
CAN YOU HELP YOUR TEAM TONIGHT 
BY WATCHING ON TV? 

MORE EXPERIMENTAL METAPHYSICS 
FROM EINSTEIN, PODOLSKY, AND ROSEN

N. D a v id  M erm in

A few years ago I described (1981a)1 a simple device that reveals in a 
very elementary way the extremely perplexing character the data from the 
Bohm-Einstein-Podolsky-Rosen experiment assumes in the light of the analy
sis o f J. S. Bell. There is a second, closely related, form of that Gedanken 
demonstration,2 which I would like to examine for several reasons.

1. It is simpler: there are only two (not three) settings for each switch.
2. The Gedanken data resemble more closely the data collected in 

actual realizations o f the device.
3. None of the possible switch settings produce the perfect correlations 

found in the first version of the Gedanken demonstration, where the 
lights always flash the same color when the switches have the same 
setting. Since absolutely perfect correlations are never found in the 
imperfect experiments we contend with in the real world, an argu
ment that eliminates this feature of the ideal Gedanken data can be

Some of the views expressed here were acquired in the course of occasional technical studies 
of Einstein-Podolsky-Rosen correlations supported by the National Science Foundation in a small 
comer of grant No DMR 86-13368

•Reprinted as an appendix below An only slightly more technical but significantly more 
graceful version appeared a few years later (Mermin. 1985)

2What follows is my attempt to simplify some reformulations of ERR and Bell by Henry 
Stapp (for example. 1985a). bul the interpretation I give differs from his. and any foolishness in 
what follows is entirely my own
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applied to real data from real experiments. (If you believe, however, 
along with virtually all physicists, that the quantum theory gives the 
correct ideal limiting description o f all phenomena to which it can be 
applied, then this is not so important a consideration.)

4. Because the ideal perfect correlations are absent from this version of 
the Gedanken demonstration, one is no longer impelled to assert the 
existence o f impossible instruction-sets. To establish that the new 
data nevertheless remain peculiar, it is necessary to take a different 
line of attack, which has again intriguing philosophical implications, 
but of a rather different character. ’

/ .  The modified demonstration

In the modified Gedanken demonstration, there are only two switch settings 
(1 and 2) at each detector. Otherwise the setup is unchanged: there are two 
detectors (,4 and B) and a source (C). and the result o f each run is the flashing 
of a red or green light. If one had actually built such a device according to the 
quantum-mechanical prescription, it could be transformed to run in this modi
fied mode simply by readjusting the angle through which certain internal parts 
of each detector turned as the switch settings were changed.* 4

In its new mode of operation, the device produces the following data: 
(/) When the experiment is run with both switches set to 2 (22 runs), the 

lights flash the same colors only 15% o f the time; in 85% of the 22 runs 
different colors flash.

(ii) When the experiment is run with any o f the other three possible switch 
settings (II, 12, or 21 runs) then the lights flash the same colors 85% of 
the time; in only 15% of these runs do different colors flash.
As in the earlier version of the Gedanken experiment, RR and GG are 

equally likely when the lights do flash the same colors, and RG and GR are 
equally likely when different colors flash. Also as earlier, the pattern o f colors 
observed at any single detector is entirely random. There is no way to infer

'There are more orthodox ways o f extracting the peculiar character o f these data The route I 
take here requires fewer formal probabilistic excursions, and leads to a rather different philosoph
ical point, though I suspect a careful analysis o f the use of probability distributions in the 
conventional arguments might uncover something quite similar

■'Physicists might note that if setting 1 at detector A corresponds to measuring the vertical spin 
component, then setting 2 at A measures the component at 90° to the vertical: setting I at B. 45° to 
the vertical, and setting 2 at B. -45° to the vertical, all four directions lying in the same plane. (In 
the earlier version the three switch settings at either detector corresponded to 0°. 120°. and 
-120° ) The fraction 855E is just cos-(22.5°) = 1(2 + V2).
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from the data at one detector how the switch was set at the other. Regardless 
o f what is going on at detector B, the data for a great many runs at detector A 
is simply a random string o f R’s and G ’s, that might look like this.

Typical Data at Detector A 
A: R G R R G G R G R R R G G G R G R R R G R G R G . . .

The choice of switch settings only affects the relation between ihe 
colors flashed at both detectors. If, for example, the above data had been 
obtained at detector A when its switch was set to 2, and in all those runs the 
switch at B had also been set to 2, then, as noted above, the color flashed at B 
would have agreed with that flashed at A in only 15% o f the runs, and the 
lights flashed at both detectors together might thus have looked like this:5

Data from a Series o f 22 Runs
A2: R G R R G G R G R R R G G G R G R R R G R G R G . . .  
B2: G R G G G R G R G G R G R R G R G G R R R R G R . . .

Although the list o f colors flashed at either detector remains quite random, the 
color flashed at B is highly (negatively) correlated with the color flashed at A. 
In the overwhelming majority (85%) of the runs the detectors flash different 
colors. Only in a few (15%) of the runs do the detectors flash the same colors.

On the other hand, for any o f the other switch settings (take 21 as an 
example) the comparative data would have looked something like this:

Data from a Series o f 21 Runs
A2. R G R R G G R G R R R G G G R G R R R G R G R G  .. 
B 1 : R G R G G G R R R R R G G R G G R R R G G G R G . . .

Again we have two lists o f colors, each entirely random, but they now agree 
with each other in 85% of the runs, disagreeing in only 15%.

There are various ways to run the modified Gedanken demonstration, 
but let me focus on the following procedure, which it seems to me makes a 
rather striking contribution to Abner Shimony’s field o f experimental meta
physics. Suppose we do a long series o f runs in each of which both switches 
are set to 1:

5The numbers after A and B denote the fixed setting of their switches throughout the sequence 
of runs. In contrast to some earlier versions o f the Gedanken demonstration, we now try out 
various fixed switch settings, rather than randomly resetting the switches after each run
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Data from a Series o f 11 Runs
Al: R G G G R G R G R R G R R G R G R R R R G R G G .  
B I R G G R R G G R R R G R R G R G R G R R G G G G

About 85% of these 11 runs will produce the same colors, and 15%, different 
Now because there are no connections of any kind between the detectors at A 
and B, it seems clear that whatever happens at A cannot in any way depend on 
how the switch was set at B, and vice versa. Let us elevate this commonsense 
remark into a principle, which 1 shall call the Baseball Principle. Before 
examining the implications o f the Gedanken demonstration for the Baseball 
Principle, let us discuss it in the context from which its name derives, where it 
assumes (at least for me) an especially vivid character.

2. The Baseball Principle

I am a New York Mets fan, and when they play a crucial game I feel I 
should watch on television. Why? Not just to find out what is going on 
Somewhere deep inside me. 1 feel that my watching the game makes a 
difference— that the Mets are more likely to win if I am following things than 
if 1 am not. How can I say such a thing? Do I think, for example, that by 
offering up little prayers at crucial moments I can induce a very gentle divine 
intervention that will produce the minute change in trajectory o f bat or ball 
that makes the difference between a hit or an out? O f course not! My feeling is 
completely irrational. If you insisted that I calm down and think about it, I 
would have to admit that the outcome o f the game does not depend in the least 
on whether I watch it or not. What I do or do not do in Ithaca, New York, can 
have no effect on what the Mets do or do not do in Flushing, New York. This 
is the Baseball Principle.

Now a pedant comes along and says, ‘‘What do you really mean by that 
Baseball Principle?” And then, being a pedant, he tells me what I really 
mean. What I really mean is this: If we examined a great many Mets games 
and divided them up into those I watched at least part o f on TV and those I did 
not watch at all, and if my decision to watch or not was entirely independent 
of anything I knew about the game— made, for example, by tossing a coin— 
then we would find that the Mets were no more or less successful in those 
games I watched than in those games I did not.

Now I reply. “That’s very nice, but 1 mean something much simpler I 
mean that in each individual game, it doesn’t make any difference whether I 
watch it or not. Tonight, for example, whatever the Mets do, will be exactly 
the same, whether or not I end up watching the game.”
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"Cm on ,” says the pedant, ‘‘that’s silly. Either you watch the game or 
you don’t. You can't say that what happens in the game in the case that didn’t 
happen is the same as what happens in the case that did, because there’s no 
way to check. What didn’t happen didn't happen."

I say to the pedant: “Who’s being silly here? Are you trying to tell me 
that it does make a difference in tonight's game whether I watch it or not?"

“No,’’ says the pedant, “I’m saying that your statement that it doesn’t 
make any difference whether or not you watch an individual game can only be 
viewed as a very convenient construct to summarize the more complex statis
tical statement about correlations between watching and winning over many 
games. All o f its statistical implications are correct, but it has no meaning 
when applied to an individual game, because there is no way to verify it in the 
case of the individual game, which you cannot both watch and not watch.’’ 

But is it wrong to apply the Baseball Principle to an individual game?

3. The Strong Baseball Principle

Let us call the claim that the Baseball Principle applies to each indi
vidual game the Strong Baseball Principle. The Strong Baseball Principle 
insists that the outcome of any particular game does not depend on what I do 
with my television set— that whatever it is that happens tonight in Shea 
Stadium will happen in exactly the same way, whether or not I am watching 
on TV.

As a rational person, who is not superstitious, and does not believe in 
telepathy or the efficacy of prayer on the sporting scene, 1 am convinced of 
the Strong Baseball Principle. True, there is no way to verify it, since I cannot 
both watch and not watch tonight’s game, and am therefore unable to compare 
how the game goes in both cases to make sure nothing changes. Nevertheless, 
deep in my heart, 1 do believe that because there is no mechanism connecting 
what I do with the TV at home to what happens in Shea Stadium, the outcome 
of tonight’s game genuinely does not depend on whether I watch it or not: the 
Strong Baseball Principle. Try as you may to persuade me that the Strong 
Baseball Principle is meaningless, in my heart, I know it is right.

Remarkably, when run in the second mode, the Gedanken demonstra
tion provides us with a case in which if it really does make no difference 
whether or not I watch the game, then it is not only meaningless, but demon
strably wrong to assert this principle in the individual case. If the Baseball 
Principle is right for the device, then the Strong Baseball Principle must be 
wrong, not merely because it naively compares possibilities only one of which 
can be realized, but because it is directly contradicted by certain observed 
facts. Such an experimental refutation o f the Strong Baseball Principle would
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have been impossible before the discovery o f the quantum theory; you cannot 
get into trouble using the Strong Baseball Principle in classical physics, and it 
can, in fact, be a powerful conceptual tool.6 1 believe that those who take the 
view that an experimental refutation is o f no interest since reasoning from the 
Strong Baseball Principle was impermissible all along miss something of 
central importance for an understanding of the character o f quantum 
phenomena.

4. The device and the Baseball Principle

We return from ball games to the device. There are no connections 
between the detectors or between the source and either detector. The Baseball 
Principle therefore applies, and asserts that what goes on at detector A does 
not depend on how the switch is set at detector B, and vice versa. This is 
readily verified in the statistical sense insisted on by the pedant. Keep the 
switch at A set to I . Do a great many runs with the switch at B set to 1. Then, 
keeping the switch at A at 1, do a second series o f runs with the switch at B set 
to 2. Compare the data at A in the two cases. It will have exactly the same 
character— namely a featureless sequence of R's and G's like the series o f 
heads and tails you get by repeatedly flipping a coin. There is nothing in the 
outcome at A to distinguish between the runs in which B was set to 1 or to 2.

But what about the Strong Baseball Principle? Given the lack of any 
connection between the detectors, can we not also assert that what goes on at 
one detector in any individual run o f the experiment does not depend on how 
the switch is set at the other detector? Granted, there is no way to test this 
stronger assertion, but surely, for the same reason, there is also no way to 
refute it. But here, remarkably in my opinion, we have a case in which the 
Strong Baseball Principle is directly contradicted by the data. Consider what 
happened when the device was run with both switches set to I :

Actual Data from a Series o f  II Runs

Al: R G G G R G R G R R G R R G R G R R R R G R G G . . .  
B 1 : R G G R R G G R R R G R R G R G R G R R G G G G . . .

If there are really no connections between A and B, and no spooky actions at a 
distance, then what happens at detector A cannot depend on how the switch is 
set at detector B (and vice versa). The Strong Baseball Principle takes this to

6ln a deterministic world in which the future can be calculated from present conditions, the 
Strong Baseball Principle can be given an unambiguous meaning.
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mean that in the first run of this sequence (in which both lights flashed R) the 
light at detector A would have flashed R even if the switch on detector B had 
been set to 2 instead of 1, and similarly, for every other run in the series, if B 
had been set to 2 nothing would have changed at A. In no individual run can 
the outcome at A depend on how the switch was set at B. (Compare this with 
“In no individual baseball game can the outcome at Shea Stadium depend on 
how the switch was set on my TV ”)

Well, if that is so, we can say something about what would have 
happened if the run had been 12 (A 1 and B2) rather than 11 (Al and B 1)— 
namely the outcomes at A would have been exactly the same as before:7

The 11 Runs and What the Strong Baseball Principle Can Say About What 
Would Have Happened Had They Been 12 Runs

B2: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? . . .  
Al :  R G G G R G R G R R G R R G R G R R R R G R G G . . .
Al :  R G G G R G R G R R G R R G R G R R R R G R G G . . .  
Bl :  R G G R R G G R R R G R R G R G R G R R G G G G . . .

Note that in this application of the Strong Baseball Principle we make no 
commitment at all to what colors flashed at B in the case that did not take 
place (with the switch at B set to 2) since, after all, that did not happen. We 
merely assert that whatever might have taken place at B in that unrealized 
experiment, nothing would have turned out any differently at A.

We can also say the same thing about what would have happened at B, 
if we had set the switch differently at A. This gives us one more pair o f rows:

The 11 Runs and What the Strong Baseball Principle Can Say About What 
Would Have Happened Had They Been 12 Runs Or What Would Have 

Happened Had They Been 21 Runs
B2: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? . . .  
Al :  R G G G R G R G R R G R R G R G R R R R G R G G  ..

Al :  R G G G R G R G R R G R R G R G R R R R G R G G . . .  
Bl : R G G R R G G R R R G R R G R G R G R R G G G G . . .
Bl : R G G R R G G R R R G R R G R G R G R R G G G G .  .
A2: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? . . .

Th is does not imply determinism— indeed, I am not convinced that what happens in a 
baseball game is deterministic: it simply says, in the baseball case, that whatever it is that does 
happen is not going to depend on what a television set 300 miles away is doing
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Consider now what we have laid out here. The middle two (third and fourth) 
rows show what actually happened: both switches were set to 1, and the first 
run gave RR, the second, GG, the third GG, the fourth GR, etc. The top two 
rows (first and second) express the Strong Baseball Principle in the form that 
asserts that the outcome o f each individual run at A does not depend on how 
the switch is set at 5. The bottom two (fifth and sixth) express it as an 
assertion that the outcome o f each run at B does not depend on the switch 
setting at A.

Now what about the question marks? They appear in the top (first) and 
bottom (sixth) rows because those rows represent what would have happened 
at B and A had the switches there been other than what they actually were. 
Evidently some sequence o f R’s and G ’s would have been produced in either 
case,8 but we have no way o f telling which. Experience with the device, 
however, tells us some o f the features these sequences would have had, if the 
runs had been 12 or 21 runs rather than the 11 run that actually took place. An 
acceptable sequence of R’s and G’s for the first (52) row, must agree with the 
sequence o f R’s and G ’s in the second (A1) row in about 85% o f the positions, 
since that is the way 12 runs always work. Similarly a sequence o f R’s and 
G's replacing the question marks in the sixth row must agree in about 85% of 
the positions with the sequence in the fifth row, since that is what always 
happens in 21 runs. These considerations cut down on the number o f ways of 
replacing question marks with R’s and G ’s, but many different possibilities 
are still allowed.

A final application o f the Strong Baseball Principle can be made to 
restrict these possibilities further. Suppose both switches had been set to 2 
rather than 1. We can regard this 22 series o f runs either as a modification o f a 
21 series (modified by changing the switch setting at 5 without changing 
anything at A) or as a modified 12 series (in which the switch was changed at 
A without anything having been done at 5). We do not know, o f course, what 
would have happened at 5 in the hypothetical 12 series (top row o f question 
marks) or at A in the hypothetical 21 series (bottom row of question marks). 
The Strong Baseball Principle asserts that whatever series o f R’s and G’s at A 
the question marks in the bottom row might stand for in the 21 run, that same 
series o f R’s and G ’s would also have happened at A in that series o f runs had

•At this moment in my talk at the conference, there were cries of protest from the philoso
phers in the house. I was told that " I f  I were hungry. I would eat a candy bar" does not imply the 
proposition "There exists a candy bar which is the one I would eat were I hungry” (the Candy 
Bar Principle). I affirmed my commitment to the Candy Bar Principle. I said I wanted to make a 
rather different point, but I think they all stopped listening then and there. I hope you will not stop 
reading here and now. If you insist on talking candy, I would suggest that a more accurately 
analogous proposition is “Either there exists a candy bar which is the one I would eat were I 
hungry or there does not."
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the switch at B been set to 2 instead of 1— i.e., had the runs been 22 runs 
instead. By the same token, whatever sequence o f R’s and G’s the question 
marks in the top row represented for the results at B in a series o f 12 runs, that 
same sequence would also have described the results at B had the runs been 22 
runs.

This last application o f the Strong Baseball Principle, by comparing 
hypothetical cases, has a different character than the first two, which compare 
a hypothetical case with the real one, and here it might more accurately be 
termed the Very Strong Baseball Principle. Returning to the sporting analogy, 
the Very Strong Baseball Principle applies when the game is, in fact, canceled 
because o f rain. 1 nevertheless maintain that had the game been played, it 
would have taken place in exactly the same way, whether or not 1 watched it. 
This last assertion may elicit an even more violent objection from the pedant. 
Is it really reasonable to insist that something should happen in exactly the 
same way when conditions change very far away from it, when in actual fact 
it never happened at all?

But is it really any more reasonable, I hasten to add, to insist that such 
an assertion is impermissible? I maintain that if last night’s game had not been 
rained out, it would have happened the same way whether or not 1 had 
watched it on television. Can you prove me wrong when I say this? Wouldn’t 
most unsuperstitious people regard the proposition as true? Indeed, as unin
terestingly true? To be sure, the pedant will translate it into a series o f 
harmless statistical assertions, but is it really wrong to apply it to the indi
vidual case as well? The hallmark o f the Strong Baseball Principle at work is 
this nagging conviction, to which only a pedant could object. For how can one 
possibly get into any trouble asserting relations between two things neither of 
which actually happened?

One can. It is worse than bad form; it is bad physics. Let us try it out. 
We have to replace the first row with some sequence o f R’s and G ’s and the 
sixth row with some other such sequence in such a way that the first and 
second rows give the right statistics for 12 runs, the fifth and sixth, for 21 
runs, and the first and sixth for 22 runs. We do not insist that any particular 
way o f doing this is preferable to or any more deserving o f some hypothetical 
reality than any other, but for the Strong Baseball Principle to survive, some 
among the various possibilities must be consistent with these statistics.

Now in 22 runs the colors disagree 85% of the time, so whatever goes 
into the first row has to disagree with whatever goes into the sixth in about 
85% o f the positions.

On the other hand the set o f R’s and G’s in the top row can differ from 
that in the second row in only about 15% o f the positions (since they must 
have the correlations appropriate to a series of 12 runs). The second row is the 
same as the third row (by the Strong Baseball Principle). The third row differs
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from the fourth row in only about 15% of the positions, since they give the 
data in a II run. The fourth row is the same as the fifth row (by the Strong 
Baseball Principle). And the fifth row can differ from the set o f R's and G's 
appearing in the bottom row in only 15% o f the positions (since those rows 
must have the correlations appropriate to a series o f 21 runs).

A moment’s reflection on the last paragraph is enough to reveal that 
whatever sequence of R’s and G ’s is in the top row, it can differ from 
whatever sequence is in the bottom row. in at most about 15% + 15% + 15% 
= 45% of the positions. But according to the next to the last paragraph 
whatever is in the top row must differ from whatever is in the bottom row in 
about 85% o f the positions. You cannot have it both ways. Thus the (Very) 
Strong Baseball Principle is so restrictive as to rule out every possibility for 
the unrealized switch settings. Far from merely being meaningless nonsense, 
an application o f the Strong Baseball Principle to the Gedanken demonstration 
contradicts the observed facts.

5. Conclusion

In this demolition o f the Strong Baseball Principle, we did not interpret 
it as demanding the existence in some cosmic bookkeeping office o f a list of 
data for the unperformed runs. We only took it to require that if the actual 
experiment consists o f a long series o f 11 runs, then among all the possible 
sets o f data that might have been collected had the experiment instead consist
ed o f 12, 21, or 22 runs, there should be some satisfying the condition that, 
run by run, what happens at one detector does not depend on how the switch is 
set at the other. If the Strong Baseball Principle is valid, it should be possible 
to imagine sets o f B2 and A2 data such that the B2 data produce the right 
statistics (85% same and 15% different) when combined with the actual A 1 
data, the A2 data produce the right statistics (85% same and 15% different) 
when combined with the actual B I data, and the two sets o f imagined data 
produce the right statistics (15% same and 85% different) for a 22 experi
ment.9

Since it is impossible to imagine any such sets o f data, then the Strong 
Baseball Principle has to be abandoned not because it is bad form, unjustifia
ble, or frivolous to argue from what might have happened but did not. but

’In Candy Bar terms, the Strong Baseball Principle does not say that there exists a particular 
sequence o f R's and G s which are the colors that would have flashed had a detector been set 
differently. It only says that among all the mutually exclusive and exhaustive possibilities for 
such sequences should be some that are consistent with the frequencies of flashings characteristic 
of the four different pairs of switch settings.
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because there are no conceivable sets o f data for the cases that might have 
happened but did not, which are consistent with the numerical constraints 
imposed by the known behavior o f the device, when those constraints are 
further restricted by the Strong Baseball Principle.

This attack is inherently nonclassical. If, in the best Gedanken 
demonstration I could devise, the 85% and 15% had been replaced by 75% 
and 25%, then the argument would have collapsed. For instead o f the top row 
being able to differ from the bottom by no more than 15% + 15% + 15% = 
45%, which is manifestly less than the required 85%, it would only have been 
possible to bound the difference by 25% + 25% + 25%, which is just enough 
to provide the required 75%. Only by exploiting quantum correlations can one 
construct an 85%-15% Gedanken demonstration. Any model o f the device 
one might devise based on classical physics would necessarily result in 75%- 
25% or less extreme statistics, and the Strong Baseball Principle would be 
immune from this kind o f refutation by physicists, no matter how dim a view 
of it philosophers took. 1 assert this with confidence because classical physics 
is local and deterministic and in a deterministic world the Strong Baseball 
Principle makes perfect sense as a manifestation o f locality.

Going in the other direction, it is easy to invent fictitious Gedanken 
demonstrations that produce data that refute the Strong Baseball Principle 
even more resoundingly than does the device. Consider, for example, a hypo
thetical device in which 85% and 15% were replaced by 100% and 0%, so that 
the lights always (not just most o f the time) flashed the same colors in II, 12, 
and 21 runs, and never (not just infrequently) flashed the same colors in 22 
runs. Then the argument refuting the Strong Baseball Principle would be even 
simpler. An 11 run would necessarily result in the same color (say R) at A and 
B. Suppose instead the switch at A had been set to 2. The Strong Baseball 
Principle would then assert that R would still have flashed at B and since the 
same colors always flash in 12 runs, A would still have flashed R. By the 
same token B would still have flashed R had its switch been set to 2. There
fore, since the setting of the switch at one detector cannot affect what happens 
at the other, both would have flashed R if both had been set to 2. But when 
both are set to 2, both have to flash different colors.

No experiment is known that can provide this more compact refutation. 
Even quantum miracles can go only so far. The 85%-15% statistics are the 
most extreme 1 know how to extract from the quantum theory, and although 
they are strong enough to demolish the Strong Baseball Principle, the argu
ment we went through is somewhat less direct than that available for the 
100%-0% statistics.

It is a characteristic feature o f all quantum conundrums that something 
has to have a nonvanishing probability o f happening in two or more mutually 
exclusive ways for startling behavior to emerge. The viewpoints of quantum 
and classical physics are distinguished, more than anything else, by the im-
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propriety in quantum physics o f reasoning from an exhaustive enumeration of 
two or more such possibilities in cases that might have happened but did not. 
We are startled when such reasoning fails because as an analytical tool in 
classical physics and everyday life, it is not only harmless but often quite 
fruitful. The most celebrated o f all quantum conundrums— how can there be a 
diffraction pattern when the electron had to go through one slit or the other?— 
is based on precisely this impropriety. It is just where there is room for some 
interplay between various unrealized possibilities, that one can look for the 
quantum world to perform for us the most magical of its tricks.

Therefore it is wrong to apply the principle that what happens at A does 
not depend on how the switch is set at B to individual runs of the experiment. 
Many people want to conclude from this that what happens at A does depend 
on how the switch is set at B. which is disquieting in view of the absence of 
any connections between the detectors. The conclusion can be avoided, if one 
renounces the Strong Baseball Principle, maintaining that indeed what hap
pens at A does not depend on how the switch is set at B, but that this is only to 
be understood in its statistical sense, and most emphatically cannot be applied 
to individual runs of the experiment. To me this alternative conclusion is 
every bit as wonderful as the assertion o f mysterious actions at a distance. I 
find it quite exquisite that, setting quantum metaphysics entirely aside, one 
can demonstrate directly from the data and the assumption that there are no 
mysterious actions at a distance, that there is no conceivable way consistently 
to apply the Baseball Principle to individual events.

APPENDIX: QUANTUM MYSTERIES FOR ANYONE

We often discussed his notions on objective reality. I 
recall (hat during one walk Einstein suddenly stopped, 
turned to me and asked whether I really believed that the 
moon exists only when I look at it.

— A. Pais10

As () Stern said recently, one should no more rack 
one's brain about the problem  o f whether something one 
cannot know anything about exists all the same, than about 
the ancient question o f  how many angels are able to sit on 
the point o f  a needle. But it seem s to me that Einstein's 
questions are ultimately always o f  this kind

— W. Pau li"

luPais (1979. 907).
"From a 1954 letter to Max Bom (Bom 1971. 225).
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Pauli and Einstein were both wrong. The questions with which Einstein 
attacked the quantum theory do have answers; but they are not the answers 
Einstein expected them to have We now know that the moon is demonstrably 
not there when nobody looks.

the impact o f this discovery on philosophy may have been blunted by 
the way in which it is conventionally stated, which leaves it fully accessible 
only to those with a working knowledge of quantum mechanics. 1 hope to 
remove that barrier by describing this remarkable aspect o f nature in a way 
that presupposes no background whatever in the quantum theory or, for that 
matter, in classical physics either. 1 shall describe a piece of machinery that 
presents without any distortion one o f the most strikingly peculiar features of 
the atomic world. No formal training in physics or mathematics is needed to 
grasp and ponder the extraordinary behavior o f the device; it is only necessary 
to follow a simple counting argument on the level o f a newspaper brain- 
twister.

Being a physicist, and not a philosopher, 1 aim only to bring home some 
strange and simple facts which might raise issues philosophers would be 
interested in addressing. I shall try, perhaps without notable success, to avoid 
raising and addressing such issues myself. What 1 describe should be regarded 
as something between a parable and a lecture demonstration. It is less than a 
lecture demonstration for technical reasons: even if this were a lecture, 1 lack 
the time, money, and particular expertise to build the machinery I shall 
describe. It is more than a parable because the device could in fact be built 
with an effort almost certainly less than, say, the Manhattan project, and 
because the conundrum posed by the behavior o f the device is no mere 
analogy, but the atomic world itself, acting at its most perverse.

There are some black boxes within the device whose contents can be 
described only in highly technical terms. This is o f no importance. The 
wonder of the device lies in what it does, not in how it is put together to do it. 
One need not understand silicon chips to learn from playing with a pocket 
calculator that a machine can do arithmetic with superhuman speed and preci
sion; one need not understand electronics or electrodynamics to grasp that a 
small box can imitate human speech or an orchestra. At the end o f the essay 1 
shall give a brief technical description of what is in the black boxes. That 
description can be skipped. It is there to serve as an existence-proof only 
because you cannot buy the device at the drugstore. It is no more essential to 
appreciating the conundrum o f the device than a circuit diagram is to using a 
calculator or a radio.

The device has three unconnected parts. The question of connectedness 
lies near the heart of the conundrum, but I shall set it aside in favor of a few 
simple practical assertions. There are neither mechanical connections (pipes, 
rods, strings, wires) nor electromagnetic connections (radio, radar, telephone, 
or light signals) nor any other relevant connections. Irrelevant connections
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may be hard to avoid. All three parts might, for example, sit atop a single 
table. There is nothing in the design of the parts, however, that takes advan
tage o f such connections to signal from one to another, for example, by 
inducing and detecting vibrations in the table top.

By insisting so on the absence o f connections, 1 am inevitably suggest
ing that the wonders to be revealed can be fully appreciated only by experts on 
connections or their lack. This is not the right attitude to take. Were we 
together and had 1 the device at hand, you could pick up the parts, open them 
up, and poke around as much as you liked. You would find no connections. 
Neither would an expert on hidden bugs, the Amazing Randi, or any phys
icists you called in as consultants. The real worry is unknown connections. 
Who is to say that the parts are not connected by the transmission of unknown 
Q-rays and their detection by unrecognizable Q-detectors? One can only offer 
affidavits from the manufacturer testifying to an ignorance o f Q-technology 
and, in any event, no such intent.

Evidently it is impossible to rule out conclusively the possibility of 
connections. The proper point o f view to take, however, is that it is precisely 
the wonder and glory of the device that it impels one to doubt these assurances 
from one’s own eyes and hands, professional magicians, and technical experts 
o f all kinds. Suffice it to say that there are no connections that suspicious lay 
people or experts o f broad erudition and unimpeachable integrity can discern. 
If you find yourself questioning this, then you have grasped the mystery of the 
atomic world.

Two o f the three parts o f the device (A and B) function as detectors. 
Each detector has a switch that can be set in one o f three positions (1,2, and 
3) and a red and a green light bulb (figure 1). When a detector is set off it 
flashes either its red light or its green. It does this no matter how its switch is

Figure I. A detector. Particles enter on the right. The red (R) and green (G) 
lights are on the left. The switch is set to I.
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set, though whether it flashes red or green may well depend on the setting. 
The only purpose o f the lights is to communicate information to us; marks on 
a ribbon o f tape would serve as well. I mention this only to emphasize that the 
unconnectedness of the parts prohibits a mechanism in either detector that 
might modify its behavior according to the color that may have flashed at the 
other.

The third and last part o f the device is a box (C) placed between the 
detectors. Whenever a button on the box is pushed, shortly thereafter two 
particles emerge, moving off in opposite directions toward the two detectors 
(figure 2). Each detector flashes either red or green whenever a particle 
reaches it. Thus within a second or two o f every push of the button, each 
detector flashes one or the other of its two colored lights.

Because there are no connections between parts o f the device, the link 
between pressing the button on the box and the subsequent flashing of the 
detectors can be provided only by the passage o f the particles from the box to 
the detectors. This passage could be confirmed by subsidiary detectors be
tween the box and the main detectors A and B, which can be designed so as 
not to alter the functioning o f the device. Additional instruments or shields 
could also be used to confirm the lack of other communication between the 
box and the two detectors or between the detectors themselves (figure 3).

The device is operated repeatedly in the following way. The switch on 
each detector is set at random to one of its three possible positions, giving 
nine equally likely settings for the pair o f detectors: 11, 12, 13, 21, 22, 23, 
31, 32, and 33. The button on the box is then pushed, and somewhat later 
each detector flashes one o f its lights. The flashing o f the detectors need not 
be simultaneous. By changing the distance between the box and the detectors 
we can arrange that either flashes first. We can also let the switches be given 
their random settings either before or after the particles leave the box. One 
could even arrange for the switch on B not to be set until after A had flashed 
(but, o f course, before B flashed).

After both detectors have flashed their lights, the settings of the switch
es and the colors that flashed are recorded, using the following notation: 31 
GR means that detector A was set to 3 and flashed green, while B was set to 1

'•r 3)

s)

(C) (B)

Figure 2. The complete device. A and B are the two detectors. C is the box from 
which the two particles emerge.
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Figure 3. Possible refinement of the device. The box is embedded in a wall that 
cuts o ff one detector from the other. Subsidiary detectors confirm the passage of 

the particles to the main detectors.

and flashed red; 12 RR describes a run in which A was at I , B at 2, and both 
flashed red; 22 RG describes a run in which both detectors were set to 2, A 
flashed red and B flashed green; and so on. A typical fragment from a record 
o f many runs is shown in figure 4.

The accumulated data have a random character, but, like data collected 
in many tossings o f a coin, they reveal certain unmistakable features when 
enormously many runs are examined. The statistical character o f the data 
should not be a source o f concern or suspicion. Blaming the behavior o f the 
device on repeated, systematic, and reproducible accidents is to offer an 
explanation even more astonishing than the conundrum it is invoked to dispel.

The data accumulated over millions (or, if you prefer, billions or tril
lions) o f runs can be summarized by distinguishing two cases.

Case a. In those runs in which each switch ends up with the same 
setting (11,22, or 33) both detectors always flash the same color. RR and GG 
occur in a random pattern with equal frequency; RG and GR never occur.

Case b. In the remaining runs, those in which the switches end up with 
different settings (12, 13, 21, 23, 31, or 32), both detectors flash the same 
color only a quarter of the time (RR and GG occurring randomly with equal 
frequency); the other three quarters o f the time the detectors flash different 
colors (RG and GR occurring randomly with equal frequency).
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Figure 4. Fragment o f a page o f a volume from the set o f notebooks recording a
long senes of runs.

These results are subject to the fluctuations accompanying any statis
tical predictions, but, as in the case of a coin-tossing experiment, the observed 
ratios will differ less and less from those predicted, as the number of runs 
becomes larger and larger.

This is all it is necessary to know about how the device operates. The 
particular fractions k and $ arising in case b are o f critical importance. If the 
smaller of the two were $ or more (and the larger jj or less) there would be 
nothing wonderful about the device. To produce the conundrum it is neces
sary to run the experiment sufficiently many times to establish with over
whelming probability that the observed frequencies (which will be close to 
25% and 75%) are not chance fluctuations away from expected frequencies of 
33i% and 66i%. (A million runs is more than enough for this purpose.)

These statistics may seem harmless enough, but some scrutiny reveals 
them to be as surprising as anything seen in a magic show, and leads to similar 
suspicions o f hidden wires, mirrors, or confederates under the floor. We 
begin by seeking to explain why the detectors invariably flash the same colors 
when the switches are in the same positions (case a). There would be any 
number of ways to arrange this were the detectors connected, but they are not.
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Nothing in the construction of either detector is designed to allow its function
ing to be affected in any way by the setting of the switch on the other, or by 
the color o f the light flashed by the other.

Given the unconnectedness of the detectors, there is one (and. I would 
think, only one) extremely simple way to explain the behavior in case a. We 
need only suppose that some property o f each particle (such as its speed, size, 
or shape) determines the color its detector will flash for each of the three 
switch positions. What that property happens to be is o f no consequence; we 
require only that the various states or conditions o f each particle can be 
divided into eight types; RRR, RRG, RGR, RGG, GRR, GRG, GGR, and 
GGG. A particle whose state is o f type RGG, for example, will always cause 
its detector to flash red for setting I o f the switch, green for setting 2, and 
green for setting 3; a particle in a state o f type GGG will cause its detector to 
flash green for any setting o f the switch; and so on. The eight types of states 
encompass all possible cases. The detector is sensitive to the state of the 
particle and responds accordingly; putting it another way, a particle can be 
regarded as carrying a specific set of flashing instructions to its detector, 
depending on which o f the eight states the particle is in.

The absence o f RG or GR when the two switches have the same settings 
can then be simply explained by assuming that the two particles produced in a 
given run are both produced in the same state; i.e., they carry identical 
instruction-sets. Thus if both particles in a run are produced in states of type 
RRG, then both detectors will flash red if both switches are set to 3. The 
detectors flash the same colors when the switches have the same settings 
because the particles carry the same instructions.

This hypothesis is the obvious way to account for what happens in case 
a. I cannot prove that it is the only way, but 1 challenge the reader, given the 
lack o f connections between the detectors, to suggest any other. The apparent 
inevitability of this explanation for the perfect correlations in case a forms the 
basis for the conundrum posed by the device. For the explanation is quite 
incompatible with what happens in case b.

If the hypothesis of instruction-sets were correct, then both particles in 
any given run would have to carry identical instruction-sets whether or not the 
switches on the detectors were set the same. At the moment the particles are 
produced there is no way to know how the switches are going to be set. For 
one thing, there is no communication between the detectors and the particle- 
emitting box, but in any event the switches need not be set to their random 
positions until after the particles have gone off in opposite directions from the 
box. To ensure that the detectors invariably flash the same color every time 
the switches end up with the same settings, the particles leaving the box in 
each run must carry the same instructions even in those runs (case b) in which 
the switches end up with different settings.



56 N. David Mermin

Let us now consider the totality of all case b runs. In none o f them do 
we ever learn what the full instruction sets were, since the data reveal only the 
colors assigned to two of the three settings. (The case a runs are even less 
informative.) Nevertheless, we can draw some nontrivial conclusions by ex
amining the implications of each o f the eight possible instruction sets for those 
runs in which the switches end up with different settings. Suppose, for exam
ple, that both particles carry the instruction-set RRG. Then out o f the six 
possible case b settings, 12 and 21 will result in both detectors flashing the 
same color (red), and the remaining four settings, 13, 31, 23, and 32, will 
result in one red flash and one green. Thus both detectors will flash the same 
color for two of the six possible case b settings. Since the switch settings are 
completely random, the various case b settings occur with equal frequency. 
Both detectors will therefore flash the same color in a third of those case b 
runs in which the particles carry the instruction-sets RRG.

The same is true for case b runs where the instruction-set is RGR, GRR. 
GGR, GRG, or RGG, since the conclusion rests only on the fact that one 
color appears in the instruction-set once and the other color, twice. In a third 
o f the case b runs in which the particles carry any o f these instruction-sets, the 
detectors will flash the same color. The only remaining instruction-sets are 
RRR and GGG; for these sets both detectors will evidently flash the same 
color in every case b run.

Thus, regardless o f how the instruction-sets are distributed among the 
different runs, in the case b runs both detectors must flash the same color at 
least a third o f the time. (This is a bare minimum; the same color will flash 
more than a third o f the time, unless the instruction sets RRR and GGG never 
occur.) As emphasized earlier, however, when the device actually operates, 
the same color is flashed only a quarter o f the time in the case b runs.

Thus the observed facts in case b are incompatible with the only appar
ent explanation of the observed facts in case a, leaving us with the profound 
problem o f how else to account for the behavior in both cases. This is the 
conundrum posed by the device, for there is no other obvious explanation of 
why the same colors always flash when the switches are set the same. It would 
appear that there must, after all, be connections between the detectors— 
connections of no known description which serve no purpose other than 
relieving us o f the task o f accounting for the behavior o f the device in their 
absence.

1 shall not pursue this line o f thought, since my aim is only to state the 
conundrum of the device, not to resolve it. The lecture demonstration is over. 
I shall only add a few remarks on the device as a parable.

One o f the historic exchanges between Einstein (Einstein, Podolsky, 
Rosen 1935) and Bohr (1935), which found its surprising denouement in the 
work o f J. S. Bell (1964) nearly three decades later, can be stated quite clearly



More Experimental Physics from EPR 5.7

in terms of the device. I stress that the transcription into the context of the 
device is only to simplify the particular physical arrangement used to raise the 
issues. The device is a direct descendant o f the rather more intricate but 
conceptually similar Gedanken experiment proposed in 1935 by Einstein, 
Podolsky, and Rosen. We are still talking physics, not descending to the level 
of analogy.

The Einstein, Podolsky, Rosen experiment amounts to running the de
vice under restricted conditions in which both switches are required to have 
the same setting (case a). Einstein would argue (as was argued above) that the 
perfect correlations in each run (RR or GG but never RG or GR) can be 
explained only if instruction-sets exist, each particle in a run carrying the 
same instructions. In the Einstein. Podolsky, Rosen version of the argument, 
the analogue of case b was not evident, and its fatal implications for the 
hypothesis o f instruction-sets went unnoticed until Bell’s paper.

The Gedanken experiment was designed to challenge the prevailing 
interpretation of the quantum theory, which emphatically denied the existence 
of instruction-sets, insisting that certain physical properties (said to be com
plementary) had no meaning independent o f the experimental procedure by 
which they were measured. Such measurements, far from revealing the value 
o f a preexisting property, had to be regarded as an inseparable part o f the very 
attribute they were designed to measure. Properties o f this kind have no 
independent reality outside the context o f a specific experiment arranged to 
observe them: the moon is not there when nobody looks.

In the case o f my device, three such properties are involved for each 
particle. We can call them the 1-color, 2-color, and 3-color o f the particle. 
The n-color of a particle is red if a detector with its switch set to n flashes red 
when the particle arrives. The three n-colors o f a particle are complementary 
properties. The switch on a detector can be set to only one o f the three 
positions, and the experimental arrangements for measuring the I-, 2-. or 3- 
color o f a particle are mutually exclusive. (We may assume, to make this 
point quite firm, that the particle is destroyed by the act o f triggering the 
detector, which is, in fact, the case in many recent experiments probing the 
principles that underly the device.)

To assume that instruction-sets exist at all is to assume that a particle 
has a definite 1-, 2-, and 3-color. Whether or not all three colors are known or 
knowable is not the point; the mere assumption that all three have values 
violates a fundamental quantum-theoretic dogma.

No basis for challenging this dogma is evident when only a single 
particle and detector are considered. The ingenuity o f Einstein, Podolsky, and 
Rosen lay in discovering a situation involving a pair o f particles and detec
tors, where the quantum dogma continued to deny the existence of I-, 2-, and 
3-colors, while, at the same time, quantum theory predicted correlations (RR
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and GG but never RG or GR) that seemed to require their existence. Einstein 
concluded that, if the quantum theory were correct, i.e., if the correlations 
were, as predicted, perfect, then the dogma on the nonexistence o f comple
mentary properties— essentially Bohr’s doctrine o f complementarity— had to 
be rejected.

Pauli's attitude toward this in his letter to Bom is typical o f the position 
taken by many physicists: since there is no known way to determine all three 
n-colors o f a particle, why waste your time arguing about whether or not they 
exist? To deny their existence has a certain powerful economy— why en
cumber the theory with inaccessible entities? More importantly, the denial is 
supported by the formal structure o f the quantum theory which completely 
fails to allow for any consideration o f the simultaneous 1-, 2-, and 3-colors of 
a particle. Einstein preferred to conclude that all three rt-colors did exist, and 
that the quantum theory was incomplete. 1 suspect that many physicists, 
though not challenging the completeness of the quantum theory, managed to 
live with the Einstein, Podolsky, Rosen argument by observing that though 
there was no way to establish the existence of all three n-colors, there was also 
no way to establish their nonexistence. Let the angels sit, even if they cannot 
be counted.

Bell changed all this by bringing into consideration the case b runs and 
pointing out that the quantitative numerical predictions o f the quantum theory 

vs. $) unambiguously ruled out the existence of all three n-colors. Experi
ments done since Bell’s paper confirm the quantum-theoretic predictions.12 
Einstein’s attack, were he to maintain it today, would be more than an attack 
on the metaphysical underpinnings o f the quantum theory— more, even, than 
an attack on the quantitative numerical predictions o f the quantum theory. 
Einstein’s position now appears to be contradicted by nature itself. The device 
behaves as it behaves, and no mention of wave-functions, reduction hypoth
eses, measurement theory, superposition principles, wave-particle duality, 
incompatible observables, complementarity, or the uncertainty principle is 
needed to bring home its peculiarity. It is not the Copenhagen interpretation of 
quantum mechanics that is strange, but the world itself.

As far as 1 can tell, physicists live with the existence of the device by 
implicitly (or even explicitly) denying the absence o f connections between its 
pieces. References are made to the “wholeness” o f nature: particles, detec
tors, and box can be considered only in their totality; the triggering and 
flashing of detector A cannot be considered in isolation from the triggering 
and flashing o f detector B— both are part o f a single indivisible process. This 
attitude is sometimes tinged with Eastern mysticism, sometimes with Western 
know-nothingism, but, common to either point o f view, as well as to the less

l2Clauser and Shimony (1978). For a less technical summary, see d'Espagnal (1979)
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trivial but considerably more obscure position of Bohr, is the sense that 
strange connections are there. The connections are strange because they play 
no explicit role in the theory: they are associated with no particles or fields 
and cannot be used to send any kinds o f signals. They are there for one and 
only one reason: to relieve the perplexity engendered by the insistence that 
there are no connections. Whether or not this is a satisfactory state o f affairs 
is, I suspect, a question better addressed by philosophers than by physicists.

1 conclude with the recipe for making the device, which, I emphasize 
again, can be ignored

The device exploits Bohm’s version (1951,614-619) of the Einstein, Podolsky, 
Rosen experiment. The two particles emerging from the box are spin { particles 
in the singlet state. The two detectors contain Stem-Gerlach magnets, and the 
three switch positions determine whether the orientations of the magnets are 
vertical or at ±120° to the vertical in the plane perpendicular to the line of flight 
of the particles. When the switches have the same settings the magnets have the 
same orientations. One detector flashes red or green according to whether the 
measured spin is along or opposite to the field; the other uses the opposite color 
convention. Thus when the same colors flash the measured spin components are 
different.

It is a well-known elementary result that, when the orientations of the 
magnets differ by an angle 0, then the probability of spin measurements on 
each particle yielding opposite values is cos2(<9/2). This probability is unity 
when 0  = 0° (case a) and j when 0  = ±120° (case b).

If the subsidiary detectors verifying the passage of the particles from the 
box to the magnets are entirely nonmagnetic they will not interfere with this 
behavior.


