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ABSTRACT 

This paper deals with the dynamics of an unbounded, statistically homogeneous, and isotropic dis- 
tribution of gravitating particles. As is well known, the mean density and velocity fields depend on a 
single function, the cosmic scale factor R{f), given by relativistic cosmology. In an approximation that 
is adequate for all astronomical applications, the peculiar velocity t; of a test particle is shown to satisfy 
the equations of motion 

7¿RV) = -R1TX' 

where the potential <p is related to the peculiar density field <r by Poisson’s equation. In a uniform medium 
(<r = 0) the velocity of a test particle decays as Rr1. More generally, the form of the equations of motion 
implies that “initial” conditions cannot have an enduring influence on particle motions, which must 
accordingly be caused mainly by the action of the fluctuating gravitational force field d<p/dx. 

This idea finds its mathematical expression in two coupled equations for Tm = the mean 
peculiar kinetic energy per unit mass, and Um — | (<p)m, the mean peculiar potential energy per unit mass: 

)+|( 2rm + ) = o, 

2Tm(t) + Um(t-e) =0, 

where e <C /. The first equation (the cosmologie energy equation) was first obtained in this form by 
Irvine. It reduces to a more familiar form if one sets 

ê = p(Tm+ Um), 

3p = p(2Tm-\- Um), 

where ë is the mean internal energy density and p the cosmic pressure. The second equation (the cosmo- 
logie virial theorem) is here derived by a fundamentally different method from the one used to derive 
the virial theorem for a bounded system. The present method applies also to bounded systems, but the 
conventional method breaks down when applied to an unbounded system. 

The cosmologie virial theorem is expected to be valid as long as non-gravitational forces and the 
effects of radiation are negligible. The specific energies Tm and Um are then nearly constant in time The 
constancy of Um, which may be written in the form 

Um = — 7rGa2pX2 , 

where X is a clustering scale and a2 = (<r2 )/p2 is a measure of the density contrast, implies that a2 in- 
creases at least as fast as R—a conclusion reached previously (Layzer 1954a) by a less rigorous argument. 

I. INTRODUCTION 

This is the first in a series of papers expounding an approach to cosmogony whose 
central idea is that self-gravitating systems are formed through gravitational clustering 
in an expanding cosmic distribution, rather than through the fragmentation of finite gas 
clouds.1 The hypothesis of gravitational clustering depends for its theoretical justification 
chiefly on the results obtained in the present paper. These results are, on the one hand, 

1 The fragmentation hypothesis has been criticized in a previous paper (Layzer 1963). 
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direct consequences of Einstein^ theory of gravitation as applied to a statistically 
homogeneous and Isotropic distribution of mass points. On the other hand, they admit 
of empirical verification through observations that are probably within the scope of 
current techniques. The present paper is therefore less speculative than its successors, 
now in preparation, which will deal with the origin of the clustering hierarchy, the 
structure of galaxies, and the origin of planetary systems. 

It is a plausible conjecture that the peculiar motions of galaxies are caused by local 
variations in the gravitational field due to clustering. If we could assume that all galaxies 
belong to compact clusters and if we had a sufficiently complete statistical description of 
the clusters, the virial theorem would enable us to express this conjecture in quantitative 
form. In fact, only a small proportion of galaxies belong to recognizable clusters, and, 
although many clusters undoubtedly go unrecognized, the detailed consequences of the 
assumption that all galaxies belong to clusters, as worked out by Neyman and Miss 
Scott (1952), appear to conflict with observation (see Neyman and Scott 1956, p. 91). 
If we adopt a less restrictive model for the spatial distribution of galaxies (see, e.g., 
Layzer 1956a), we need to have a version of the virial theorem that applies to a cosmic 
distribution of interacting particles, i.e., an unbounded, expanding distribution charac- 
terized by statistical homogeneity and isotropy. 

Irvine (1961) has shown that the standard derivation of the virial theorem, when 
applied to a finite sample of a cosmic distribution, leads to a trivial identity. In retrospect 
this result is not surprising. The classical derivation of the virial theorem rests on the 
assumption that the system under consideration occupies, on the average, a fixed volume 
of space. An isolated system can fulfil this condition if and only if the forces that hold it 
together are related in a particular way to its internal motions. In a cosmic distribution, 
however, any finite subsystem whose dimensions are large compared with the scale of 
clustering occupies an ever increasing volume, whose expansion is uninfluenced, except 
through surface effects, by local gravitational fields and peculiar motions. This does not 
imply that in a cosmic distribution the local gravitational fields and the peculiar motions 
are unrelated. Rather, it suggests that the conventional mathematical expression of the 
relationship is inappropriate. This is also suggested by the following more general con- 
sideration: In describing a bounded physical system, one normally adopts at the outset a 
definite origin of co-ordinates and identifies it with the center of mass of the system. 
Since a cosmic distribution has neither a center of mass nor any other preferred point, the 
choice of a definite origin introduces an artificial asymmetry into its description. 

In order to avoid specifying a definite origin, one must work with displacements rather 
than with position vectors and with velocities relative to an instantaneous local standard 
of rest rather than with velocities in a fixed frame of reference. In addition, one must 
use a description of the local gravitational fields that is invariant under translation. The 
gravitational field equations automatically satisfy this requirement but the conventional 
auxiliary conditions do not, since they refer to the behavior of the field at great distances 
from some fixed point. One can resolve this difficulty by using statistical symmetry con- 
ditions instead of boundary conditions. In the quasi-Newtonian approximation on which 
the following work is based, such symmetry conditions ensure that the fluctuating com- 
ponent of the gravitational field is uniquely determined by the distribution of matter.2 

The restrictions just outlined do not in themselves provide a solution of the problem 
in hand, but they define the framework within which the solution must be sought. In 
the next section we shall derive the fundamental equations governing local irregularities 
in a cosmic distribution, verifying results previously obtained by Irvine (1961) and 
Layzer (1954a). This will prepare the way for a derivation of the virial theorem in Section 

2 By contrast, the mean gravitational field is not completely determined by the mean distribution of 
matter and symmetry conditions; the mean spatial curvature at any given instant can still be freely 
specified. This suggests that relativistic cosmology in its present form is incomplete and needs to be 
supplemented in some as yet unknown manner. 
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III. At the end of Section III we shall discuss briefly the possibility of testing the cos- 
mologie virial theorem observationally. The data needed for such a test appear to lie 
within the scope of current observational techniques. 

II. THE EQUATIONS OF MOTION AND THE ENERGY EQUATION 

Let p(x} i) denote the density of matter in a statistically homogeneous and isotropic 
distribution. We may regard p either as a random function of position or as a particular 
realization of a random function. If we adopt the first point of view, the statistical prop- 
erties of the density field will be described in terms of what the physicist calls ensemble 
averages; if we adopt the second point of view, in terms of space averages. If the two 
averages coincide, the distribution is said to be ergodic; we shall assume that this is the 
case.3 In what follows, the notation < ) may be interpreted as indicating either an 
ensemble average or a space average. In either case, we assume that the averaging process 
is a linear operation. 

The density function may be written in the form 

PO, t) = Pit) + cr(*» t) , (1) 
where 

<p(*, t)y = p{t), <ö-(x, /)> = o. (2) 

The autocorrelation function / of the fluctuation field a is defined by 

With the help of the autocorrelation function, one can define various clustering scales, 
the most important of which in the present context is given by 

f f(r)rdr = \2. (4) 
J0 

We assume that X is finite. 
In a first approximation the geometry of space-time is that appropriate to a uniform 

fluid (called the íísubstratum,,) whose density and pressure coincide at all times with the 
mean density and mean pressure of the actual cosmic distribution. The metric of the 
substratum is given by 

dr2 = dt2 - R2(t)A2(dx2 + df + dz2) , ^ = (1 + W2)-1, (5) 

where t is the cosmic time and the barred quantities are co-moving co-ordinates; the 
unbarred space co-ordinates of equations (l)-(3) are related to the co-moving co- 
ordinates by 

X = R(l)x , (6) 

The co-ordinate system (x, t) is locally inertial; in it the laws of local physics take their 
customary forms. The scale of the co-moving co-ordinates can always be chosen so as to 
make the curvature parameter k have one of the three values +1, 0, —1. We shall 
assume that if ß 5^ 0, then \/R(t) <3C 1, so that Euclidean geometry prevails to a good 
approximation in a region whose diameter is a few times the scale of local irregularities. 

The cosmic scale factor R and the mean density p are connected by the relation 

R*p = Const., (7) 

3 Ergodic theory deals nominally with stationary stochastic processes. However, statements about 
stationary stochastic processes can readily be translated into statements about statistically homogeneous 
and isotropic spatial distributions. 
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which is the equation of continuity for the substratum.4 Let v denote the velocity of a 
particle relative to the substratum; clearly, 

<z/> = 0 . (8) 

The equation of continuity for the actual distribution is5 

¿(£3p)+7^-(£3pv) =0, W 
dt OX 

which, by virtue of equation (7), reduces to 

=0. (10) 
dt dx 

Equation (9) equates the rate of change of the mass enclosed by a surface every point of 
which is locally at rest (i.e., at rest with respect to the substratum) to the flux of mass 
into the expanding region bounded by this surface. 

The peculiar potential <p is defined as that solution of Poisson’s equation, 

VV = 47rGa-, (ii) 

which satisfies the conditions of statistical homogeneity and isotropy and the convention 

<» = 0 . (12) 

These conditions determine <p uniquely; it is given by 

(p(x, t) = —GJ 
t)dV' 

(13) 

The integration extends formally over all space, but in practice only the contributions 
from within a few multiples of the clustering scale X are significant. In this region 
Euclidean geometry is valid and 

dV' = dx'dÿdz'. (14) 

We are now in a position to write down the equations of motion for a test particle. 
Let V denote the velocity of a particle relative to a fixed origin, which is locally at rest. 
The acceleration of a particle that coincides instantaneously with the origin is given in 
first approximation by6 

^=—(IS) 
dt dx 

4 In eq. (7), as in all the subsequent work, all terms of order (v/c)2 compared with the leading terms 
are to be neglected. In particular, it is not necessary in the present discussion to distinguish between 
the matter-energy density p and the rest-mass density p. 

6 In co-moving co-ordinates the equation of continuity takes the form 

!<*•,)+¿(íív§)-o. 

On setting v = R(dx/dt) and noting that d/_dx = ^/R{t) d/dx, one obtains equation (9), provided that 
d/dt is interpreted as a time-derivative with x (not x) held constant In this paper d/dt always has this 
meaning In other words, x should always be interpreted as a function of x and t (as in the above expres- 
sion for d/dx) rather than as an independent variable. 

6 For a detailed mathematical discussion of this approximation, together with a complete list of 
references, see Irvine (1961). 
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In accordance with the program outlined in Section I, we must replace equation (15) by 
a relation involving v instead of F. To derive this relation, we note that a particle that 
is at the origin at time t will be at the point dx = vdt at time t + dL Here the velocity of 
the substratum, as seen from the origin, is H(t + dt)dx = H(t)v(t)dt, to first order, where 

H{t) 
R(t) 

R(t)' 
(16) 

Hence, in view of equation (15), the rate of change of the peculiar velocity will be given 
by 

dv 
dt 

(17) 

or, equivalently, 

(18) 

As equations (17) and (18) make no reference to a particular origin, they are valid at 
every point. Equation (18) shows that in a uniform distribution (<r = p = 0) the peculiar 
velocity of every particle varies as R“1. Hence in such a distribution the cosmic pressure 
and the internal energy density, both of which are proportional to p(v2), vary as R~b—a 
well-known result. 

To derive the energy equation for local irregularities, we form the scalar product of 
equation (18) with RvpdV and integrate over the distribution, which in the first instance 
we assume to be finite (k = 1). We also assume that the distribution consists of discrete 
particles, whose internal structure we shall ignore. The left side of the resulting equation, 
then, is 

i/!«» »'Pi F -12> - J, («‘S j» »') - , o». 

where T denotes the total kinetic energy associated with peculiar motions. We transform 
the right side by partial integration and then use equations (10) and (13): 

- fRvj¿(R<p)pdV=R2f[j¿-(Pv)]vdV 

Here a = o-(x, t), <r' = a(x', t), etc. The potential energy associated with the fluctuating 
density field a is given by 

U = 
t)<r(xft)dVdV' 

(21) 

Since, by equations (6) and (16), 

d 1 H 
dt \x — %'\ \x — xf\' 

(22) 

the right side of the energy equation finally takes the form 

-r'(t,+b)v- 
(23) 
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Equating expressions (19) and (23), we obtain 

^-XT+U)+H{2T+U) =0, (24) 

an equation first derived in this form by Irvine (1961). 
The foregoing derivation does not immediately apply to an infinite distribution, but 

the necessary modifications are essentially trivial: We extend the integration over a 
finite volume V whose boundary is locally at rest, divide through by pF, the mean mass 
of the region, and let V increase indefinitely. The “surface contributions,, all vanish in 
the limit F = . We shall use the suffix m to distinguish quantities defined per unit 
mass, and the notation < >m to indicate a mass average. Thus 

rm = lirn(pF)-1 f hpMV = (25) 
Ft J y 

Um = \im(pV)-' f %<T<pdV 
Ft ¿V 

(26) 

= lim(pF)-1 f %p<pdV - 
Ft J F 

In place of equation (24) we now have 

=0, <27> 

which is valid for all three possible values of the curvature parameter k. 
The potential energy per unit mass Um can be written in the useful form 

Um = — 7rGa2pX2, (28) 
where 

<(72) = a2p2 . (29) 

Equation (28)—with a slightly different definition of X—has been given previously 
(Layzer 1954a). 

On comparing equation (27) with the cosmologie energy equation 

d{eR*) x -udR* „ 
—dr“+^^7=0> 

(30) 

in which ë denotes the internal energy density and p the cosmic pressure, we see that the 
two equations will coincide (see eq. [16]) if we set 

ê = p{Tm + Z7m) , (3i) 

3p — p(2Tm Um) . (32) 

Irvine (1961) has given a more complete justification for these identifications. Although 
equations (31) and (32) have precisely the forms suggested by statistical theories of im- 
perfect gases and liquids, the gravitational contributions, which arise from non-uniform- 
ity of the spatial distribution, have usually been neglected in cosmology. 

Equation (30) is usually taken to mean that any volume F of the substratum expands 
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adiabatically, doing work against the rest of the universe at the rate p(dV/dt). The pres- 
ent derivation leads one to interpret the term pidV/dt) as describing a uniformly distrib- 
uted source or sink of energy having a purely kinematic origin. That the energy associ- 
ated with local irregularities is not in general conserved is a consequence of the non- 
Newtonian character of the equations of motion. This point is discussed more fully in 
Section IV. 

III. THE VIRIAL THEOREM 

In the absence of density fluctuations, the peculiar velocity of every particle in a 
cosmic distribution would decay like i£-1(0- It follows that we can, in general, attribute 
the peculiar velocities of particles in a cosmic distribution to the action of local gravita- 
tional fields; the influence of initial conditions—if it is meaningful to speak of initial con- 
ditions in this context—quickly dies out. Let us express this idea mathematically. By 
integration, we obtain from the equations of motions (18) 

v = 
f'Rjt') d<p(x, tf) 

Jto R(t) dx 
dtf Vq . (33) 

We now assume that ¿o has been so chosen that no appreciable correlation exists between 
the peculiar velocities of the same particle at times t and /o. Forming the scalar product 
of equation (33) with v and taking the mass average, we then have 

R(tf) d<p(x,t') 

R(t) dx 
dt'. (34) 

In order to evaluate the integral on the right we shall first make a very restrictive as- 
sumption about the time-dependent behavior of local irregularities. Afterward we shall 
replace this assumption by a weaker one. 

We shall say that the evolution of local irregularities is a quasi-stationary process if 

R(tf) d<p(x,t')\ 
R(t) dx A n n, (35) 

where F is any smooth function of its argument. Assuming for the moment that this 
condition is fulfilled, we can make the following change of variables in the integrand on 
the right side of equation (34) : 

(T=¿-¿'). 

The integral in question then becomes 

^(¿i) dipixyh) 
>, 

dr + f \ a R{t1+t) dx 

/d<p{x,h) r* R(h) \ 

\ dx jR(¿i+t) 

(36) 

(37) 

Now the displacement of a particle from its initial position is given in terms of its peculiar 
velocity by 

/t R ( t) 
vix’ nR{7j dt'; 

(38) 
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the right side of this formula represents the resultant of all the infinitesimal displace- 
ments v(x, t^dt' suffered by the particle, each corrected for the expansion of the sub- 
stratum in the interval t). Thus the term (37) reduces to 

/3(p{xq, k) 

\ dxo 
[xo— x(xo, h + t — to 

/d<f(x, k) 
\ dx 

(39) 

This expression seems to depend on the choice of a co-ordinate origin but is, in fact, 
invariant under translation. By a short series of standard transformations (see, e.g., 
Chandrasekhar 1961, p. 578), we finally obtain 

xN = ¿l)>m- (4°) 
> U X r m 

This is the value of the right side of equation (34) under the assumption of quasi- 
stationarity. Setting = t, we therefore obtain from equation (34) the relation 

<fl2)m + = 2Tm + Um = 0 . (41) 

Since h is arbitrary, it also follows that Tm and Um are individually constant. Hence 
(d/dt) (Tm + Um) must vanish with (2Tm + Um). This result is consistent with the form 
of the energy equation (27). Conversely, the constancy of Tm and Um follows from the 
energy equation (27) and the virial theorem (41). And under quasi-stationary conditions 
the energy equation reduces to 

4-ATm+Um) = 0. (42) 

We now return to the quasi-stationarity postulate (35), which we replace by the quite 
general formula 

t-t'). (43) 

The postulate of quasi-stationarity asserts that the function F(t, r) does not depend on 
the argument L That this postulate cannot be fulfilled exactly in all circumstances is 
shown by the example of a universe consisting entirely of compact, essentially non-inter- 
acting clusters. Eventually the individual clusters will satisfy the classical virial theorem. 
Such a distribution is obviously not quasi-stationary, nor does it satisfy the cosmologie 
virial theorem (41). For example, the peculiar kinetic energy T of a stationary cluster 
increases monotonically with time, asymptotically approaching the kinetic energy as 
reckoned in the usual center-of-mass system. 

A weaker assumption than quasi-stationarity is the following: We assume that over 
the range of values of tf for which the function F(tr, t — t') differs appreciably from zero 
it can be adequately represented by the first-order formula 

where 

and 

F(t', t- t') = F(th t- t')+ (/' - h)G(t, t- tf), 

dF(t, t ) 

t-U 

f rG(t,T) d t 
  

fœG(t,r)dr 
0). 

(44) 

(45) 

(46) 
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The essential content of this assumption is that the characteristic time associated with 
the variation of F(t, r) as a function of its first argument is much greater than the char- 
acteristic time associated with its variation as a function of its second argument. Quasi- 
stationarity corresponds to the limiting case when the ratio between the first and second 
characteristic times is infinite. 

Integrating equation (44), we obtain, with the help of equation (46), 

- F(tlyr)dr= - Um{k) - Um{t-e). (47) 
J -«o 

In place of equation (41), we now have 

2Tm{t) + Vm{t - e) = 0, 

which, if € is sufficiently small, can be written in the form 

2rw+i/m 
dUm_ 0 dTm 

dt dt * 

Inserting this equation in the energy equation (27), we have 

dTm d /rp i TT \   dUt 
dt(Tm+Um)- v dt 

rt = tH . 

2r, 
dt ’ 

Equation (50) has the alternative forms 

jt[Tm+(l + v)Um] = Um^, 

jt[(i-2v)Tm+Um] = -2Tm^j. 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

If the function r¡(f) is given, equations (49) and (50), together with initial values of 
Tm and Umy determine Tm and Um for all time. The determination of ??(/) requires a more 
detailed consideration of the dynamics of local irregularities than we have given here. 
All that can be said at present is that the variations of Tm and Um over periods of the 
order of H-1 will be small if rj is small. The last condition seems very plausible, but a 
quantitative investigation of it would be desirable. 

The preceding discussion makes no allowance for non-gravitational forces or for the 
effects of radiation, both of which are likely to be important only during early stages of 
the expansion, when it is also likely that the cosmic pressure will depart appreciably from 
zero. Conversely, it may be a good approximation to assume that the specific energy is 
constant and that the cosmic pressure is zero during those stages of the expansion when 
non-gravitational forces and the effects of radiation are negligible. During these stages 
the evolution of local irregularities does not influence the rate of cosmic expansion, which 
is described by the classical Einstein-Friedmann theory. Note that allowing for the in- 
ternal structure of the “particles” that make up the cosmic distribution in no way alters 
this conclusion: since the “particles” are assumed to be in equilibrium, their internal 
motion and internal forces make no net contribution to the cosmic pressure. 

Finally, let us consider briefly the problem of verifying the cosmologie virial theorem 
observationally. The chief difficulty here stems from the lack of an adequate distance 
criterion for external galaxies. Field galaxies are normally selected for radial-velocity 
measurements on the basis of apparent magnitude. In order to estimate the peculiar 
kinetic energy Tm, one needs to be able to separate the dispersion of the measured radial 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



No. 1, 1963 COSMOGONY 183 

velocities about the mean (w, log z) relation into a component due to the dispersion of 
absolute magnitudes and a component due to the dispersion of peculiar velocities. It may 
perhaps be possible to effect such a separation by exploiting the fact that the two com- 
ponents vary differently with apparent magnitude: the dispersion in absolute magnitude 
results in a constant dispersion in log z (since AM A log r A log z), while the dis- 
persion in peculiar velocity—the effect we wish to measure—results in a constant disper- 
sion in the redshift itself. The lack of adequate depth resolution also introduces consider- 
able uncertainty into the estimation of the peculiar gravitational energy Um from galaxy 
counts to a fixed limiting magnitude. 

IV. DISCUSSION 

The equations of motion for a test particle in a statistically homogeneous and isotropic 
distribution of matter can be written in two equivalent forms: 

—77= —~Gpx—^~ (Newtonian form) * (54) 
at 3 dx 

l(^) = (quasi-Newtonian form). (55) 

In a universe composed of compact, effectively isolated, self-gravitating systems whose 
centers of mass are locally at rest, equation (54) reduces to the conventional statement of 
Newton’s Second Law if the co-ordinate origin is taken to coincide with the center of 
mass of the system containing the test particle under consideration. More generally, the 
right side of equation (54) represents the force per unit mass exerted on a test particle by 
the matter contained in a sufficiently large sphere centered on the origin. One must bear 
in mind, however, that the first term on the right side of equation (54) does not represent 
the force exerted by the uniform component of the actual distribution; this force vanishes 
everywhere, by symmetry. The term in question results from the non-inertial character 
of the co-ordinate system, which becomes increasingly pronounced with increasing dis- 
tance from the origin. Thus the Newtonian form of equation (54) masks its essentially 
non-Newtonian character.7 

The non-Newtonian character of the motion is clearly shown by equation (55), which 
relates the rate of change of the velocity of a particle relative to the local standard of rest 
to the gravitational force acting on the particle. For a uniform cosmic distribution {a = 
<p == 0) we have the following analogue of Newton’s First Law of Motion: In the absence 
of local irregularities the velocity of every test particle varies as R~l{t). 

The quasi-Newtonian energy equation, 

fl2>m +M [ < fl2>m + J <^>>w] = 0 > (56) 

shows that conservation of energy does not, in general, obtain in a cosmic distribution, 
though, by virtue of the cosmologie virial theorem, 

<>2(0>™ + K<p(¿ ~ «OX* = ° j <57) 

energy may be approximately conserved under certain conditions. 
The evolution of local irregularities affects the rate of cosmic expansion through the 

cosmic pressure, given by 
2>P = p[{v2)m + . (58) 

7 For a fuller discussion of this point, which has frequently been misunderstood, the reader may 
consult two notes by Layzer (1954&, 19566). 
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When energy is conserved, the cosmic pressure vanishes, and the expansion is unaffected 
by the evolution of local irregularities. 

The considerations of the present paper need to be generalized in two ways. In the 
first place, non-gravitational forces, as well as radiation and radiative processes, need to 
be considered. In the second place, we need a more detailed statistical description of the 
evolution of local irregularities than the energy equation and the virial theorem provide. 
In order to obtain such a description, it will probably be necessary to work explicitly 
with two-point averages, such as the density covariance (<r(x)(r(x + y))- This entails a 
certain increase in the complexity of the mathematical description. As long as one works 
exclusively with one-point averages, the description involves only the cosmic time t. 
Problems in which only one-point averages figure are thus analogous to problems in 
Newtonian physics pertaining to spherically symmetric systems in a steady state. The 
introduction of two-point averages increases the number of independent variables to two. 
Fortunately, three-or-more-point averages seem to be comparatively unimportant physi- 
cally, so that it will probably not be necessary to deal with equations involving more 
than two independent variables. 

This work has been supported in part by the National Science Foundation. 
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