)

(79)

whose absolute magnitudes have in § 2 been denoted by a>i and <02 
(cf. equation (18)). The perturbation energy (75a) can then simply 
be written as

£1 =  (3 i0i)A +  (320a)A. (80)

Similarly, we introduce into equations (I) to (IV) the new vector 
matrices 3 i and 32 (as given by (78a)) in place of % and 1$. A simple 
calculation then yields the following relations:

Ilx^2x — Ilxllx,---, Ilx^Zy =  I^yllx, IzxJ-ly — Ilyl%x, • (81)
[3i3i] =  i3i, [3232] =  i3a, (82)

3? =  3^ =  -  1) =  i (w2 -  i) =  K ( K  +  i)- (83)
Relations (81) state that each component of 3 i  commutes with each 
component of 32- Relations (82) are quite analogous in structure to

1 The following should be compared with the papers of Klein and Lenz quoted 
in footnotes *) and a), following eqs. (17), § 2.
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equations (I); in the last part of (83), the energy values (68) were used.
I t follows from (80) that the case of crossed fields is characterized 

by the fact that (3 i0i) and (S2O2) or, what amounts to the same, the 
components of 3 i and $2 parallel to 01 and 02 (written as Sill and 82n). 
are diagonal matrices. The solution of equations (82) is in this case 
completely analogous to the solution of equations (I) if we assume 
P2 and Pz to be diagonal matrices. Here, \n* appears instead of k, 
and we have to replace m (following the notation of § 2, eqs. (15) and 
(16)) by the numbers \n*—n\ and \n*—n2 , which can run from 
— \n* to +\n*. We then obtain

(3ni)m — i n* — n l> ($2||)" =  — W2,
0 Mi < n*. «*,

(84)
E 1 =  (£«* — ni)<*ih + (%n* — w2)o 2̂

(t»l =  |0l|, W2 =  |02|).

The projections 8 ij. an4 32x in the planes perpendicular to the 
directions of 01 and o2 respectively, describe circular oscillations and 
are therefore represented by matrices which are analogous to those 
described by (56) for Px and Py (one has to replace k by \n* and m 
by \n *—»i or \n*—nz\ 3 i  corresponds to the sum of and P'y):

ISix»i+ila =  *(»i +  i)K  -  »i). m
I32x^+il2 =  ««2 +  1)(»* -  «2).

Equations (81) and (82) are thereby satisfied, and since, analogously 
to (57),

( »  =  ( s d : :  =  k ( k  +  1),

equation (83), too, is satisfied by the energy values (68).
Thus all the results given in § 2 have been derived from the new 

mechanics. 6

6. On the relationship between the hydrogen spectrum and the 
alkali spectra

It has already been mentioned in § 2 that the modifications to the 
basic foundations of the new quantum mechanics which would still 
be necessary in order to interpret the anomalous Zeeman effects 
might possibly make themselves felt even in the case of atoms with a 
single electron; in particular, the result that the ground state of such
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an atom should be non-magnetic might well not be regarded as con­
clusive. A suggestion of a special kind; aimed at taking account of 
the anomalous Zeeman effect, has recently been put forward by 
Goudsmit and Uhlenbeck.1 According to this suggestion, the electron 
is no longer regarded as a point charge, but instead has a preferred 
axis, angular momentum and (doubly anomalous) magnetism associ­
ated with it. Whether this assumption, when combined with the new 
quantum mechanics, suffices to explain all the empirical results, 
will probably be decided only when the calculation of relativistic 
fine structure, too, has been carried out on the basis of the new 
mechanics. This calculation, had to be left, for the present, because 
we have as yet been unable to effect the requisite evaluation of the 
time-average 1/r2.

Independently of the conception of any particular model one is, 
however, prompted to ask whether the hydrogen spectrum (including 
the fine-structure and the influence of external fields) could be regarded 
as a limiting case of the alkali spectra or X-ray spectra for a vanishing 
central force exerted by the rest of the atom on the valency electron 
or, respectively, for vanishingly small screening numbers (so that the 
levels forming a screening doublet coincide).2 The fine structure 
of the Balmer lines would then differ from that predicted by the 
earlier theory, not by the position of the energy levels and line com­
ponents, but by their intensities: instead of the selection rule Ak=±; 1, 
we should now have the selection rule Aj—0, ±1, which permits the 
occurrence of components that had been forbidden in the earlier 
theory. Goudsmit and Uhlenbeck1 were able to show that the observed 
results would make such an alteration of the selection rule appear 
quite probable. At the same time, however, they draw attention to 
the fact that the following difficulty stands in the way of a complete 
analogy between the hydrogen spectrum and alkali spectra: the 
Zeeman effect for spectra of single-electron atoms in magnetic fields 
that are weak (relative to the fine structure) does not at all seem to 
resemble that for alkali spectra according to the available observations.

Although therefore the question as to how far one may pursue the 
above-mentioned relationship between hydrogen- and alkali-spectra 
cannot yet be regarded as resolved, one may nevertheless be justified
1 S. A. Goudsmit and G. E. Uhlenbeck, Naturwiss. 13 (1925) 953.
2 S. Goudsmit and G. E. Uhlenbeck, Physica 5 (1925) 266. Similar arguments 
were communicated to me in a letter by Mr. A. Land6 a considerable time ago.
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in letting oneself be guided by this analogy, at least for all those cases 
in which the relativistic (or doublet) fine structure can be left out of 
consideration. This would lead us to assume that, in magnetic fields 
in which the Zeeman splitting is large compared with the separation 
of the fine-structure components, the magnetic energy levels in the 
spectra of single-electron atoms agree with the Paschen-Back terms 
of the alkali elements, as far as the number and position of these levels 
is concerned. One would then have to assign twice as many states 
to the hydrogen atom in an external field of force as were derived 
in the preceding sections on the present basis of the new quantum 
mechanics (i.e., 2w2 states instead of nz). In an external magnetic 
field, to each value of the quantum number m (lying between — n* 
and +«*) would have to belong the two magnetic energy values 
(»t±l)otf/i (where o#=Larmor frequency); in the same way, for the 
case of crossed fields, each state characterized by n*, n\, w2 would 
have to split into two states whose energy values would differ from 
those given by (84) by an amount ±Onh. According to the corre­
spondence principle, only those transitions would then occur which 
leave the sign of the additional term ±onh  unchanged.

One possible way of differentiating between the term manifold 
derived in the previous section (for which the ground state of the 
hydrogen atom is non-magnetic) and the manifold considered here in 
analogy with the Paschen-Back terms of the alkali elements (for 
which energy values are assigned to the ground state of a
hydrogen atom in a magnetic field) may be offered by investigations 
of the Stern-Gerlach type on the deflection of atomic hydrogen beams 
in an inhomogeneous magnetic field.


