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The aim of quantum mechanics is to explain macroscopic, objectively recorded phenomena. 
Microscopic objects are measured by enabling them to interact with a macroscopic measuring 
apparatus prepared in a metastable state. Macroscopic objects, such as cats, are not above the 
laws of quantum mechanics, but owing to their enormously dense level spectrum other aspects 
than single eigenvalues and eigenfunctions are prominent. These aspects can be described in 
classical terms, such as probabilities instead of probability amplitudes. The measuring act is 
fully described by the Schrodinger equation for object system and apparatus together. The 
collapse of the wave function is a consequence rather than an additional postulate. A model is 
constructed to demonstrate these statements. It also appears that the entropies of the object 
system and the apparatus increase by the same amount, namely the entropy difference 
between the metastable initial state and the stable final state of the apparatus. 

1. Formulation of the problem 

Many a theory in physics makes use of mathematical entities that do not 
correspond to an intuitively understandable physical object. Of course intuition 
can be educated; as a consequence some of these entities, for instance energy, 
become so familiar as to be regarded as concrete objects. Others, such as the 
coordinates xF in general relativity, remain abstract without anybody worrying 
about it. A third class, however, of which entropy is an example, remains a 
source of bewilderment and controversy. The most notorious member of this 
class is the wave function #. It is an indispensable tool for quantum mechanical 
calculations, but its connection with actually observed phenomena is remote. 
This connection is the subject of the continuing debate about the foundations 
of quantum mechanics and the theory of measurement [l-4]. A huge literature 
has been provoked by the question: How exactly does the wave function $ 
relate to the phenomena that I can observe and measure? 

Meanwhile quantum mechanics is in daily use and is extremely successful in 
understanding, predicting, and computing these same phenomena. One knows 
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how to handle $ so as to get concrete, observable conclusions about the 
physical world. Apparently the problem is solved in practice; the difficulties 
enter only when one starts philosophizing. This philosophizing has given rise to 
a number of “interpretations”, in which (I/ is endowed with more physical 
significance than is needed for the actual calculation of the phenomena. There 
are a number of schools with different views, including such mind-boggling 
fantasies as the many-world interpretation [5], which go far beyond the world 
of physical phenomena. 

My question is: How is it possible that, in spite of these differences of 
opinion, quantum mechanics is used in practice to obtain uncontroversial 
results? The purpose of this article is not to defend some interpretation, but to 
analyze what happens when quantum mechanics is used to obtain results that can 
be compared with experiments. This is a matter of physics; what I say is true or 
false - not the expression of a philosophical view about the deeper meanings of 
reality. 

It is not surprising that some of my conclusions are the same as those of 
Bohr [6] inasmuch as his aim too was to understand how the quantum 
mechanical formalism works. Yet in some crucial points the present description 
of the theory of measurement differs from what is usually regarded as the 
Copenhagen interpretation. A great help in elucidating the measuring process 
is the explicit model constructed in section 6. I repeat that I shall avoid all 
philosophical extrapolations of the physical facts. Znterpretationes non @fingo. 

2. Preliminary remarks about quantum mechanics 

Theorem I: Quantum mechanics works. 

It describes and computes those phenomena for which it was invented, such 
as black body radiation and spectra; and numerous others, such as specific heat 
and superconductivity. All these phenomena are macroscopic, objective, and 
permanently recorded, for instance on a photographic plate or as a table in the 
Physical Review. Hence 

Theorem ZZ: Quantum mechanics is concerned with macroscopic phenomena, 
which are not perturbed by observation. 

The familiar stories about the influence of the observer on the system do not 
apply to real observations in a laboratory. They apply to a world of lilliputians, 
where an observer is able to aim at a single gamma quantum at a preassigned 
electron. Such stories may be helpful in exposing the difference with the 
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classical picture of particles and waves, but they are irrelevant for the 

observations as done in practice. Our purpose is merely to know how to deal 
with actually observed phenomena. 

One example of such phenomena is the diffraction of a beam of electrons 
passing through a crystal. In order to compute the observed diffraction pattern 
one makes use of a quantity $, called the “wave function of a single electron”. 
The value of [I)[ *, multiplied by the number N of electrons in the beam, is the 
observed blackening of the photographic plate. The value of [$I* for a single 
electron does occur in the calculation, but is not observed itself. One may call 
it the probability density of the electron, but that is merely a name for the 
observed blackening divided by N. 

Theorem ZZZ: The quantum mechanical probability is not observed but merely 

serves as an intermediate stage in the computation of an observable 
phenomenon, 

The old question: Does $ refer to a single system or to an ensemble? - must 
therefore be answered as follows. I,!J is a mathematical object pertaining to a 
single system; its square [$I2 may be called a single system probability. 
However, in order to confront this quantity with reality one must do observa- 
tions on a large number of similar systems, in such a way that the probability 
density materializes as an actual density. 

Not only the probability I+/*, but also the wave function $ itself occurs 
merely as a mathematical tool in the calculation of spectra, collision cross- 
sections, etc. It does not occur in the result that can be handed to the 
experimenter for comparison with the real world. This situation is similar with 
the way in which the relativistic coordinates n’ are used, and also the vector 
potential in Maxwell theory. For some reason, however, it is the wave function 
that has been the object of numerous speculations concerning its “true 
nature”. Everybody is free to speculate, but 

Theorem ZV: Whoever endows I,!I with more meaning than is needed for 
computing observable phenomena is responsible for the consequences. 

He has the duty to show that his speculations do not lead to contradictions, 
and preferably that they are of some use (other than agreement with precon- 
ceived philosophical views). If he does not succeed he should not blame 
quantum mechanics. 

Such theories are usually carefully constructed so as to reproduce the known 
results of quantum mechanics; they can therefore neither be verified nor 
falsified by experiments. One might hope that they are simpler or easier to 
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handle but actually they are usually complicated and contrived. This is 
particularly so when they fail to respect the superposition principle and as a 
result lose the tool of transforming in Hilbert space. But I digress: our purpose 
is merely to see how quantum mechanics works in practice. 

3. The measuring process according to von Neumann 

Any measuring arrangement corresponds with the measurement of an 
observable quantity represented by a Hermitian operator A. Such an operator 
has a complete set of eigenfunctions x,, with eigenvalues h,, 

AX, = Ax,, . 

For convenience we suppose that the eigenvalues are discrete and nondegener- 
ate and that the x, are normalized. Von Neumann gives the following abstract 
description of the measuring process [7]. 

(i) As long as no measurement occurs the system is described by a wave 
function G(t), which evolves according to the Schrodinger equation for the 
system. 

(ii) Suppose at t, the system is brought into contact with an apparatus for 
measuring A. Then the possible outcomes are the values A,. The probability 
for finding h, is 

pm = I(xmlv4t,>)l”~ 

(In this connection the measurement is always taken to be instantaneous, i.e., 
short on the time scale of the Schrodinger evolution.) 

(iii) If the value A, has been found by the measurement the wave function 
changes abruptly from $(t,) into x,,. This sudden reduction or collapse of the 
wave function is to be added as a new postulate to the Schrodinger quantum 
mechanics. (Incidentally, this collapse can be used to prepare a system in a 
certain state x,.) 

(iv) It is necessary that the measuring apparatus is left in a state from which 
the observer can see that the result was A m: a pointer on a dial must point at m. 

However, to read this result I need another apparatus, which by a second 
measuring process determines the position of the pointer. And this process is 
repeated and gives rise to a chain of measurements, which can end only in the 
brain of the observer, where in some mysterious way it becomes a part of the 
“gedankliche Innerleben des Individuums”. 

This is actually the conclusion of von Neumann and others [7,8]. I find it 
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hard to understand that someone who arrives at such a conclusion does not 
seek the error in his argument. Quantum mechanics is not a theory of the mind 
of an observer, but of physical, objectively recorded phenomena, see theorem 
II. The question is how $ relates to spectra or specific heats; the mind of the 
observer is irrelevant. Moreover the answer was already known to Bohr: the 
quantum mechanical measurement is terminated when the outcome has been 
macroscopically recorded. 

4. Macroscopic systems 

A macroscopic system, such as a certain amount of a gas, a crystal, or a 
pointer on a volt meter, is composed of a huge number of particles. As a 
consequence its energy levels lie inordinately dense on any energy scale used in 
the laboratory. The typical distance SE between two successive levels is much 
and much smaller than the inaccuracy AE of the best energy measurement by 
the best experimenter. Hence such a system can never be prepared in a single 
eigenstate of the energy operator. (In fact, if it were in a single eigenstate it 
would behave as one big molecule in a stationary state; no particle could be 
seen to move!) Rather, the wave function $ of a macroscopic system is always 
a superposition of an enormous number (namely AE/6E) of eigenstates. A 
macroscopic system does obey the laws of quantum mechanics, but the familiar 

picture of individual eigenvalues and eigenstates is no longer adequate. Other 
features become prominent; they constitute the subject matter of macroscopic 
physics [9, lo]. (A loose analogy within the realm of classical theory is formed 
by statistical mechanics: A many-body system has features, such as pressure 
and temperature, which do not exist for a few particles; they are the subject 
matter of thermodynamics.) 

The wave function Cc, of a macroscopic system describes all its individual 
particles and their movements. It obeys a gigantic Schrodinger equation as long 
as the system is not perturbed, not even by a measuring apparatus. This $, 
however, is the “microstate” of the system. When an experimenter prides 
himself that he has prepared the system in a well-defined state, he refers to the 
macrostate. He does not pretend to know its Hilbert vector @, he only knows 
that it lies in a certain subspace of Hilbert space with BE/SE dimensions. 

When a macroscopic pointer indicates a macroscopic point on a dial the 
number of microscopic eigenstates involved has been estimated by Bohm [ll] 
to be 105’. When the observer shines in light in order to read the position of the 
pointer, the photons do perturb the $ of the pointer, but the perturbation does 
not affect the macrostate. The vector $ is moved around a bit in these 10” 
dimensions but its components outside the subspace remain negligible. That is 
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the reason why macroscopic observations can be recorded objectively, in- 
dependently of the observations and the observer, and may therefore be the 
object of scientific study. The lilliputian measurements of Heisenberg [12] and 
von Neumann do not apply to experiments with macroscopic systems. 

A typically macroscopic feature is the existence of thermodynamic equilib- 
rium states. Those are macrostates which the system, when left alone, will 
reach sooner or later. Certain systems possess metastable states as well, for 
example supersaturated vapor. A metastable state is a macrostate in which the 
system can reside for a long time before its ultimate transition into the stable 
equilibrium state. In many cases, however, this transition can be triggered by a 
minute perturbation, even a single microscopic particle. That is the way in 
which microscopic particles can be recorded macroscopically, as in the Wilson 
chamber, the Geiger counter and the AgBr crystals of the photographic plate. 

Theorem V: A quantum mechanical measuring apparatus consists of a macro- 
scopic system prepared in a metastable state. 

The transition from the metastable into the stable macrostate provides the 
free energy needed to make the microscopic phenomena macroscopically 
visible. It is also the reason why the measuring process is irreversible (camp. 
theorem X) and therefore permanently recorded. 

5. Schriidinger’s cat 

This much discussed paradox [13] consists of a cat locked in a black box 
together with a radioactive sample. Moreover there is a Geiger counter, which 
on being triggered by an emitted alpha particle activates a device that kills the 
cat. The argument runs as follows. After some time the whole system is in a 
superposition of two states: one in which no decay has occurred that triggered 
the mechanism and one in which it has occurred. Hence the state of the cat 
also consists of a superposition of two states. 

Icat) = allife) + bldeath) . (4 

There are two coefficients a, b (in general complex), which depend on the time 
elapsed. The state remains a superposition until an observer looks at the cat. 
Then, according to section 3, the wave function (2) collapses into either (life) 
or [death) with respective probabilities 1 aI2 and 1 b12. 

If this is not sufficiently paradoxical one may consider an observer who has a 
friend who does the experiment for him [S]. At which moment does the wave 
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function collapse, when the friend looks at the cat or when he communicates 
his finding to the observer? This quandary must be resolved by anybody who 
regards JI as a physical object rather than a tool for computing macroscopic 
phenomena. 

To make the paradoxical nature of (2) more explicit suppose that the 
observer decides to observe another quantity than the question of life and 
death, for instance the temperature of the cat (i.e., the total kinetic energy of 
its molecules). The expectation value of such a quantity G is 

(G) = ~cz~~G,, + lb12Gdd + a*bGpd + ab*G,, , 

where G,, etc. are the matrix elements of G. This expectation value is not a 
statistical average of the value G,, and G,, with probabilities 1 aI2 and 1 b12, but 
contains cross terms between life and death. 

The answer to this paradox is again that the cat is macroscopic. Life and 
death are macrostates comprising an enormous number of eigenstates 18) and 
Id) respectively. Any wave function of the cat has the form 

Icat) = c a,lC) + c b,ld) . 
e d 

The cross terms in the expression for ( G) are 

,c, a*,b,G,, + 2 a,b:G,, . 
e,d 

(3) 

As there is such a wealth of terms, all with different phases and magnitudes, 
they mutually cancel and (3) practically vanishes. This is the way in which the 
typical quantum mechanical interference become inoperative between macro- 
states. As a result (G) now does appear as a statistical average. 

Theorem VI: The wave function of a system of a macroscopic number of 
particles gives, on measuring macroscopic quantities, results that can be de- 
scribed in terms of classical probabilities. [9] 

One remark concerning microscopic systems, such as a single elementary 
particle, must be added. In the region of high quantum numbers such a system 
behaves with respect to measurements as a macroscopic system. The reason is 
again that there are many eigenstates within the margin AE of macroscopic 
accuracy. Readers who think that they have found a counterexample to 
theorem V, for instance the Cerenkov counter, have made use of this fact. A 
particle that betrays its position through Cerenkov radiation thereby changes 
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its microscopic $ but not its macrostate. Its energy changes by an amount 6E 
but not AE. 

6. A model for a measuring apparatus 

We shall construct a measuring apparatus for observing the position of an 
electron. More precisely, our apparatus will be able to tell whether the electron 
has passed through some preassigned region U in space. It could be used for 
instance in the double slit experiment to decide through which slit the electron 
has passed. We shall find that such an observation does indeed destroy the 
interference pattern. All this is a consequence of the Schriidinger equation for 
the total system, which consists of the object system, in this case the electron, 
together with the apparatus. There is no need to supplement the Schrodinger 
evolution with an additional postulate, as in the theory of von Neumann. 

Our apparatus [14] consists of an atom together with the electromagneticfield. 
The apparatus is macroscopic because of the many degrees of freedom 
embodied in the normal modes of the field*. We label the modes by their wave 
vector k and for simplicity ignore polarization. The Hilbert space of the 
apparatus is the direct product of the Hilbert space of the atom and the space 
of all possible excitations of the field modes. The stable equilibrium is the state 
with the atom and all modes in their ground states. A metastable state can be 
made by putting the atom in an excited state, for instance 2S, from which no 
transition to the ground state through emission of a photon is allowed. When, 
however, an electron appears in the neighborhood of the atom its Coulomb 
interaction distorts the 2s state so as to create a dipole moment, which makes 
the transition possible. Such a transition is irreversible and leaves a permanent 
record of the passage of the electron. For instance the emitted photon can be 
caught on a photographic plate or in a counter. One may regard the plate or 
the counter as part of the measuring apparatus if one wishes, but the crucial 
point is that, once the photon has been emitted, the presence of the electron 
has been permanently recorded. 

The only states of the apparatus that we need for our purpose are I+ ; 0) 
(atom excited, no photons) and I- ; k) ( a om t in ground state, one photon k). 
The wave function ?P of the total system (electron + apparatus) is a linear 
superposition, whose coefficients are elements of the Hilbert space of the 
electron: 

q(t) = cp(r, t)l+; 0) + C $k(r, 41-i k) . 
k 

* In the model of Peres [15] the measuring apparatus is not explicitly macroscopic, but instead a 
noisy perturbation is put in by hand. 
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The photon states are orthogonal to each other and normalized. Hence the 
normalization of !P takes the form 

P, is the probability that the atom is excited and no photon present; Pk is the 
probability that the atom has emitted the photon k; and C Pk = 1 - PO is the 
probability that the atom is deexcited by emission of an unspecified photon. 
The functions cp and $k do not have unit norm, nor are they orthogonal. The 
absence of cross terms in (5) is due to orthogonality 
the apparatus. 

7. The collapse of the wave function 

The Schrodinger equation for the total system is 

@@, ‘) = (’ - iv2)(P@, t, - i”(r) T U,@k(rY t, , 

i$k(r, t) = (k - $V2)rCl,(r, t) + iu(r)u,cp(r, t) . 

Here 6 = 1, 0 is the energy of the excited level of 

of the eigenfunctions of 

(6) 

(7) 

the atom, k = Ikl is the 
energy of the field modes, and - iv’ represents the kinetic energy of the 
electron, its mass being set equal to unity. Furthermore uk is the product of a 
coupling constant, a normalization factor of the field mode k, and a damping 
factor that prevents interaction with modes whose wavelength is shorter than 
the diameter of the atom. Finally, U(T) is the dipole matrix element created by 
an electron at distance r, the atom being located at r = 0. The function U(T) is 
appreciable only in some neighborhood U of the atom, and practically zero 
outside. 

The coupled equations (6), (7) h ave to be solved with the initial condition 
for t+ - 03: first Gk(t) = 0 for all k; and secondly rp(r, t) is in this limit a given 
incident wave packet, 

(P(I-, t) = 
I 

c(p) eiP’r-iE’ dp , 

We want to know the functions cp 
for t+ + 00. We shall then know 

E=ip2+t. (8) 

and t+Qk after the passage of the electron, i.e. 
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1 cp(r, t)l* = probability for finding the electron at r without having triggered 
the measuring apparatus; 

I&(‘, t)j2 = probability for finding the electron at r having triggered the atom 
into emitting a photon k. 

The collapse of the wave function can be deduced without actually solving 
eqs. (6), (7). For that purpose write (7) in the form 

It appears that the function eikt&(r, t) obeys a Schrodinger equation with a 
source term. Since & vanishes for t-+ - 00 it follows that the solution of (9) 
consists of a wave emanating from the source. This source is confined to the 
neighborhood U. Hence +Gk(r, t) is a Schrodinger wave that fans out from the 
neighborhood where the electron has betrayed its presence by triggering the 
measuring apparatus. This is the collapse of the wave function: when the 
apparatus has observed the electron to be in U the electron wave function is no 
longer the initial cp but is replaced by a J/k. Thus the collapse is not an 
additional postulate and has nothing to do with a change of my knowledge or 
some such anthropomorphic consideration. 

Theorem VII: The collapse of the wave function of the object system is a 
consequence of the Schrtidinger equation for the total system (i.e., object system 
and measuring apparatus together). 

When a measurement has occurred the total wave function P has obtained 
components outside the original subspace of the apparatus (which consisted of 
the single vector I+; 0)). The coefficients of these new components are 
functions of the electron variables and constitute the new electron wave 
function. If one looks at the electron by itself rather than as a part of the total 
system one gets the impression that its wave function cp has miraculously 
collapsed into ICI,. 

Consider the two-slit experiment and put the observing atom in the upper 
slit. If it is not triggered into emitting a photon, the electron is still described 
by the function cp, which goes through both slits. The electron is not observed 
and the interference pattern is undisturbed. If, however, a photon k is emitted 
by the atom, the electron is described by the wave function &, which fans out 
from the upper slit and therefore produces no interference pattern. In this case 
the electron has betrayed its passage through the upper slit and the interfer- 
ence is destroyed - in agreement with the famous discussion by Bohr [6]. 

In discussing this example I have used the traditional language of a single 
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electron and its probability distribution. The same result can be formulated 
operationally in agreement with theorem III. The actual experiment consists in 
shooting a succession of electrons at the two slits. For each single electron I 
write down its position on the receiving screen and record whether or not a 
photon has been emitted. After finishing the experiment I sit down at my desk 
with my notes, collect the events without photon and mark their positions on a 
piece of paper. The marks will produce an interference pattern. When I do the 
same for the events that were accompanied by a photon no interference 
appears on the paper. 

If the atom were absent the wave function of the electron would be the cp 
given by (8), modified by the boundary conditions on the two-slit screen. In the 
presence of the atom cp is the solution of the coupled equations (6), (7) with 
the same boundary conditions and with (8) as initial condition. These two 
functions cp are not quite the same; the apparatus influences the electron even 
without detecting it. The interference pattern we obtained by selecting the 
undetected electrons is not quite the same as the one obtained when no 
attempt is made to detect them. The physicist says that the atom is polarizable, 
or that it makes a virtual transition to the ground state. If one wants the 
electron to be able to act on the measuring apparatus one cannot avoid a 
reaction. Yet the fact that an apparatus affects the wave function of the object 
system even when the measurement is not successful has caused some debate 

W921. 

8. Probability and density matrix 

The classical probability of some feature of a system is defined as the number 
of elementary states that have that feature, divided by the total number of 
possible elementary states. The elementary states are supposed to have equal 
probabilities, or else to have given a priori probabilities. Probability calculus is 
merely the technique of transforming one probability distribution into another. 
The physical input is the specification of the elementary states and their a priori 
probabilities. This input depends on my knowledge - or rather lack of knowl- 
edge - because actually the system can be in no more than one state. If I have 
cast two dice without looking, the probability that the total number of points 
equals 10 is &; the moment I look at one die the probability jumps to either 0 
or a, depending on what I see; and once I have looked at both the probability 
is 0 or 1. 

Quantum mechanical probabilities, however, are equal to I~/J[’ by definition, 
see section 2. They are not defined by means of an underlying set of possible 
states (which, by the way, would also require a postulate about a priori 
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probabilities). There is no cogent reason to insist that it should be possible to 
interpret them in this classical way. Obstinate attempts to construct such a 
“stochastic interpretation” have not met with success [17]. At any rate they are 
irrelevant for our purpose of understanding how quantum mechanics works in 
practice. 

Both kinds of probability distibutions are needed to describe an ensemble of 
quantum systems. For convenience take an ensemble of particles. Each particle 
is supposed to be in a state described by one of the wave functions of a set 
x,(r) (normalized but not necessarily orthogonal). Let the fraction of all 
particles in each x, be P,,. Then if I pick at random one of the particles the 
probability to find it at r is 

More generally, if A(rlr’) represents a one-particle operator the ensemble 
average of its quantum expectation value is 

(A) = c P, /I xE(r)A(rlr’)x,(r’) dr dr’ . 
n (10) 

To write this in a more convenient way one defines the density matrix 

drlr’) = F P,x,(r)xE (4 . (11) 

Then (10) can be written as an operator equation, 

(A)=TrpA. 

The density matrix is a convenient way to express the properties of a quantum 
ensemble, but it conceals the separate roles of the classical and quantum 
mechanical probabilities. 

Theorem VIII: Density matrices are classical probability distributions over 
quantum mechanical states; they therefore depend on the available knowledge. 

Incidentally, some authors regard p as the true quantum mechanical state. 
The special density matrices that can be written as a product 

drlr’) = +WlCr*W (12) 

are then called pure states. They correspond to our states I,!J. All other p are 
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mixed states, that is what we would call the states of an ensemble. These 
authors should not be surprised that their quantum systems have states that 
depend on the author’s knowledge. 

9. Application to the measurement process 

Suppose the measurement process of section 3 is applied to a particle in a 
state +(r). Before measurement the density matrix has the form (12). After the 
measurement is performed, but before I look at the result, the density matrix is 

P, being given by (1). After I have looked and found a certain result A, the 
density matrix is reduced to p2(rlr’) = x,(r)xz(r’). This reduction of p1 to p2 is 
classical and not more mysterious than the reduction of the probability 
distribution of the dice upon looking at them. 

The reduction of p into pl, however, is due to the collapse of the wave 
function caused by the interaction with the measuring apparatus. This can be 
shown explicitly for the model in section 6. Let A be an operator acting on the 
electron alone. Its expectation value in the state (4) is 

(13) 

This cannot be written as the expectation value of A in an electron wave 
function, but only by means of a density matrix in the electron space: 

(WA1 W) = Tr 0, 

where 

This shows that after a measurement the object system cannot be described by 
a 1(1 but only by a p, as if it were an ensemble. The reason is that it is still part 
of the total system, which includes the apparatus whose state is here left 
unspecified. 

If one does look at the apparatus and finds that no photon has been emitted, 
the electron does have a wave function, namely q(r); or properly normalized, 

camp. (5) 
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If one looks and finds a photon k the wave function and density matrix of the 
electron are 

However, our measurement consisted in determining the position of the 
electron. This is done by determining whether or not a photon is produced, 
regardless of the k of the photon. If one sees no photon the electron is 
described by (15), as before. But if one sees an unspecified photon the electron 
density matrix is 

(17) 

In our model the large number of photon states k served to simulate the 
macroscopic nature of the measuring apparatus. It is therefore an essential 
feature that one cannot distinguish between different photons k. (Even if one 
can experimentally determine their directions within a certain margin there is 
still a practically infinite number of them.) Hence (17) is the proper description 
of the electron after it has been observed to pass through U. 

10. Entropy 

Classical probability theory associates with a distribution {P,} a number 

s=-CPJogP,, 
n 

(18) 

called the entropy of the distribution. Similarly quantum mechanics associates 
with every density matrix an entropy 

S=-Trplogp. 

This expression is the same as (18) in the case that p has the form (11) with 
orthonormal x,. By construction S is nonnegative and zero only if p is a pure 
state as in (12). We emphasize that entropy is defined as a property of 
probability distributions and therefore depends on our knowledge. Only in 
statistical mechanics is the entropy a state function, because every macroscopic 
equilibrium state is identified with a prescribed distribution. 
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We apply the entropy concept to our model for the measuring process. First 
of all one sees immediately: 

Theorem IX: The total system is described throughout by the wave vector W and 

has therefore zero entropy at all times. 

This ought to put an end to speculations about measurements being respons- 
ible for increasing the entropy of the universe. (It won’t, of course.) 

Secondly, before the measuring operation the electron itself is described by a 
vector in its own Hilbert space, viz. (S), and has therefore also zero entropy. 
The apparatus has zero entropy as well since it is in the pure state I+ ; 0). (This 
is a special feature of our simple example; usually one does not have complete 
knowledge of the prepared state of the apparatus.) 

After the measurements, if I do not look at the outcome, the entropy is the 
one associated with the density matrix (14). If I do look and find no photon the 
electron is in the pure state 9 with zero entropy. If I look and find an 
unspecified photon the entropy is the one associated with (17). 

To compute this entropy we note that it can be expressed in the eigenvalues 
pu, of the matrix (17) by 

s=-Cf-Ql~gPv. (19) Y 

The equation for the eigenvalues p and corresponding eigenfunctions t(r) is 

d(r) = _/ p,(rlr’)S(r’) dr’ = Cl- pJ1 T rclk(r) 1 Icr:(r’)Kr’> dr’ . (20) 

Multiply this equation with @i,(r) and integrate 

Here 

ffk = rLi (Mr) dr 

and 

Mkfk = (1 - P,-,)r _/ $,,*,(r)ek(r) dr . 

(21) 

Thus the eigenvalues of (20) are also eigenvalues of M,.,. (This is not true for 
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those s(r) for which all (Ye vanish, but in that case the eigenvalue p of (20) is 
also zero and does not contribute to the entropy (10) anyway.) Hence the CL, in 
(19) may be taken to be the eigenvalues of M. Incidentally, it follows that one 
might write S = -Tr M log M. 

We shall now prove that this is equal to the increase of the entropy of the 
measuring apparatus. We start from the density matrix of the total system after 
the emission of an unspecified photon has been observed: 

The density matrix of the apparatus is obtained by taking the trace over the 
electron states, 

This is an operator in the space of one-photon states. Its eigenvalues are easily 
obtained with the aid of the orthonormality of the photon states ( - ; k) . They 
turn out to be identical with the eigenvalues p,, of the matrix M found in (21). 

Theorem X: The measurement operation increases the entropies of the object 
system and of the apparatus by equal amounts. 

This increase is due to the incomplete specification of their final states. It is 
equal to the thermodynamic entropy difference between the stable and meta- 
stable macrostates of the apparatus. 
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