
Einstein and 
the Wave-Particle Duality

I. Introduction

Niels Bohr, who was in a unique position to know, 
always insisted on the variety and complexity that char

acterize the history of quantum mechanics. In his last published 
work1 he described “the ‘heroic era’ of quantum physics” as in
volving “a unique cooperation of a whole generation of theoretical 
physicists from many countries,” and “the combination of dif
ferent lines of approach and the introduction' of appropriate 
mathematical methods.” Bohr’s words should serve as a warning 
against attempts to oversimplify this history by making some 
particular one of the lines of approach appear to be the principal 
way in which quantum physics developed. Understandably, but 
nonetheless unfortunately, many of the accounts of the period, 
including some of the memoirs written by those who played lead
ing parts in it, suffer from this kind of oversimplification. The 
picture of the development that one gets from such accounts, 
interesting though they may be for their personal, first-hand de
tails, lacks just that variety and complexity peculiar to the prin
cipal achievement of twentieth century physics.

The most common form that the oversimplification takes is an 
almost exclusive concentration on the problems'of atomic struc
ture and atomic spectra from Bohr’s work in 1913 to the new 
quantum mechanics of 1925-26. Such a concentration necessarily 
implies a neglect of other problems, problems that may have con
cerned a smaller number of theorists but that figured in a major 
way in the synthesis of the nineteen twenties. In this essay I shall
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try to follow another of the lines of approach to quantum me
chanics. This is a line that can be clearly traced by the problems 
struggled with along the way and by the methods used in the 
struggle. The problems were not those of atomic structure but 
those of the dual nature of radiation and the properties of gases. 
The methods were not so much those of the “old quantum 
theory” as those of statistical mechanics. And the presiding genius 
and principal guide was not Bohr, but Einstein. It is the line of 
approach that led up to Schrodinger’s wave mechanics.

As point of departure consider a remark from Erwin Schrd- 
dinger’s paper, On the Relationship of the Heisenberg-Born- 
Jordan Quantum Mechanics to Mine.2 In this paper, written in 
March, 1926, Schrodinger demonstrated the mathematical equiva
lence of these two theories, so very different in their starting 
points, their mathematical methods, and their general approaches. 
In contrasting the origins of his wave mechanics with those of the 
Gottingen physicists’ matrix mechanics, Schrodinger wrote that 
he was unaware of any genetic connection between his work and 
Heisenberg's, which had appeared some months earlier. He knew 
of Heisenberg’s work, but he had been “frightened off, not to say 
repulsed” by its formidable looking algebra and its lack of intui
tive clarity. “My theory,” he wrote, “was stimulated by de Bro
glie’s thesis and by short but infinitely far-seeing remarks by Ein
stein.”

Those “short but infinitely far-seeing remarks” that Einstein 
made late in 1924 form the focal point of this essay. They con
sisted of a forceful restatement of de Broglie’s idea that waves 
must be associated with material particles, backed by cogent argu
ments based on Einstein’s quantum theory of the ideal gas. Both 
de Broglie’s idea and the work of Bose that Einstein applied in 
his theory of the gas can, in turn, be properly considered as arising 
from Einstein’s revolutionary studies of the nature of radiation, 
carried on since the beginning of his career. Einstein had estab
lished the existence of a dual character in radiation, the wave- 
particle duality, and had long been emphasizing its fundamental 
importance for the future of physics. He was, therefore, the one 
physicist best fitted to see the significance of de Broglie’s work 
and to explore its implications. At the very time that Compton’s
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experiments had finally convinced a good many physicists of the 
reality of light quanta, particles of radiation, Einstein joined de 
Broglie in his proposal that this same wavc-particle duality must 
hold for matter as well as radiation. Little wonder that his in
fluence was felt quickly and decisively, and not least by Schro- 
dinger.

II. Einstein’s Work on the Structure of Radiation

A. “It is undeniable that there is an extensive group of data con
cerning radiation which show that light has certain fundamental 
properties that can be understood much more readily from the 
standpoint of the Newtonian emission theory than from the 
standpoint of the wave theory. It is my opinion, therefore, that 
the next phase of the development of theoretical physics will 
bring us a theory of light that can be interpreted as a kind of 
fusion of the wave and emission theories. The purpose of the 
following arguments is to give a foundation for this opinion, and 
to show that a profound change in our views of the nature and 
constitution of light is indispensable.”

These are the words that Einstein addressed to the scientists 
assembled in Salzburg in September 1909 to announce his view 
of the direction in which physics would inevitably be forced to 
move.3 Einstein had no doubt that the granular, quantum struc
ture of radiation, first pointed out by him four years earlier, was 
real and would have to be reckoned with seriously in any future 
theory. This view was unique to Einstein; just how unique it was 
can be gauged from the fact that Max Planck, the one physicist 
besides himself whose work was used in Einstein’s arguments, 
was the first to rise in the discussion period and to remark, 
apropos of Einstein’s idea of free quanta, “That seems to me to 
be a step that, in my opinion, is not yet called for.”4 Einstein, 
however, had a structure of arguments to support his view, a 
strong and beautiful structure that demonstrates the unity as well 
as the profundity of his thought. The structure was built on the
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ideas and methods of his three masterworks of 1905 and brought 
out the interconnections and common concerns behind these ap
parently very diverse papers.5

Einstein was arguing the need for a profound change in the 
theory of radiation, and he began his arguments with a review of 
the successes and the difficulties of the electromagnetic theory of 
light. He stressed the importance of the work that H. A. Lorentz 
had done in making a clear separation between aether and matter, 
so that the electromagnetic field was connected with ponderable 
matter only insofar as the charges and currents that serve as field 
sources are always found tied to matter. Lorentz's theory, with its 
assumption of an absolutely stationary aether, had been able to 
account for all of the previously paradoxical experimental results 
with one exception—the null result of the Michelson-Morley ex
periment. Einstein described his own “so-called relativity theory" 
as the outcome of insisting on two requirements: the principle of 
relativity (asserting the equivalence of reference systems in uni
form relative motion and, by implication, the nonexistence of the 
aether as an absolute frame of reference), and the constancy of 
the velocity of light. It is especially interesting to notice that he 
considered the latter postulate as preserving the essential feature 
of Lorentz’s aether theory, in which the velocity of light was, of 
course, independent of the velocity of its source.

The only aspect of the theory of relativity itself that Einstein 
found relevant to his discussion was one of its consequences that 
suggested a departure from previous views on the structure of 
radiation. This was the equivalence of mass and energy. By means 
of a simple relativistic calculation he showed that the inertial 
mass of a body that emits energy E in the form of radiation is 
reduced by the amount E/c2, where c is the velocity of light. The 
relativity theory therefore shared two features with an emission 
or corpuscular theory of light, in contrast with the wave theory: 
light was to be considered as an independently existing entity, and 
not as something depending on the state of a hypothetical medium; 
and the emission of light by one body followed by its absorption 
by another involved a transfer of inertial mass. To this extent, but 
only to this extent, did the theory of relativity modify one’s views 
of the structure of radiation. The principal support for Einstein’s
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opinion that basic change in those views was necessary came 
from other quarters, and he went on to marshal that support.

He pointed to a variety of properties of light, well known and 
easily stated, that just could not be explained on the basis of the 
wave theory. Why, for example, did the occurrence or nonoccur
rence of a particular photochemical reaction depend on the color 
of the incident light, and not at all on its intensity, which ought 
to determine the available energy? W hy is light of short wave
lengths more effective in producing chemical reactions than light 
of longer wavelengths? How does a single photoelectron acquire 
so much energy from a light source whose energy is distributed at 
a very low density, and why is the energy of such a photoelectron 
independent of the light intensity? Einstein conjectured that all 
of these difficulties had a common origin in one essential feature 
of the wave theory of light: the basic emission process did not 
have a simple inverse. If one considered the emission of light as 
consisting of the production of an expanding spherical wave by 
an oscillating electric charge, then the inverse process, the absorp
tion of a contracting spherical wave by a charge, while allowed by 
Maxwell’s equations, was surely not an elementary process. This 
formal defect of the wave theory—the absence of a symmetry that 
was present in, for example, the kinetic theory of gases—Einstein 
took to be a basic flaw.

In this respect a corpuscular theory of light would be superior, 
since it was not subject to the same kind of criticism. If the emis
sion of light could be viewed as the ejection of a “particle of 
light,” then absorption would consist of exactly the inverse proc
ess. Since the energy emitted would not be dissipated over an in
finite volume, all of it would be available at absorption. The basic 
features of all processes, such as' the photoelectric effect, that 
seemed to suggest directed rather than spherically symmetrical 
emission of light would then become intelligible. (It was char
acteristic of Einstein’s approach to point to a formal asymmetry 
in the underlying theory as the root of physical problems. He had 
already done just that in his 1905 papers on quanta and relativity. 
Reasoning based on such general, formal grounds has become a 
dominant feature of theoretical physics, but it was rare before 
Einstein, and it has not often been used so effectively since.)
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Einstein obtained the strongest support for his opinions from 
what he found in Planck’s theory of black-body radiation, whose 
essentials he had to repeat for his audience because, even in 1909, 
it was a theory that he felt he “probably should not assume to be 
generally familiar.’’ He pointed out that the key step in Planck’s 
reasoning had been his evaluation of the entropy of a collection 
of oscillators of frequency v by counting the number of ways W  
in which they could share a fixed amount of energy.8 To do this 
counting Planck had considered the total energy as divided into 
“particles,” each of energy e; and to make his result consistent with 
W ien’s displacement law, itself a consequence of the second law 
of thermodynamics, he had set e proportional to the frequency v,

e= h v ,  (1)

with h a new natural constant. These arguments had led Planck 
to an expression for p(v,T), the energy of thermal radiation of 
frequency v at temperature T, per unit volume and per unit fre
quency interval,

p(v,T) =  (8ni'2/c3) (hv) (exp(hv/kT) — 1}"1, (2)

which was in agreement with all available data. (The constant k 
in this equation is Boltzmann’s constant.)

The first point that Einstein made concerning Planck’s work 
was its essential departure from classical ideas. This departure was 
most clearly in evidence wherever the average energy of an oscilla
tor of a particular frequency was small compared to the energy of 
one quantum of that frequency, a situation that would often 
occur. This deviation from ordinary statistical ideas was not a 
reason for rejecting Planck’s work: indeed, one of Planck’s deduc
tions from his theory, a value for the fundamental unit of electric 
charge, had just been strikingly confirmed by the experiments of 
Rutherford and Geiger. Quite the contrary, Einstein had already 
seen the powerful way in which a suitable generalization of 
Planck’s ideas could handle just the questions he had posed earlier 
in his lecture. In 1905, as the result of an independent line of 
argument, Einstein had proposed that radiation consists of
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energy quanta of magnitude hv, and he considered Planck’s suc
cessful radiation theory as supporting his views, as, in fact, im
plicitly based on his own hypothesis of light quanta.7 Einstein did 
not trouble to repeat the list of phenomena he had already ex
plained on the basis of the quantum theory, phenomena as diverse 
as Stokes’s law for fluorescence and the behavior of the specific 
heats of solids at low temperatures. He had newer arguments that 
he considered even more convincing.

He introduced these new arguments by raising a question, a 
doubt about Planck’s quantum theory, that had already occurred 
to some and that would provide the theme for much of Planck’s 
work during the next few years as he tried to heal his break with 
classical theory. "Would it not be conceivable that Planck’s radia
tion formula was indeed correct, but that it could be derived by 
some method that was not based on such an apparently monstrous 
assumption as Planck had used? Would it not be possible to re
place the hypothesis of light quanta by some other hypothesis by 
means of which one could do equal justice to the familiar phe
nomena? If it is necessary to modify the principles of the theory 
could one not at least retain the equations for the propagation 
of radiation and interpret only the elementary events of emission 
and absorption in a way different from that used previously?” 

Einstein’s answer to all these questions was negative, and his 
reasons for so answering lay in the structure of Planck’s radiation 
law itself. The key to his reasoning was his reversal of Planck’s 
procedure. Instead of trying to derive the distribution law from 
some more fundamental starting point, he turned the argument 
around. Planck’s law had the solid backing of experiment; why 
not assume its correctness and see what conclusions it implied as 
to the structure of radiation? Einstein had already done just this 
sort of thing in 1905 when he based his argument for the granular 
structure of radiation on the consequences of W ien’s radiation 
law, the predecessor and high frequency limit of Planck’s law. 
This time he applied the method to Planck’s law itself with 
equally impressive results.

B. There were two independent arguments that Einstein referred 
to in his report, leading to closely related results by distinctly dif-
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ferent methods. He gave neither argument in detail, since he had 
already sketched both in a paper that had appeared earlier that 
year, and covered some of the same ground.8 The first was closely 
related to both his 1905 paper on quanta and his earlier work on 
the foundations of statistical mechanics,9 and consisted of a cal
culation of the energy fluctuations in black-body radiation. Ein
stein’s calculation went directly back to the second law of thermo
dynamics and its statistical interpretation. Its major steps are 
readily indicated.

Let us consider a system composed of two parts, coupled so that 
they can exchange energy freely, subject only to the condition 
that the total energy is fixed. If the two parts have fixed volumes, 
then the equilibrium condition of the second law is the require
ment that the entropy be a maximum with respect to the energy 
exchange. If we denote the entropies of the two parts by Si and 
S2, with S° 1 and S°2 the corresponding equilibrium values, and the 
energies by Et and E2, et cetera, then we can expand the total 
entropy in terms of the departure from equilibrium:

EINSTEIN AND THE WAVE-PARTICLE DUALITY 11

Einstein combined this result with his own reinterpretation of 
Boltzmann’s principle (another of his eminently successful “re
versals” of procedure), to obtain the probability that such an 
energy fluctuation e would occur. If W (e)de is the probability of 
a fluctuation between e and e +  de in magnitude, then the Boltz- 
tnann-Einstein equation for W (e) reads,

W (e)de =  aexp{(A S)(N 0/R )}de
=  oc exp{ -  (N 0€2/zRC„T2) }de, (5)

where a is simply a normalization constant, R is the gas constant, 
and N0 is Avogadro’s number. The mean square energy fluctuation 
<e2> could now be calculated directly from its defining equation,

00 00

<e2> ^ / e2W (e )d e/ / w ( e ) d e ,  (6)
—  00 —  00

leading to the result

W e have used the fact that e, defined as Ei — E°, is also equal to 
the negative of E2 — E”, because the system is closed. Since the 
entropy is maximum at equilibrium, the coefficient of € must van
ish, expressing the equality of the temperatures. If we make the 
additional assumption that the second volume is large compared 
to the first, then the deviation of the entropy from its equilibrium 
value, to second order in e, is simply 1

1 /32S \
AS =  (Si S2) — (SJ +  S£) = 2C„T2 £2’ ^

(e2> =  (R /N 0)T*CV. (7)

This derivation was a simplification of the one Einstein had al
ready given in 1904.9 I have kept his notation for the constant 
(R /N 0) for a reason that should become evident shortly.

One could now calculate the energy fluctuations for that part 
of black-body radiation having frequencies in the interval from v 
to v + dv as soon as one specified the function p(v ,T ), the dis
tribution law. For, the average energy E of this radiation in a con
tainer of volume V would be given by the equation,

E =  Vp(v,T)dv, (8)

and the C„ of Equation (7) can be obtained by differentiating 
with respect to the temperature.

When Planck’s radiation law, Equation (a), is used for p, the 
resulting equation for (£2) can easily be put in the forms,

where C„ is the heat capacity at constant volume, (dE /ST)v, and 
the subscripts have been dropped as no longer necessary.

(«2) =  {huE +  (c3/8iri'2V di')E2}, (9a)

<e2) =  [Vdv){hvp +  (c3/87n/2)p2}, (9b)
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if one identifies (R/No) with the constant k in Planck’s law. 
Equating (R /N 0) to k amounted to accepting Planck’s deter
mination of Avogadro’s number, and Einstein had already seen 
the justification as well as the importance of this step.

The existence of such energy fluctuations was perfectly intelli
gible from the viewpoint of the wave theory of radiation: they 
were to be expected as the result of the interference of the various 
wave trains, localizing more or less of the energy in a given region 
at any time. The form of the fluctuation equation, however, 
could not be understood if this were the only mechanism produc
ing the fluctuations. As Einstein argued on dimensional grounds, 
and as Lorentz confirmed by a detailed and rather lengthy calcu
lation several years later,10 the wave theory could lead only to the 
second term in the brackets of Equations (9a) and (9b), that 
is, to a term proportional to E2.

If, on the other hand, radiation were composed of classical par
ticles, moving independently of one another, and if these particles 
were each of energy hv, so that there would be E/hv  such particles 
in V  on the average, then the usual statistical argument (the law 
of large numbers) would lead to just the first term in brackets. 
[Since the mean square fluctuation in the number of particles 
would be equal to the average number E/hv, the corresponding 
mean square energy fluctuation would be obtained by multiplying 
by (hv)2.]

It appeared, as Einstein remarked, as though there were two 
independent causes producing the fluctuations, so that the fluc
tuations from the two sources were simply additive. Either of the 
two could dominate depending on the frequency range and the 
temperature one considered. In the high frequency, low tempera
ture region, where Planck’s law becomes W ien’s law, only the 
first term is obtained; in the low frequency, high temperature 
region, when the Planck distribution becomes the Rayleigh-Jeans 
law, only the second term is present.11

Before discussing the implications of this result any further, I 
shall turn to Einstein’s second argument, an analysis of the mo
mentum fluctuations in black-body radiation. He began by show
ing the necessity for such fluctuations on essentially thermody-

EINSTEIN AND THE WAVE-PARTICLE DUALITY 13

namic grounds. Consider a flat plate, a perfect reflector on both 
faces, which is free to move in the direction perpendicular to its 
own plane. Suppose that this plate is in a vessel which contains 
an ideal gas at low pressure and black-body radiation at the tem
perature T  fixed by the walls of the vessel. The collisions of the 
gas molecules with the plate will set the latter into an irregular 
motion, a particular sort of Brownian motion. W hen the plate 
moves, however, the forces arising from radiation pressure on its 
front and back surfaces are no longer equal, as they would be if 
the plate were at rest. There will be a net force, due to the un
balanced radiation pressures, opposing the motion — a “radiation 
friction” that increases as the velocity of the plate increases. As a 
result of this effective frictional force, the kinetic energy of the 
plate will be converted into energy of the radiation field. Were 
this radiation friction the only effect of the radiation on the plate, 
the energy of the gas would eventually all be transformed into 
energy of the radiation: there could be no equilibrium between 
gas and radiation.

The feature omitted in this discussion is the irregular fluctua
tions of the radiation pressure. These fluctuations must not only 
exist, but they must also make up, on the average, for the fric
tional loss of energy. They must, in other words, give the plate 
an average kinetic energy of kT/2. In order to carry out the analy
sis, let v be the velocity of the plate at time t, and let P be the 
resistive force per unit velocity due to the radiation pressure. 
(Einstein neglected any terms in this force depending on higher 
powers of the velocity.) The decrease in the plate’s velocity, in a 
time interval r, caused by this frictional force is then Pvr/m, where 
m is the mass of the plate. If A is the increase in momentum of 
the plate during r  due to the irregular fluctuations of the radia
tion pressure, then the momentum at time t  +  r  will be (mv +  
A — Pvt). Imposing the condition that, on the average, mv does 
not change during t  we obtain the equation,

(mv +  A — P vt) 2 = (m v)2. (10)

If we note that vA vanishes because of the irregular nature of the
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A2 =  (2Prm)i/2. (11)

The average value of the kinetic energy of the plate must be 
kT /2  from the equipartition theorem of statistical mechanics, so 
that v2 is fixed by the equation,

mv2/2 — kT/2. (12)

The one remaining task is the evaluation of P in terms of the 
radiation distribution function p(v,T). For simplicity, and es
pecially for clarity, Einstein assumed here that the plate serves as 
a mirror only for radiation whose frequency falls in the interval 
from v to v +  dv, and that it freely transmits radiation of all 
other frequencies. A relatively long calculation, which Einstein 
did not publish until the following year, then leads to the result,

P =  (3/2c){p -  (v/$)dp/dv}Adv, (13)

where A is the area of the plate, c is the velocity of light, and p 
is evaluated at the frequency for which the plate acts as a mirror.
If we combine the last three equations, we obtain the general re
lationship,

A2/ t  =  (kT) (3/c) ( p  — (v/i)dp/dv}Adv. (14)

The Planck radiation law, Equation (2), can now be substituted 1 
for p, and we obtain the final result,

A 2/ t  =  (1 /c){hvp  +  (c3/87Tv2 )p2)Adv. (15)

The simplicity of the result is impressive, but even more strik
ing is the identity of the bracketed term with the correspondingly ; 
bracketed term in Equation (9b) for the energy fluctuations. I 
Just as before, the two terms in the momentum fluctuation equa- | 
tion can be identified as arising individually from the W ien and 
Rayleigh-Jeans limits of the Planck radiation law. The momentum

fluctuation equation also suggests the existence of two independ
ent mechanisms producing the'fluctuations, the first (W ien term) 
being intelligible if the radiation were particulate in structure, the 
second (Rayleigh-Jeans term) arising from a wave interference 
mechanism.

There was, of course, no theory that could account for these 
wave-particle features of radiation. “The principal difficulty,” Ein
stein wrote, “lies in the fact that the fluctuation properties of 
radiation, as expressed in the equations above, present small foot
hold for setting up a theory. Just suppose that the phenomena of 
diffraction and interference were still unknown, but that one knew 
that the average value of the irregular fluctuations of the radiation 
pressure were given by the second term of the above equation, 
where v is a parameter of unknown significance that determines 
the color. W ho would have enough imagination to construct the 
wave theory of light on this foundation?”

C. A year later, in 1910, Einstein published the detailed calcula
tion of the momentum fluctuations in a paper written jointly with 
L. Hopf.12 The emphasis and direction of this paper are, however, 
somewhat different from those of the 1909 papers. This time, in
stead of pointing to the need for a new approach to the theory 
of radiation, Einstein was disposing of another possible objection 
to the inevitability of the failure of the classical theory. It had 
already been shown in a variety of ways that any consistent argu
ment based on the electromagnetic wave theory of light, together 
with statistical mechanics, necessarily led to the unacceptable Ray
leigh-Jeans distribution for black-body radiation. Might not the 
source of this difficulty lie in the application of the statistical me
chanics, and particularly the equipartition theorem, to the radia
tion itself, or to the high frequency motion of the oscillators in
teracting with the radiation? Einstein and Hopf showed that this 
was not the case, that one could show the inevitability of the 
Rayleigh-Jeans law by an argument in which the equipartition theo
rem was applied only to the translational motion of gas mole
cules, an incontestably valid use of this long-disputed theorem.

The argument involved the fluctuations of momentum pro
duced in an oscillator by its interactions with the chaotic radia-
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tion field of black-body radiation. After deriving the equivalent 
of Equations ( n )  and (12), Einstein and Hopf gave the com- M- 
plete derivation of the key equation (13) which relates the radia- w  
tion friction to the distribution law p(v,T). Instead of using an 
assumed p(v,T) (Planck’s law, for example), to find the momen
tum fluctuations A”, as Einstein had done before, they calculated 
the latter quantity directly from electromagnetic theory, express
ing it too in terms of p(v,T). As a result. Equation (11) became 
a differential equation for p(v,T), whose only solution was the 
Rayleigh-Jeans law. In other words, the momentum fluctuations 
calculated from electromagnetic theory demanded the Rayleigh- 
Jeans law for radiation: electromagnetic theory offered no clue 
to the additional fluctuations that characterized the Planck law.

The calculation itself is of interest for two reasons. It fuses the 
ideas and the methods of Einstein’s Brownian motion theory and • 
the special theory of relativity in handling a problem intimately 
related to the third of his 1905 papers—the quantum structure of 
radiation.13 The second point is a more technical one. In their 
calculation Einstein and Hopf used a result from the theory of 
probability which they proved in an accompanying paper.14 This 
theorem, on the statistical independence of the Fourier coefficients 
of the electromagnetic field, was questioned by von Laue several 
years later, and a protracted discussion of the details of the aver- 
aging process ensued, in which Planck also took part.15 So far as 
I can tell, this discussion did not affect the development of the 
theory in any noticeable way.

D. W hen Einstein returned to the radiation problem in 1916, )
after having concentrated almost completely on gravitation for ' 
some years with historic results, the quantum theory had taken ( 
a new turn. Bohr had opened an extremely fruitful domain of I 
application for the quantum in his theory of the hydrogen atom ( 
and its spectrum. In addition, Bohr’s work and its generalizations | 
by Sommerfeld and others signified a fresh approach to the foun
dations of the quantum theory itself. Although Einstein made 
only passing reference to this work, it had noticeably influenced 
his own ideas at several key points.
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The paper16 that he published is well known and still widely 
quoted today for the new derivation of the Planck distribution 
law that it reported, but, as is usually the case with Einstein’s 
writings, its content is not adequately described by a single idea. 
Einstein not only rederived Planck’s law: he used his new deriva
tion to throw light on “the still so obscure process” of emission 
and absorption of radiation. He particularly stressed the implica
tions of his analysis for the directed nature of the emission process 
and for the momentum transfer it produced.

Einstein’s starting point is especially interesting for its connec
tion with W ien’s work twenty years earlier.17 He commented on 
the formal similarity between the frequency distribution of black- 
body radiation, and Maxwell’s distribution law for the speeds of 
gas molecules. This similarity was too striking to have gone un
noticed, and it had, in fact, been the basis for W ien’s proposed 
equation for the spectral distribution of radiation, still valid as the 
high frequency limit of Planck’s law. W ien’s derivation of his 
distribution law lacked cogency, but Einstein had pursued the 
idea behind it, and had found a new derivation, resting on the 
basic ideas of the quantum theory, that demonstrated the non
accidental nature of that formal similarity. In this paper, as in 
almost all of Einstein’s work on the quantum theory, the second 
law of thermodynamics and its statistical interpretation were at 
the center of his reasoning.

He considered a gas in equilibrium with black-body radiation, 
as he had done many times before. The internal states of the 
gas molecules were assumed to be a discrete set 1, 2, n, . .  .
whose energies are e]( e2, ■ ■ . e» . . . . How these states were to be 
determined was not relevant for Einstein’s purposes. All he needed 
was the assumption of their existence, and the statement that, if 
the gas is in thermal equilibrium at temperature T, then the rela
tive probability W„ of finding a molecule in state n is given by 
the equation,

W n -  <J>„ exp( -  e„/kT). (16)

The coefficients <f>„ are characteristic of the particular kind of
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molecule considered, and are the statistical weights of the various 
quantum states.

Let m and n be a pair of states, em > en, such that the molecule 
can go from state m to state n by emitting radiation, and from 
state n to state m by absorbing radiation. Einstein assumed that 
the emission process could occur spontaneously, without any ex
ternal agency, according to a law exactly analogous to that of 
radioactive decay,

dW 1 = Anmdt, (17)

where dW x is the probability that the radiation process occurs 
in time dt, and Anm is a constant characterizing this process. A 
classical oscillator will absorb or emit energy as it interacts with 
external radiation tuned to its own frequency, depending on the 
phase of its motion relative to that of the radiation. Einstein made 
an analogous assumption for the quantum mechanical behavior: 
when acted on by external radiation of spectral density p and the 
proper frequency vy the probability of a molecular transition from 
state n to state m  during dt with absorption of radiation is given 
by the equation,

dW 2 =  pBmndt, (18)

and the probability for the reverse transition with the emission of 
radiation is given by the equation,

dW 3 = pBnmdt. (19)

If the Boltzmann distribution of Equation (16) is to remain 
unaffected by the emission and absorption processes, then the 
following condition, which expresses the equality of the overall 
emission and absorption rates, must hold,

pBmn<f>n exp ( €n/k T ) =  (pBnm -f- Anm)<f>m exp ( €m/k T j. (20)

By examining the limiting form of this equation at very high tem
peratures, where the Anm is relatively unimportant since p becomes
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large, and where the Boltzmann factors become unity, one obtains 
the condition

4 *n B m n  —  (2l)

relating the rates of induced emission and absorption. If Equation 
(20) is now solved for py one obtains an equation whose tempera
ture dependence is that of Planck’s law. Equation (2):

p ~  (Anm/B nm) {exp [(em -  en)/kT]  -  1} -1. (22)

The frequency dependence of p can be fixed from W ien’s dis
placement law, itself a consequence of the second law of thermo
dynamics, which requires that p(v,T) have the form 1/3f(p /T ). 
Hence the following two equations must hold:

Anm/Bnm =  & 3, (23a)

€m — e» =  hv, (23b)

where f  and h are universal constants. The latter equation ex
presses one of the postulates of Bohr’s theory of spectra, well 
established by the time Einstein wrote. The combination of Equa
tions (22) and (23) is, of course, Planck’s law, except that the 
constant £ is not evaluated by this procedure.

This much of Einstein’s argument is widely known, and it is 
striking enough for its “amazingly simple and general method” of 
obtaining the radiation law and for its use of probabilities. It is 
not, however, the result that he emphasized most heavily in his 
paper. Combining the reasoning just given with the methods of 
Brownian motion theory that he had used so effectively before, 
Einstein went on to analyze the motion of the molecules that 
would have to result from the absorption and emission of radia
tion. The focus of the argument was again the combination of 
Equations (11) and (12):

AVr =  ^PkT,
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expressing the condition that thermal equilibrium between mole- I 
cules and radiation is preserved. Einstein calculated the two quan
tities P and A2, the radiation friction constant and the fluctuations 
of a molecule’s momentum, just as he had done in 1910. This 
time, though, the calculations used his assumptions on the quan
tum nature of emission and absorption and not the classical elec
tromagnetic theory. The resulting equation for p was now satis
fied by the Planck distribution law and not the Rayleigh-Jeans 
law.

In order that Equation (24) be satisfied under the assumptions 
of the quantum theory, one had to make a definite assumption 
about the directed nature of the processes of absorption and emis
sion. Whenever a molecule absorbs or emits a quantum hv under , 
the stimulation of external radiation from a definite direction, 
there must be a change in the momentum of the molecule of 
magnitude hv/c in the direction of the incident radiation, positive 
or negative according to whether the process is absorption or 
emission. In addition, and more surprisingly, if a molecule spon
taneously radiates a quantum hv this process too must be a 
directed one, leading to a momentum change hv/c. “There is no 
radiation of spherical waves. In the spontaneous emission process 
the molecule suffers a recoil of magnitude hv/c in a direction that, 
in the present state of the theory, is determined only by ‘chance’."
As a consequence “the establishment of a truly quantum mechani
cal theory of radiation seems to be almost inevitable.” Einstein's 
next remark is of interest, particularly in the light of his latei 
views on the role of probability in physics: “The weakness of the 
theory lies, on the one hand, in the fact that it does not bring us 
any closer to a connection with the wave theory, and, on the other 
hand, in the fact that it leaves the time and direction of the 
elementary processes to ‘chance’; nevertheless I have full confi
dence in the reliability of the course taken.”

Einstein concluded his paper by emphasizing again the necessity 
for considering momentum exchanges as well as energy exchanges 
in any theory of the interaction between matter and radiation. 
Because of the intimate relationship between momentum and 
energy, no theory could be judged adequate unless it properly ac-
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counted for the motion imparted to the molecules by momentum 
from the radiation, “as demanded by the theory of heat.”

III. The Compton Effect and Some Consequences

A. It is notorious that Einstein’s keenest, most physical insights 
were usually reached without the backing of experimental evi
dence, though that evidence eventually appeared. Millikan’s 
measurements on the photoelectric effect confirmed the results 
of the hypothesis of free quanta of radiation a full decade after 
Einstein had proposed it.18 Direct experimental support for the 
idea that radiation is directed and that each quantum carries mo
mentum hv/c took just as long to develop, but it began to appear 
in 1922. In October of that year Arthur Compton19 announced his 
results on the anomalous scattering of x-rays and suggested that 
the wave length of the x-rays was increased in this anomalous 
scattering process. Several months later Compton20 and Peter 
Debye21 independently published the explanation of this wave 
length increase, now universally known as the Compton effect. 
They both assumed that the scattering was an elementary process 
that could be looked upon as a collision between an incident 
x-ray quantum and a free electron at rest. If one applies the laws 
of energy and momentum conservation to this collision one can 
calculate the wave length of the scattered quantum, the kinetic 
energy of recoil of the struck electron, and the angle at which it 
recoils, all in terms of the wave length of the incident quantum 
and the angle at which it is scattered. The details of the calcula
tion appear in every textbook on atomic physics and need not be 
repeated here.

Compton made no mention of Einstein’s ideas on directed ra- 
| diation and the momentum of light quanta in any of his papers 

on the Compton effect. One can presume that Compton, not a 
theorist himself, was aware of these ideas from discussions at the 
time, that they were somewhat “in the air” then. In a talk22 given 
in 1961, just a year before his death, Compton described the
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history of his experiments. At the very time he was extending and 
developing his results he found himself in “the most lively sci
entific controversy” that he had ever known, with William Duane 
of Harvard, who doubted the existence of the Compton effect.
It took something like a year before Duane agreed that Compton’s 
discovery was a real one. Compton’s description justifies his re
mark that “these experiments were the first to give, at least to 
physicists in the United States, a conviction of the fundamental 
validity of the quantum theory.”

Debye’s paper, published in April 1923, had a very different 
tone. Debye had been working on the quantum theory for a dozen 
years or more, and was thoroughly aware of the source of the 
ideas he brought to bear on the Compton effect. He explicitly 
stated that the radiation had to be treated as “needle radiation” 
in the sense of Einstein’s directed quanta. Debye emphasized that 
the momentum properties of quanta had not appeared in the 
photoelectric effect because the binding energy of the photoelec
trons was not negligible compared to the lower energy of the 
incident ultraviolet quanta, so that appreciable momentum was 
also taken up by the atom itself. Debye closed his paper by re
marking that, since the equations for the Compton effect de- 1 
pended only on the hypothesis of quanta and of “needle radia
tion” together with the conservation laws, one could hope for a 
deeper insight into the relationship of the quantum theory and 
wave optics from further study of this effect.

B. W ith the evidence provided by the Compton effect in front 
of them, theoretical physicists had to reckon more seriously with 
Einstein’s ideas on quanta than ever before. A few months after 
the appearance of Compton’s and Debye’s papers, Wolfgang 
Pauli23 took up a previously unsolved problem, closely related to 
most of the ideas I have already discussed. It was a problem origi
nally raised by Lorentz in his address to the first Solvay Congress in | 
1911,24 the problem of thermal equilibrium between radiation and 
free electrons. Einstein’s papers of 1909 and 1910 had discussed 
the equilibrium between radiation and harmonic oscillators; 
could one apply the same methods if the oscillator were replaced 
by something even simpler—a free charged particle? One ought

EINSTEIN AND THE WAVE-PARTICLE DUALITY 23

to be able to get even more reliable information about the struc
ture of radiation by analyzing this elementary case. Lorentz used 
the equivalent of Equation (11) to express the average kinetic 
energy of the electron in terms of the radiation friction constant P 
and the mean square momentum fluctuations A2. Since he could 
calculate the latter quantities from electromagnetic theory, he ex
pected to confirm the equipartition principle for this case, that is, 
he expected to find (3/2) kT  as the value of mu2/ 2 for an electron 
free to move in all three dimensions. In fact he found a smaller 
value, and a further analysis, carried out by his student A. D. 
Fokker,23 showed that the mechanisms of classical radiation theory 
were inadequate to preserve thermal equilibrium between the free 
electron and black-body radiation described by the Planck law. If 
one artificially assumed that the Planck law did hold, then the 
average kinetic energy of the electron turned out to be much 
smaller than its equipartition value. This result was perplexing 
because there was no apparent need to apply quantum ideas to the 
electron itself, in contrast to the case of the harmonic oscillator.

When Pauli addressed himself to this problem in 1923, he had 
Einstein’s 1917 paper to guide him in his search for a description, 
within the quantum theory, of an interaction between electron 
and radiation that could establish thermal equilibrium. The 
mechanism would have to allow the radiation to satisfy Planck’s 
law while the electrons’ kinetic energies were described by the 
Maxwell-Boltzmann distribution. The elementary interaction 
would be just that involved in the Compton effect, and Pauli’s 
task was to find the restrictions on the probabilities of scattering 
in various directions required by his assumptions. The basic 
quantity to be fixed was the probability dW  that in a time in
terval dt a quantum of frequency between v and v + dv, directed 
within a solid angle d(l, be scattered so that its frequency is 
changed into the interval v' to v' +  dv' and its direction into 
dfi', while the electron goes from an initial momentum range be
tween p and p +  dp to a final range p' to p' +  dp', where the 
conservation laws relate these various quantities.

Pauli found that if he took dW  to be of the form 
(Ap +  Bpp')dt, where p and p' are the spectral densities of the 
radiation at frequencies v and v', respectively, then the equi-

I
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librium situation in which the electrons satisfy the Maxwell. 
Boltzmann distribution law requires that p be given by the 1 
Planck formula. The result seemed paradoxical: the presence of 
the second term in dW  meant that the probability of the Comp, 
ton scattering process is enhanced by the presence of radiation 
whose frequency is equal to that of the quantum after scattering. 
There could, however, be no doubt of the necessity for this 
second term. Pauli showed that, in its absence, the radiation 1 
would have to obey the Wien rather than the Planck law at equi
librium. The term proportional to pp' insured that the radiation 
would have those properties that arose from interference of waves 
in the classical theory.

The paradoxical appearance of Pauli’s result decreased when, a 
few months later, Einstein and Paul Ehrenfest26 showed that it 
could be obtained by arguments closely parallel to those in Ein
stein’s 1917 paper. The key point lay in recognizing that a Comp
ton process amounted to the disappearance (absorption) of a 
quantum of frequency v and the appearance (emission) of a 
quantum of frequency v ' , both appropriately specified as to direc
tion. By the arguments leading to Equations ( i7 ) - ( i9 ) ,  the 
joint probability of such a process ought to be of the form 1 
(bp) (a' + b'p'), where the second factor contains both sponta
neous (a') and induced (b'p') terms. When this point was de
veloped, taking proper care to specify inverse processes correctly, 
Pauli’s discussion was seen to be a natural and straightforward 
generalization of Einstein’s earlier work.

C. Despite the successes of the hypothesis of light quanta, par
ticularly in understanding the Compton effect, the basic mystery 
remained: how could such a picture of the structure of radiation 
account for the phenomena of interference and diffraction? Ein
stein had long since announced his opinion that both particle 
and wave aspects of radiation would have to be fused in a funda- [ 
mentally new theory, but the way to that new theory was not yet 
clear. The Compton effect forced a wider acceptance of Einstein’s 
opinion: Sommerfeld, for example, wrote Compton that his dis
covery “sounds the death knell of the wave theory of radiation.”2*

Drastic steps were called for, and one of the most drastic was 
proposed early in 1924 by Bohr, Kramers, and Slater.28 They re
jected Einstein’s quantum structure of radiation, despite its “great 
heuristic value,” and offered instead a more thoroughly proba
bilistic approach to the whole problem. The most striking feature 
of the Bohr, Kramers, Slater paper was their suggestion that the 
laws of conservation and energy and momentum were not strictly 
satisfied in processes involving strong interactions with radiation, 
including the Compton effect.

Heisenberg29 recently described the Bohr, Kramers, Slater pa
per as “the first serious attempt to resolve the paradoxes of radia
tion into rational physics,” but it was not a wholly successful 
attempt. The details of their theory, involving the introduction 
of a “virtual radiation field,” would lead us too far from the main 
theme of this essay. I shall only remark that the argument is 
characteristic of what de Broglie30 has called Bohr’s “predilection 
for ‘obscure clarity’,” and it suggests why de Broglie referred to 
him as “the Rembrandt of contemporary physics.”

Einstein reacted to the Bohr, Kramers, Slater paper in a letter 
to Paul Ehrenfest31 dated May 1, 1924. He reported to Ehrenfest 
that he had just reviewed the paper for the Colloquium in Berlin, 
and described it as follows:

“This idea is an old acquaintance of mine, but I don’t consider 
it to be the real thing. Principal reasons:

(1) Nature seems to adhere strict-ly to the conservation laws 
(Franck-Hertz, Stokes’s rule). Why should action at a dis
tance be an exception?

(2) A box with reflecting walls containing radiation, in empty 
space that is free of radiation, would have to carry out an 
ever increasing Brownian motion.

(3) A final abandonment of strict causality is very hard for me 
to tolerate.

(4) One would also almost have to require the existence of a 
virtual acoustic (elastic) radiation field for solids. For it is 
not easy to believe that quantum mechanics necessarily re
quires an electrical theory of matter as its foundation.

(5) The occurrence of ordinary scattering (not at the proper



frequency of the molecules), which is above all standard for I  
the optical behavior of bodies, fits badly into the ** 
scheme. . . }

Two months later Einstein referred to this matter again, this ' 
time writing to Ehrenfest32 that the Copenhagen group had 
“abolished free quanta/’ but that free quanta “would not allow 
themselves to be dispensed with.”

The Bohr, Kramers, Slater theory failed in a direct experi
mental test by Bothe and Geiger,33 who showed that the scattered 
quanta and the recoil electrons in the Compton effect were essen
tially always observed in coincidence, a result that would have 
been extremely improbable if this theory were valid. Further ex- i 
periments by Compton, with A. W . Simon,34 verified the angular 
relationships that followed only if the conservation laws were 
strictly obeyed. Whatever else might have to be given up in the 
construction of a theory that incorporated the wave-particle 
duality for radiation, it was not the conservation laws. \

IV. Bose Statistics and de Broglie Waves

A. In July, 1924 the editor of the Zeitschrift fur Physik received a 
rather unusual communication. It was a short paper, entitled 
Planck's Law and the Hypothesis of Light Quanta, written by an 
Indian physicist, S. N. Bose35 of Dacca University, but the paper 
was sent in by Albert Einstein. Bose had forwarded his manu
script, in English, to Einstein, who thought sufficiently highly of 
it to translate it into German himself, and to send it to the 
journal accompanied by these remarks, published with his transla
tion: “In my opinion Bose’s derivation of the Plandk formula 
signifies an important advance. The method used also yields the 
quantum theory of the ideal gas, as I will work out in detail else
where.” A week after sending off Bose’s paper Einstein read his 
own paper,36 applying Bose’s method, before the Prussian Acad
emy, referring again to Bose’s work as “extremely noteworthy.”
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There had already been a variety of derivations of the Planck 
radiation law. W hy should Bose’s derivation have impressed Ein
stein as deeply? Bose gave the answer himself at the start of his 
paper. All previous derivations of the Planck law appealed, at one 
point or another, to some result of classical electromagnetic 
theory. This was generally done to obtain the first factor in Equa
tion (2), the factor (8 ttv2/c3), which could be interpreted as the 
number of normal modes of the radiation per unit volume and 
per unit frequency interval, sometimes referred to as the number 
of degrees of freedom of the aether. This factor was obtained in 
different ways by Planck,37 and by Debye38 (who followed the 
method used by Rayleigh39), but there had never been a deriva
tion that avoided any reference to classical electrodynamics. Bose 
proposed to do just that, to derive the Planck law directly from 
Einstein’s hypothesis of light quanta using only the methods of 
statistical mechanics. Such a derivation amounted to a natural 
development of the ideas that Einstein had been advocating for 
close to twenty years—no wonder that he considered it “an im
portant advance.”

Bose considered the quanta as particles, and specified the loca
tion of a quantum in phase space by its coordinates x, y, z and 
its momentum components px, pv, pz. The energy of the quantum 
is related to its momentum by the relativistic equation,

(hv ) 2 = c2{pl + p i+ p \) .  (25)

The volume of phase space available to quanta whose energy lies 
between hv and h(v + dv) is then given by the equation,

f  dx dy dz dpx dpy dpz ~  47r (hv/c)2 (hdv/c) V, (26)

where V is the actual volume of the enclosure containing the 
radiation; the momentum space contribution is just the spherical 
shell of radius hv/c and thickness hdv/c. Bose treated the phase 
volume as divided into cells, each cell having a measure h3. (In 
this he followed an idea first stated by Planck in his lectures on 
radiation theory40 in 1906, and widely used by many physicists 
since that time.) The number of cells corresponding to the fre-
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quency interval v to v + dv is then just the ratio of the expression 
in Equation (26) to h3, or (47rV/c3 )v2dv. This number has to be 
doubled to allow for the fact that each quantum can have two 
independent polarizations, so that one actually has (8 nV /c 3 )v2dv 
phase cells available to quanta in the given frequency interval. 
This is, of course, just the factor discussed a little earlier.

The problem was now to determine the number of ways in 
which the quanta could be distributed over the phase cells. The 
situation appeared to be only slightly different from that which 
had been discussed in statistical mechanics by every writer since 
Boltzmann. Consider those quanta having frequencies in the par
ticular interval dv„. Let there be N s of them. The number of 
phase cells available to them is (87rV/c 3 )va2dva, to be denoted as 
As for brevity. Tire question Bose had to answer was this: in how 
many ways can the N a quanta be distributed over the Aa cells? 
The question was basically old; the answer was essentially new.

Instead of following Boltzmann and his successors by looking at 
the number of quanta in each of the A, cells, Bose specified the 
distribution of quanta by the set of numbers p0s, p i ,  P2, ■ ■ ■ , 
where p0s is the number of cells containing no quanta, pi* is the 
number of cells with one quantum ,. . ,  and p /, generally, is the 
number of cells with r quanta. The number of ways, W , of dis
tributing the quanta is then the number of ways of dividing A, 
objects into groups containing p0\  p i, pi‘, • ■ ■ members. Taking 
all frequency intervals into account, this leads to the expression,

w  =  n
A„!

* Poa\ Pia\ p*’\ (2 7 )

E =  2 N ahva,
8

where N, is given in terms of the {pr‘} by

(28)

The problem is now to find the set of numbers \p,”} that maxi
mize W  subject to the constraint that the total energy E is fixed, 
expressed in the equation.
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(Note that there is no constraint imposed on the total number of 
quanta.) Once W  is identified with the Boltzmann-Planck “ther
modynamic probability” and related to the entropy S of the radia
tion by the equation

S =  klriW, (30)

the analysis becomes straightforward. A standard sort of calcula
tion leads to the result

E = X(8Trhv//c3) {exp (hva/k T) — 1 }~1dvs, (31)
8

which is equivalent to the Planck formula of Equation (2).
Bose’s procedure—determining W  by counting the occupancy 

of the cells rather than the distribution of the quanta—made it 
possible to obtain the Planck law for the gas of light quanta. It 
is interesting to compare his paper with another,41 published two 
years earlier, whose author began by stating precisely the same 
goal that Bose was to reach: a derivation of Planck’s law from the 
statistical mechanics of light quanta “without the intervention of 
electromagnetism.” In this paper more thermodynamic methods 
were used, but the basic statistical procedures were the old ones 
of Boltzmann, and the outcome was W ien’s distribution rather 
than Planck’s. The author, Louis de Broglie, found that he could 
obtain Planck’s law only by treating the radiation as a mixture of 
gases whose quanta had energies hv, 2hv, . . . , nhv, . . . .  Only 
when such associated quanta, or “molecules of radiation” were 
included could W ien’s law be avoided-

This was closely related to a point that had been made first by 
Ehrenfest in 1911 and again in 1914: independent quanta lead to 
Wien’s law.42 If light quanta are to be used in interpreting the 
Planck distribution they must lack the statistical independence 
normally associated with free particles. Bose had implicitly incor
porated these correlations into his theory by his unusual counting 
procedure which effectively denied the individuality of the light 
quanta.

N a =  2 rprs.
r (2 9 )

B. The paper36 that Einstein promised, when he forwarded Bose’s 
work for publication, contained a quantum theory of the ideal
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gas—not a gas of light quanta but a gas of monatomic molecules. I  
Using Bose’s new statistical method Einstein was able to work ; 
out a consistent theory, free of the arbitrary assumptions that 
marred all of the earlier attempts at a quantum theory of the ideal 
gas. The only formal differences between Einstein’s calculations 
and those that Bose had made came directly from the differences 
between the two systems: the energy-momentum relationship for 
nonrelativistic particles with finite mass had to be used, and the 
constraint expressing the fixed number of molecules in the gas , 
had to be allowed for. The results were extremely interesting.

Einstein found that the average number of particles in a phase 
cell of energy € was proportional to the quantity

{exp (y +  c/feT) — i} _1 .
where 7 is a constant, independent of e but depending on the 
volume, temperature, and total number of particles in the gas. 1 
Since this expression differed from the Boltzmann factor,

exp ( -  e /kT ),
of ordinary statistical mechanics, all of the thermodynamic prop
erties of the gas were correspondingly more complicated. Ein
stein was able to show, however, that his equations went over 
smoothly into those for the classical gas when the temperature 
was high and the density was low. Under all conditions the pres
sure P, volume V and average energy U of the gas exactly obeyed 
the same equation as a classical gas,

PV =  (2 /3)U. (32) ;

One of the reassuring aspects of the theory was the result it gave 
for the entropy. Einstein showed that, at high temperatures, the 
entropy had just the value previously obtained by a number of 
physicists,43 the Sackur-Tetrode formula, which included the 
proper additive constant. At temperatures approaching absolute 
zero, the entropy approached zero for all values of the volume: 
Nernst’s theorem was automatically satisfied by this gas.

In this first communication Einstein did not investigate the be
havior of the gas at low temperatures in any detail, but he did give 
series expansions for the thermodynamic properties that showed 
the direction of their deviation from classical behavior. There were
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relatively more of the slower, less energetic, molecules than would 
have been predicted by the Maxwell-Boltzmann distribution. This 
suggested the nature of the low temperature “degeneracy” that 
allowed the gas to satisfy Nernst’s theorem, a degeneracy which 
had its ultimate origin in the indistinguishability attributed to the 
molecules by the Bose counting procedure.

During the fall of 1924 Einstein continued to work on the prop
erties of his gas and particularly on its degenerate low temperature 
behavior. He reported44 to Ehrenfest in September that the mole
cules “condense” into the state of zero energy below a definite 
temperature, even in the absence of attractive forces between them. 
With his usual skepticism he added, “The theory is pretty, but 
is there also any truth to it?” By early December he was convinced 
that there was, and he wrote45 to Ehrenfest: “The matter of the 
quantum gas is getting to be very interesting. It seems to me more 
and more that there is much that is true and deep at the bottom 
of it. I look forward to our arguing about it.”

Some time that autumn Einstein had read an extremely im
portant piece of work, Louis de Broglie’s Paris thesis,48 and he 
immediately saw its connections with the problems he was work
ing on.

C. I have already called attention to de Broglie’s 1922 paper,41 
which was an attempt at the same sort of thing that Bose carried 
out successfully two years later. De Broglie did not stop with that 
first paper, but continued to ponder the problems of the quantum 
theory and, in particular, the wave-particle duality for radiation. 
In his own words:47 “Then a great light suddenly dawned on me. 
I was convinced that the wave-particle duality discovered by Ein
stein in his theory of light quanta was absolutely general and ex
tended to all of the physical world, and it seemed certain to me, 
therefore, that the propagation of a wave is associated with the 
motion of a particle of any sort—photon, electron, proton, or any 
other.” This insight was first formulated by de Broglie in a series 
of three short papers48 published in the Comptes Rendus in the 
fall of 1923. In a considerably extended and developed form this 
work was the subject of his thesis, submitted to the Sorbonne on 
November 25, 1924. Paul Langevin, to whom de Broglie turned
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for advice before his thesis was finally submitted, asked for a I  
second copy which he forwarded to Einstein. The response was I. 
all that de Broglie could have hoped for: Einstein wrote Lange- 
vin that de Broglie had “lifted a corner of the great veil/’49

So much of the content of de Broglie’s thesis has been worked 
into the substance of contemporary physics that it takes a con
scious effort to realize how very bold his ideas seemed when they 
were introduced. There was no shred of direct experimental evi
dence for the waves that he associated with material particles. 
The arguments that he gave for the existence of matter waves 
were based on the formal structure of special relativity and on the 
relationship between the variational principles of mechanics and 
optics. They did not seem to lead to new experiments that might 
confirm the existence of matter waves. The main idea was a beau- * 
tiful one, to be sure, and it exactly complemented Einstein’s , 
work on radiation in 1905-1909: where Einstein assigned particle 
properties to radiation, de Broglie assigned wave properties to 
matter. The concept of matter waves, whose frequency v and wave , 
length X were related to the particle’s energy E and momentum p 
by the equations,

E = hv, p = h/X, (33)

did lead de Broglie to an elegant and suggestive derivation of the 
Bohr-Sommerfeld quantum conditions. These quantum condi
tions appeared as the conditions for resonance of the matter waves 
when the corresponding particles carry out orbital motion. But 
it is fair to state that de Broglie’s arguments were not compelling 
for the majority of theoretical physicists, who already had more 
than they could handle in the wave-particle duality for radiation 
and would not be inclined to complicate things further with a 
wave-particle duality for matter, if they could help it.

For Einstein, though, whose ideas had served to suggest de 
Broglie’s imaginative step, matter waves could fit into the picture 
in a natural way. His calculations on the quantum gas, in progress 
at the time he read de Broglie's thesis, actually offered new argu
ments in support of de Broglie’s idea. He made the basic point in 
the prefatory remarks to his second paper50 on the quantum
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theory of the ideal gas, published in January 1925. “The interest 
of this theory lies in the fact that it is based on the hypothesis 
of a far-reaching formal relationship between radiation and gas. 
According to this theory, the degenerate gas deviates from the gas 
of (ordinary) statistical mechanics in a way analogous to that in 
which the behavior of radiation, according to Planck’s law, devi
ates from its behavior according to W ien’s law. If Bose’s deriva
tion of the Planck radiation formula is to be taken seriously, then 
one may not also pass up this theory of the ideal gas; for if one 
is justified in considering radiation as a gas of quanta, then the 
analogy between the gas of quanta and the gas of molecules must 
be complete.”

D. This second paper of Einstein's on what we would now call 
the theory of the Bose-Einstein gas is another of his masterworks, 
containing as many ideas in its dozen pages as many an annual 
volume of the journals of physics. Its first section established the 
existence of the peculiar “condensation” phenomenon that he had 
already mentioned in the letter to Ehrenfest quoted above.44 Ein
stein found that below a certain temperature T0, proportional to 
the two-thirds power of the number of molecules per unit volume 
and inversely proportional to the molecular mass, a finite fraction 
of the molecules would be found in the state of zero kinetic energy, 
the ground state. This fraction increases as the temperature of the 
gas goes to zero, and the phenomenon deserves to be called a 
“condensation” because the molecules in the ground state are in 
thermodynamic equilibrium with the remainder. The whole situa
tion has a strong and nontrivial resemblance to the equilibrium 
of a condensed phase with its saturated vapor. The Einstein con
densation phenomenon has had an interesting history of its own 
since its introduction in 1925, but that history falls outside the 
bounds of this study.

Einstein went on to discuss an objection that had been raised 
against both Bose’s theory of the Planck radiation formula and 
his own use of Bose’s method for the ideal gas. Ehrenfest and 
others had found fault with this work because the results indi
cated that the quanta (or molecules) were not statistically in
dependent entities, and yet this point had not been brought out
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explicitly by either Bose or Einstein. Einstein granted the com
plete validity of this criticism, and proceeded to elaborate on what 
was involved in some detail. He compared the basic combinatorial 
formula of the Bose-Einstein theory with that which applied to a 
collection of strictly independent particles. Given that the phase 
space of a particle was divided into groups of cells with Zs cells 
in the sth group, and that one assigned M, particles to this group 
of cells, in how many ways W  could this be done for a gas of n 
particles?

Using Bose’s method of counting, where the particles were 
treated as indistinguishable, there would be 

(«. + z„ -  i)!/n ,!(z,- 1)! 
distinct distributions of the n„ particles among the zs cells, so that 
W  would be given by the equation,

w = n ( n ,  +  z, -  1)
n,l(z, -  i ) l

The entropy S of the gas must then have the form.

(3 4 )

S — ES{(n„ + z„)ln(n„ +  z„) -  n.lnn, -  z#lnz„}, (35)

where it has been assumed that n, and za are always large enough 
so that Stirling’s formula can be used.

If one answers the same combinatorial question for independent 
particles in the spirit of Boltzmann, then there are z»“= ways in 
which the n„ particles can be distributed over the z„ cells, so that 
the total number of complexions for the gas is given by the equa
tion,

w = — nz.»*
Iln,! * (36)

The first factor accounts for the number of ways in which the 
total number, n, of molecules can be divided into the groups n,. 
The entropy obtained from Equation (36) has the form.

S =  k{nlnn -f X(n8lnzs — n8lnn8)}. (3 7 )
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A comparison of the two expressions for the number of com
plexions, Equations (34) and (36), made it evident that the 
particles were not treated as independent in the Bose-Einstein 
counting procedure. As Einstein put it, “The formula, therefore, 
indirectly expresses a certain hypothesis about a mutual interac
tion of the molecules whose nature is at present completely 
mysterious. . . ”.

There was another way in which the two theories could be com
pared. The entropy of Equation (35) is in accord with Nernst’s 
theorem since all the particles will be in the zero energy state at 
absolute zero and W  will be unity. The situation is a good deal 
less simple for the gas of independent particles. It is true that Equa
tions (36) and (37) lead to W  =  1 and zero entropy at absolute 
zero, but if one examines Equation (37) closely, it will be ob
served that the entropy is not proportional to the number of par
ticles. There was a way of avoiding this apparent conflict with 
thermodynamic expectations that had become almost traditional 
by 1925: one simply divided the W  of Equation (36) by n!, 
arguing, with some plausibility, but no rigor, that this procedure 
eliminated complexions that differed only by a permutation of the 
molecules which were really equivalent. When the term nklnn is 
removed from the entropy in this way, the resulting expression is 
extensive, but it no longer satisfies Nernst’s theorem, since this 
S becomes — n/dnn at absolute zero. The entropy for a gas of 
independent particles must, therefore, violate either Nernst’s theo
rem or the condition of extensivity. Einstein considered these 
arguments a reason to prefer the Bose procedure, even if that pro
cedure could not be demonstrated as superior on a priori grounds.

E. The study of fluctuation phenomena had been a characteristic 
of Einstein’s scientific style for over twenty years:7 his insight into 
the structure of radiation was based, in large part, on just such 
studies, as we have already seen. And so it is not surprising that he 
turned next60 to an analysis of the density fluctations required by 
his new gas theory. He considered the container of the gas, of 
volume V, connected to an infinite reservoir of gas by a partition 
that passed only molecules having energies within a specified in
terval AE. He then examined the fluctuations As about the aver-



age values n* of the number of molecules in this energy interval. M 
A calculation completely analogous to the one he had reported in i, 
1909, (described above in Section II B), led to the result, I

1
<A/> =  * ( -  d2S /d n 2)~K (38)

The derivative on the right hand side could be evaluated with the 
help of Equation (35), and the final expression took the form,

(A,2) =  na +  n 2/z a. (39)

This expression was the exact equivalent of the formula for the 
energy fluctuations in black-body radiation that Einstein had de
rived in 1909, Equation (9a) above. If one notes that the quantity  ̂
z8 has the explicit form (87Tv2Vdv/c3) for radiation, and that the I 
quantities E and € in Equation (9a) can be thought of as n8hv 1 
and A8hv, respectively, the equations are seen to be identical. The 
first term is the only one that would be present for a gas of in
dependent particles, where Equation (37) rather than Equation 
(35) must be used in calculating (A#2). The second term then 
corresponds to the classical wave interference term in the case 
of radiation. While the first or particle term was the surprising 
one for radiation, the second term, in the case of the gas, was the 
one demanding explanation.

“One can interpret it in a corresponding way for the gas too, if 
one associates a radiation [wave] process with the gas in a suitable 
way, and calculates its interference fluctuations. I go into this in- 
terpretation in more detail because I believe that there is more 
than a mere analogy involved here/' Einstein’s reasons for believ
ing that it was no mere analogy that he found, lay in de Broglie’s 
work: “In a very noteworthy work, de Broglie has shown how one 
can associate a (scalar) wave field with a material particle or a 
system of material particles. (This dissertation also contains a 
very remarkable geometrical interpretation of the Bohr-Sommer- 
feld quantum rule.)” He went on to describe the de Broglie waves, 
whose frequency v and phase velocity u were given by the expres
sions

(4°)
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where m0 is the particle’s rest mass, v is the particle’s velocity with 
respect to the observer, and =  v/c, and to mention that he had 
convinced himself by calculations that the term na2/z s could be 
accounted for by the fluctuating interference of these waves.

Einstein’s next step was thoroughly in character, fust as he had 
gone on from his studies of radiation fluctuations, in 1905, to 
search out the experimental consequences of the new ideas to 
which they had led him, he now pursued the implications of the 
de Broglie waves whose existence seemed required by his new cal
culations. “This wave field, whose physical nature is still obscure 
for the time being, must in principle be demonstrable by the dif
fraction phenomena corresponding to it. A beam of gas molecules 
which passes through an aperture must, then, undergo a diffrac
tion analogous to that of a light ray. In order that such a phenome
non be observable the wave length X must be more or less com
parable with the dimensions of the aperture.” Since de Broglie’s 
relations led to a wavelength X equal to h/mv  in the nonrela- 
tivistic limit, one could see that direct detection of the diffraction 
with the help of ordinary apertures seemed out of the question: 
the wavelengths of the molecules moving with thermal velocities 
would be only of the order of io -8 or io~9 cm. Such wavelengths, 
however, are of the same order as molecular dimensions, and this 
suggested a new possibility to Einstein.

Moving molecules, whose associated wavelength X is of the 
order of the molecular diameter, would be strongly diffracted on 
collisions with other molecules at rest. The mean free path of the 
molecules in the gas would therefore be reduced by this additional 
scattering mechanism, and one could expect to see the conse
quences of this fact in the variation of the viscosity coefficient of 
the gas with temperature. The effect would be most pronounced 
for the lightest gases, hydrogen and helium, at low temperatures. 
There should also be detectable consequences of these diffraction 
effects in the equation of state of the gas.

Einstein devoted the closing pages of his paper to some addi
tional remarks on the condensation phenomenon and a possible 
use for it. Although the degeneracy temperature for all ordinary 
gases seemed too low for the effects to be directly observable, the 
“gas” of free electrons in a metal might well show these effects.v -  (m0c2/h )  (1 -  p 2) -*»; u -  c2/v



The new statistics applied to these electrons showed that under 
normal conditions less than one ten thousandth of the electrons 
were not in the zero energy condensed phase, so that the old puz
zle of the absence of an electronic contribution to the specific 
heat capacity of metals would at once be cleared up. Even the 
mystery of superconductivity might be lightened by a further 
investigation using these methods.* Einstein indicated that these 
remarks were still very speculative, but he left no doubt of the 
importance that he attached to the whole theory.

V. From Einstein's Remarks to Schrodinger’s 
Wave Mechanics

A. No one could assess the importance of Einstein’s support for 
de Broglie’s ideas more fairly than has de Broglie himself. “The 
scientific world of the time hung on every one of Einstein’s words, 
for he was then at the peak of his fame. By stressing the impor
tance of wave mechanics, the illustrious scientist had done a great 
deal to hasten its development. W ithout his paper my thesis 
might not have been appreciated until very much later.”53

Einstein’s support was certainly vigorous. Pauli has written54 
that he “remembers that, in a discussion at the physics meeting 
in Innsbruck in the autumn of 1924, Einstein proposed a search 
for interference and diffraction phenomena with molecular 
beams.” These phenomena were indeed found in molecular beam 
experiments by Einstein’s old student Otto Stern55 and his collabo
rators, but not until several years after they had already been 
studied for electrons by Davisson and Germer56 and by G. P. 
Thomson57 in 1927.

The first direct use of the idea of matter waves came in July 
1925 when Walter Elsasser,58 a research student at Gottingen,

* I should point out that Pauli’s exclusion principle51 was first published 
in January, 1925 and Fermi's statistical method for systems obeying the 
exclusion principle did not appear until a year afterwards.52 It was, of course, 
the Fermi statistics rather than the Bose statistics that held the key to the 
behavior of metals.
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sent a short note to Naturwissenschaften on the quantum me
chanics of free electrons. Max Born50 and James Franck, who were 
professors of theoretical and experimental physics, respectively, at 
Gottingen had suggested to Elsasser that he investigate some 
anomalous results in the scattering of electrons by a metal plate, 
discovered by Davisson and Kunsman00 in 1923. These experimen
talists had found some unexpected maxima in the angular distri
bution of the scattered electrons, and it apparently occurred to 
Born and Franck that these might have something to do with 
de Broglie waves. Elsasser showed that if one interpreted these 
maxima as diffraction peaks, arising from the diffraction of the 
de Broglie waves of the electrons by the crystal lattice of platinum 
in the metal plate, then the wavelengths, so calculated, agreed in 
order of magnitude with those obtained from de Broglie’s for
mula, Equation (33), for the electron energies used in the experi
ment. The agreement was only in order of magnitude, but since 
polycrystalline samples had been used only crude estimates could 
be made anyway.

Elsasser also used the concept of matter waves to suggest an 
explanation of the Ramsauer effect.61 Ramsauer and others had 
found that electrons accelerated through only a few volts had 
anomalously long mean free paths in the inert gases. This effect 
seemed to go very much like the scattering of light from colloidal 
particles—the wavelengths again matched very roughly with those 
calculated from de Broglie’s formula.

W hat is especially interesting in the present context is the first 
paragraph of Elsasser’s paper, in which he stated the background 
for his work: “By way. of a detour through statistical mechanics, 
Einstein has recently arrived at a physically very remarkable re
sult. Namely, he makes plausible the assumption that a wave field 
is to be associated with every translational motion of a material 
particle, the properties of the field being determined by the kine
matics of the particle. The hypothesis of such waves, already ad
vanced by de Broglie before Einstein, is so strongly supported by 
Einstein’s theory that it seems appropriate to look for experi
mental tests for it.”

One gets the same impression from an examination of Alfred 
Lande’s book, The Modern Development of the Quantum The-



ory,62 whose second edition was com pleted in January, 1926. 
L a n d e s  book was in tended  as a review of th e  recent literature of 
th e  subject, and in th e  preface he remarked: “I t  may perhaps be 
considered prem ature th a t  E inste in’s gas degeneracy w ith its ‘in
terference of m atte r’ is taken up; the conceptual content of this 
investigation is, nevertheless, so abundan t and fruitful, also in 
connection  w ith o ther questions concerning quanta (the  light 
q u an tu m  th eo ry ), th a t a report on it seemed to  be demanded, 1 
despite th e  fact th a t there is as yet no experimental foundation 
of E inste in ’s theory .”

T here  is no question th a t E inste in’s authority  and his new argu
m ents b rough t de Broglie’s ideas th e  a tten tion  they deserved.

B. T h e  physicist w ho derived m ost benefit from  his study of de 
Broglie’s thesis was E rw in Schrodinger, and  he too was drawn to I 
de Broglie’s work th rough E inste in’s quantum  theory of the ideal 
gas. T h is was na tu ra l enough, since Schrodinger had been work
ing on th e  problem s associated with applying the quantum  theory 
to  gases before E inste in ’s papers appeared in  1924 and early 1925.
H e was well qualified, therefore, to  appreciate the power and the 
novelty  of E in ste in ’s theory and  to  investigate its implications.

T h ere  had been a ttem pts to  apply the quantum  theory to gases 
from  1911 on, w ith  a good m any theoretical physicists trying to 
develop such a theory by a variety of different methods. I t would 
take us too far afield to  follow the  history of these attem pts. It 
is sufficient for our purposes to  po in t out th a t one of the key 
issues was th e  significance of th e  factor n! in the  equation for the 
num ber of complexions of the gas, E quation  (36) above. None 
of th e  argum ents offered for elim inating th is factor was really 
satisfactory, a p o in t cogently m ade by E hrenfest43 in 1920, and 
seconded in  a paper03 th a t Schrodinger published early in 1924.

Schrodinger's principal concern in this paper was with the tem
pera tu re  below w hich a gas would show degenerate behavior. 
N ernst04 had  proposed th a t gases, when cooled at constant volume 
and  kept from  condensing, would, at sufficiently low temperatures, 
en te r a degenerate state in which their behavior would be con
sonan t w ith  N ernst’s theorem  (th e  th ird  law of therm odynam ics).

temperature, 0 , ought to have the form,

0  =  h2/m kk2, (41)

where m  is the mass of a molecule and X is some characteristic 
length. Schrodinger tried to show that this characteristic length 
X should be the mean free path of the gas molecules, rather than 
a length of the order of the dimensions of the container or the 
mean intermolecular distance. All of these had been suggested as 
possible candidates. There is no need for us to look at the details 
of his reasoning, but it is important, in view of what was to follow, 
to notice tha t his procedure was to specify the state of the gas as 
a whole, and to evaluate the partition sum for the gas rather than 
for the individual molecules. It is also worth mentioning that the 
idea of using the mean free path as the characteristic length was 
first discussed by Sommerfeld and Lenz65 in a theory based on 
consideration of the proper vibrations of the gas in the manner of 
Debye’s theory of the specific heat of crystals. Schrodinger had 
used the work of Sommerfeld and Lenz as one of his points of 
departure. As I have already mentioned, he followed Ehrenfest 
in rejecting the arguments previously advanced, by Planck68 in 
particular, for eliminating the n! contribution to the entropy.

T he first fruit of Schrodinger’s study of Einstein’s gas theory 
was a paper67 that Planck communicated for him to the Prussian 
Academy in July, 1925. In this paper Schrodinger returned to the 
question of whether or not to divide the n! out of the formula 
counting the number of complexions. This time he accepted, at 
least for the sake of discussion, Planck’s view that the n! should 
be eliminated because permutations of molecules of the same kind 
ought not to be considered as giving rise to new complexions. But, 
argued Schrodinger, even if one grants the validity of this point of 
view as to the definition of physically different complexions of the 
gas, it is still not true that division by n] is the proper way to cor
rect the equation. The reason for making the correction is that 
permutations, in which molecules simply interchange their roles, 
should not be counted as leading to distinct states. But, “in order
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for two molecules to be able to interchange their roles, they really j  
must have different roles; otherwise the previous counting has f  
certainly not counted such states as being different; so we need 
not and may not ‘correct away’ a multiplicity that never existed in 
our equation at all! On the contrary, one recognizes that the mul
tiplicity with which a definite ‘state in the new sense' appeared in ] 
our earlier counting is given precisely by the value (n\/Un8\) it- , 
self.” The proper and consistent way to correct for the effective 
indistinguishability of the molecules is, therefore, to drop the 
whole combinatorial factor and to say that each set of numbers 
nly n2f . . .  n8 . .  . defines a single distribution, regardless of the 
number of molecular permutations compatible with it. This is 
exactly the counting procedure of the Bose-Einstein statistics.

Schrodinger’s main point, then, was that the new statistical j: 
procedure was the necessary consequence of following through the J 
elimination of physically redundant permutations in a logically 
consistent manner. This new statistical procedure meant “a rad
ical departure from the Boltzmann-Gibbs kind of statistics.” Even 
though there was no interaction energy assumed between the 
molecules, the new statistics still implied a mysterious correlation, 
not yet understood. 5

C. W hen Schrodinger collected his epoch-making articles on 
wave mechanics into a book68 in November, 1926, he unfortu
nately did not begin quite at the beginning of the story. He did 
not include the first paper in which he used de Broglies ideas, 
the paper that preceded the series on Quantization as a Proper ' 
Value Problem and that should have served as a preface to them 
in his book. That paper,69 On Einsteins Gas Theory, was sent 
to the Physikalische Zeitschrift on December 15, 1925, just six 
weeks before he finished the first of the series on the wave equa
tion and its applications. It is a remarkable work, for its insight 
and its elegance, as well as for its historical significance. The basic 
idea cannot be formulated more sharply or more clearly than 
Schrodinger pur it in his opening paragraphs:

“The essential point of the new theory of a gas that Einstein 
has recently worked out is generally considered to be this: a com
pletely new kind of statistics, the so-called Bose-Einstein statistics,
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is to be applied to the motion of gas molecules. It goes against 
the grain, and justifiably so, to consider these statistics as some
thing primary, incapable of further explanation. They seem, on 
the contrary, to disguise a certain mutual dependence or interac
tion between the gas molecules which is, however, hard to analyze 
in this form.

“One might expect to gain a deeper insight into the essence 
of the new theory if one could manage to preserve the validity of 
the old statistical methods—proved by experiment and logically 
well-based—and to undertake the change in the foundations at 
a point where it can be done without ‘sacrificium intellectus.' 
The following simple idea is a guide to this goal: Einstein's theory 
of a gas is obtained by applying to the gas molecules the form of 
statistics that leads to the Planck radiation law when it is applied 
to ‘atoms of light', (photons). One can, however, also obtain the 
Planck radiation law by using ‘natural’ statistics, if one applies 
them to the so-called aether oscillators,' that is, to the degrees of 
freedom of the radiation. The photons then appear only as the 
energy levels of the aether oscillators. The transition from natural 
statistics to Bose statistics can always be retrieved by interchang
ing the roles of the two concepts: ‘the manifold of energy states' 
and ‘the manifold of carriers of these states.’ One must, therefore, 
simply form a picture of the gas like the picture of cavity radiation 
that does not correspond to the extreme light-quantum representa
tion; the natural statistics—using the convenient method of 
Planck's partition sum, for example—will then lead to the Ein
stein gas theory. This means nothing else but taking seriously the 
de Broglie-Einstein wave theory of moving particles, according to 
which the particles are nothing more than a kind of ‘wave crest’ 
on a background of waves.” (The italics are mine.)

The situation to be considered was the usual one of an ideal gas 
of n monatomic molecules in a container of volume V at tempera
ture T. In a common formulation one would say that each mole
cule could have any of the energies elf e2, . and that any
number of molecules could be in each of these states. Schrodinger 
preferred to say instead that the gas had various modes of oscilla
tion, and that the sth mode had possible energies o, e8f 2e8f . . . , 
n8 according to whether it was “occupied” by o, 1, 2, . . . ,
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n„, . . . molecules. The gas could then be viewed as a collection of 
harmonic oscillators, the spectrum of this collection being deter
mined by the set {n,}.

The partition sum Z of the gas, the sum of the Boltzmann fac
tors exp ( — E/kT) over all possible energies of the gas as a whole, 
would then be given by the equation,

Z =  2  exp {— (nitx 4- n2e2 +  • ■ - +  n.e, +  . . . ) /k T }, (42)

where the sum is over all nonnegative integral values for the 
{n,}, subject to the condition that

T.

2 n„ (43)

expressing the fixed number of particles in the gas. The sum could 
be evaluated relatively directly, including the constraint condition, 
by using the methods introduced a few years earlier by Darwin 
and Fowler.70 Once this had been done the properties of the gas 
were given as explicit sums over the energy spectrum {es}, which 
had then to be determined.

It would have been inconsistent to determine the energies {e,} 
by dividing the molecular phase space into cells, as Einstein had 
done, since Schrodinger was treating the set {e„} as the spectrum of 
the gas as a whole. His procedure was instead to follow de Broglie in 
considering the particle as a “signal” in the system of waves, with 
properties determined by Equations (33) or (40). Finding the 
spectrum then meant finding the number of normal modes for a 
wave phenomenon in the volume V, where the dispersion law for 
the waves was given by de Broglie’s equations. This could readily 
be done, at least for frequencies that were high enough so that 
the shape of the container was unimportant, and it led to the 
result

ft =  (417V/3) ( i m / f i f / 2 e3/ 2, (44)

where ft is the number of modes whose energy does not exceed e, 
a result identical with what Einstein had found by counting phase 
cells of content h3.
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Schrodinger drew attention to the fact that the mass of the 
particles appeared in the equation for the spectrum of the gas, just 
as it appeared in the de Broglie dispersion law relating frequency 
v and wave length \ ,

v = (h/2rtik~), (45)

to quote only the nonrelativistic form.
Once the energy spectrum was known it was straightforward to 

complete the calculation by showing that the molecular distribu
tion law, and therefore all other thermodynamic properties of the 
gas, agreed exactly with Einstein’s results. The fluctuations could 
also be calculated very simply and generally by Schrodinger’s 
methods, again agreeing with Einstein’s formulas.

The last section of Schrodinger’s paper dealt with the possi
bility of representing particles or light quanta by the interference 
of waves. Here Schrodinger briefly discussed the use of wave 
packets, localized in space and time, that constituted “signals” 
and could serve as models for particles in the wave theory. Even 
at this stage he recognized that such wave packets, containing 
waves of a range of frequencies and wave vectors, would not hold 
together in time, but would soon spread out. Only if this difficulty 
could be overcome could such wave packets really be used as 
models for particles.

Although Schrodinger did not include this paper in the canon 
of his works on wave mechanics, and it has therefore gone un
mentioned when the history of that subject is discussed, he made 
no mystery of its organic connection with his more famous papers. 
In the first71 of the series on Quantization as a Proper Value 
Problem, after giving his new solution of the problem of the 
hydrogen atom, he described the relationship between his ideas 
and de Broglie’s, observing that he had worked with standing 
waves rather than with the running waves used by de Broglie. “I 
have recently shown,” he went on, referring to the paper in ques
tion which was then in press, “that one can base Einstein’s theory 
of a gas on the consideration of such standing proper vibrations, 
for which one assumes the dispersion law of de Broglie’s phase 
waves. The considerations concerning the atom reported above
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could have been presented as a generalization of this work on the 
gas model.”

Einstein’s gas theory, and the “short but infinitely far-seeing re
marks” that it suggested, form the link between de Broglie’s 
matter waves and Schrodinger’s wave mechanics.

W hen Albert Einstein wrote his Autobiographical Notes,12 

(“Here I sit at the age of 67 in order to write something like my 
own obituary” ), he made some remarks on his education that re
veal more of the nature of his genius than his many biographers 
have been able to. He explained that one reason for his preference 
of physics to mathematics was that “my mathematical intuition 
was not strong enough to make a sure distinction between what 
was fundamentally important, really basic, and the rest—the 
erudition that one could more or less dispense with.” As a result 
his feelings, when he was confronted with the various specialities 
within mathematics, were like those of Buridan’s ass, unable to 
decide upon any particular bundle of hay. “True enough, physics 
was also divided into separate fields each of which could devour 
a short working life without having satisfied the hunger for deeper 
knowledge. . . . But in physics I soon learned to scent out the 
paths that led to the depths, and to disregard everything else, all 
the many things that clutter up the mind and divert it from the 
essential.”

He made the same point more pithily in a remark to one of his 
last assistants, Ernst Straus:73 “God is inexorable in the way He 
has allotted His gifts. He gave me the stubbornness of a mule and 
nothing else; really, He also gave me a keen scent.”
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