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Abstract	
	
This	 paper	 reviews	 and	 suggests	 a	 resolution	 of	 the	 problem	 of	 definite	 outcomes	 of	
measurement.	 	 This	 problem,	 also	 known	 as	 "Schrodinger's	 cat,"	 has	 long	 posed	 an	
apparent	 paradox	 because	 the	 state	 resulting	 from	 a	 measurement	 appears	 to	 be	 a	
quantum	 superposition	 in	 which	 the	 detector	 is	 in	 two	 macroscopically	 distinct	 states	
(alive	and	dead	in	the	case	of	the	cat)	simultaneously.		Many	alternative	interpretations	of	
the	quantum	mathematical	formalism,	and	several	alternative	modifications	of	the	theory,	
have	been	proposed	to	resolve	this	problem,	but	no	consensus	has	formed	supporting	any	
one	of	them.		Applying	standard	quantum	theory	to	the	measurement	state,	together	with	
the	 analysis	 and	 results	 of	 decades	 of	 nonlocality	 experiments	 with	 pairs	 of	 entangled	
systems,	 this	 paper	 shows	 the	 entangled	 measurement	 state	 is	 not	 a	 paradoxical	
macroscopic	 superposition	 of	 states.	 	 It	 is	 instead	 a	 phase-dependent	 superposition	 of	
correlations	between	states	of	the	subsystems.		Thus	Schrodinger's	cat	is	a	non-paradoxical	
"macroscopic	 correlation"	 in	 which	 one	 of	 the	 two	 correlated	 systems	 happens	 to	 be	 a	
detector.	 	 	This	 insight	resolves	the	problem	of	definite	outcomes	but	 it	does	not	entirely	
resolve	the	measurement	problem	because	the	entangled	state	is	still	reversible.				
	
Keywords:	 	 quantum	 measurement,	 problem	 of	 definite	 outcomes,	 Schrodinger's	 cat,	
quantum	entanglement,	quantum	nonlocality,	quantum	correlations.				
	 	 	 	 	
	
1.	The	measurement	problem	
	
Quantum	state	collapse	is	a	standard	principle	of	quantum	physics.		Given	a	quantum	(e.g.	a	
quantum	 object	 such	 as	 a	 photon,	 electron	 or	 atom)	 described	 by	 a	 superposition	 of	
eigenstates	of	some	observable	operator	O,	the	principle	asserts	that	a	"measurement"	of	O	
must	yield	an	eigenvalue	of	O	and	that	the	measurement	causes	the	state	of	the	quantum	to	
collapse,	or	jump,	into	the	corresponding	eigenstate.		This	raises	a	host	of	questions:		What	
exactly	 do	we	mean,	 physically	 and	mathematically,	 by	 a	 "measurement"	 of	 a	 quantum?		
Does	the	collapse	occur	all	at	one	instant?		Wouldn't	an	instantaneous	collapse	contradict	
special	 relativity?	 	 If	 the	 collapse	 occurs	 during	 a	 time	 interval,	 then	 what	 equation	
describes	 this	 time-evolution?	 	 Quantum	 states	 are	 presumed	 to	 follow	 the	 Schrodinger	
equation,	 which	 prescribes	 a	 continuous	 time	 evolution;	 how	 can	 instantaneous	 state	
collapse	be	reconciled	with	this	smooth	evolution?		And	how	can	we	resolve	the	"problem	
of	outcomes"	that	appears	to	arise	when	a	superposed	quantum's	(e.g.	a	photon	or	electron	
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or	atom)	state	is	measured	by	a	"which-state"	detector,	creating	a	so-called	entangled	state	
of	 the	 quantum	 and	 detector	 that	 appears	 to	 be	 an	 indefinite	 superposition	 of	 two	
macroscopically	distinct	states	of	the	composite	system?				
	 Such	 questions	 comprise	 the	 quantum	 measurement	 problem,	 surely	 quantum	
physics'	 most	 enduring	 puzzle	 and,	 according	 to	 some,	 an	 unsolvable	 logical	 paradox.		
Many	 alternative	 interpretations	 of	 the	 quantum	 physics	 mathematical	 formalism,	 and	
several	 alternative	 modifications	 of	 the	 theory,	 have	 been	 proposed	 to	 resolve	 this	
problem,	with	no	consensus	on	a	solution.	 	It	 is	remarkable	that,	despite	the	unparalleled	
experimental	success	of	quantum	theory	across	a	vast	range	of	experiments,	most	of	these	
suggested	 solutions	 differ	 from	 standard	 quantum	 physics	 in	 one	 or	 more	 significant	
respects.	 	 Most	 of	 them	 involve	 new	 interpretations	 of	 the	 standard	 mathematical	
formalism,	 interpretations	 such	as	 "human	minds	collapse	 the	quantum	state"	or	 "all	 the	
possible	collapses	occur	but	only	one	of	them	occurs	in	our	particular	universe"	or	even	a	
rejection	of	 the	physical	 reality	of	 the	quantum	world	 and	 the	 assumption	 that	quantum	
probabilities	(and	hence	changes	in	those	probabilities,	such	as	quantum	state	collapse)	are	
mere	measures	of	personal	degrees	of	belief.	 	Other	suggestions	assume	modifications	of	
the	 standard	 mathematical	 formalism,	 such	 as	 an	 additional	 mechanism	 that	 causes	
quantum	states	 to	 spontaneously	collapse	 from	time	 to	 time,	or	new	"hidden"	and	hence	
uncontrollable	 variables	 that	 create	 the	 illusion	 of	 quantum	 randomness.	 	 This	 paper	
describes	 the	measurement	problem	and	suggests	a	resolution	of	 the	problem	of	definite	
outcomes	that	lies	entirely	within	standard	quantum	physics.				
	 This	paper	does	not	entirely	resolve	the	measurement	problem.		The	measurement	
problem	 comprises	 two	more-or-less	 independent	 conundrums:	 	 the	 problem	of	 definite	
outcomes	 and	 the	 problem	 of	 irreversibility,	 i.e.	 the	 problem	 of	 making	 a	 macroscopic	
record	of	one	outcome.		This	paper	suggests	a	resolution	of	the	former	but	not	the	latter.					
	 Let's	 begin	 with	 the	 question	 of	 definitions.	 	 What	 do	 we	 mean,	 physically,	 by	 a	
quantum	measurement?	 	The	great	John	Bell	railed	against	the	very	use		of	this	term.	 	He	
was	 the	 theorist	 who	 first	 gave	 us,	 in	 1964,	 a	 practical	 mathematical	 condition	 ("Bell's	
inequality")	that	a	probabilistic	theory	must	satisfy	if	it	is	to	be	considered	"local,"	meaning	
that	 the	 theory	 allows	 no	 unmediated	 or	 instantaneous	 physical	 action	 at	 a	 distance.		
Furthermore,	he	showed	that	standard	quantum	physics	fails	this	test	[1].	 	This	validated		
the	much	earlier	conclusion	of	Einstein	and	others	that	standard	quantum	physics	makes	
nonlocal	predictions	in	certain	specific	physical	situations	[2].		Bell's	last	publication	prior	
to	his	untimely	death	in	1990	[3],	provocatively	titled	"Against	Measurement,"	urged	that	
this	term	"should	now	be	banned	altogether	in	quantum	mechanics."			Bell	complained	that	
quantum	 physics	 concerns	 itself	 exclusively	 with	 "measurements"	 made	 in	 laboratories,	
and	 that	 "to	 restrict	 quantum	 mechanics	 to	 be	 exclusively	 about	 piddling	 laboratory	
operations	is	to	betray	the	great	enterprise.		A	serious	formulation	will	not	exclude	the	big	
world	outside	the	laboratory"	[3].					
	 I	 agree	 that	 we	 need	 a	 non-anthropomorphic	 definition	 of	 the	 concept	 known	 as	
"measurement,"	but	rather	than	ban	this	widely-used	term,	 let's	 just	broaden	 its	physical	
definition	to	include	Bell's	"big	world"	as	follows:	 	A	"quantum	measurement"	means	any	
quantum	 process	 that	 results	 in	 a	macroscopic	 effect,	 regardless	 of	 whether	 humans	 or	
laboratories	are	involved.		Thus	not	only	is	an	electron	striking	a	laboratory	viewing	screen	
and	 creating	 a	 visible	 flash	 a	 measurement,	 a	 cosmic-ray	 muon	 striking	 and	
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macroscopically	 moving	 a	 sand	 grain	 on	 a	 planet	 in	 some	 other	 galaxy	 is	 also	 a	
measurement.		
	 	To	 analyze	 measurement,	 let's	 look	 at	 a	 specific	 experiment:	 	 An	 electron	 beam	
passes	 through	 a	 pair	 of	 double	 slits	 (two	narrow	 closely-spaced	 parallel	 slits	 cut	 into	 a	
partition)	 and	 then	 impacts	 a	 viewing	 screen.	 	 This	 might	 be	 physicists'	 most	 popular	
experiment;	it	was	described	by	Richard	Feynman	as	"a	phenomenon	which	is	impossible	...	
to	explain	 in	any	classical	way,	and	which	has	 in	 it	 the	heart	of	quantum	mechanics"	 [4].		
Just	as	 in	Thomas	Young's	 similar	double-slit	 experiment	using	 light,	performed	 in	1801,	
the	pattern	formed	on	the	viewing	screen	shows	interference	between	the	two	portions	of	
the	electron	beam	coming	through	the	two	slits:	 	A	broad	dark-and-bright	striped	pattern	
diffracts	(spreads	out)	widely	on	the	screen,	much	wider	than	the	slits,	indicating	regions	of	
destructive	 (dark)	 and	 constructive	 (bright)	 interference	 [5].	 	 On	 closer	 inspection,	 the	
bright	 lines	are	 formed	by	zillions	(my	word	for	a	really	 large	number)	of	 tiny	 individual	
electron	impacts,	each	one	making	a	small	flash	on	the	screen	[6].		According	to	our	above	
definition,	each	flash	is	a	measurement	of	the	position	of	an	electron	as	it	hits	the	screen.			
	 Experiments	like	this	make	us	wonder	whether	electrons	are	tiny	particles	or	waves	
in	 a	 continuous	 spatially-extended	 field:	 	We	 see	 particle-like	 behavior	 in	 the	 individual	
flashes,	and	wave-like	behavior	in	the	interference	pattern	made	by	zillions	of	flashes.		As	I	
have	argued	elsewhere	[7],	this	and	many	other	experiments	are	impossible	to	explain	by	
assuming	electrons	are	small	particles.		Instead,	each	electron	is	a	spatially	extended	bundle	
of	 energy	 that	 comes	 through	 both	 slits	 and	 interferes	with	 itself	 at	 the	 viewing	 screen.		
Slowed-down	 experiments	 in	 which	 electrons	 come	 through	 the	 slits	 one	 at	 a	 time	
demonstrate	this	[6].		Just	prior	to	impact,	each	electron	is	extended	over	the	entire	extent	
of	 the	 interference	pattern.	 	The	 interaction	between	each	electron	and	 the	atoms	of	 the	
screen	 then	 collapses	 each	 electron	 to	 atomic	 dimensions.	 	 Although	 each	 individual	
electron	must	ultimately	be	conceptualized	as	a	wave	in	a	universal	"matter	field"	or	"psi	
field"	(the	official	term	is	"electron-positron	field"),	the	experiment	displays	both	wave	and	
particle	aspects	(Chapter	5	of	[8]).		Similar	effects	occur	in	Young's	interference	experiment	
with	light,	but	with	non-material	photons	replacing	the	material	electrons.		
	 Each	electron's	flash	on	the	screen	is	a	measurement.		But	for	purposes	of	analysis,	
it's	better	 to	 consider	 a	 related	example	of	 a	measurement,	 still	 based	on	 the	double-slit	
experiment.		Suppose	an	electron	detector	is	installed	at	the	slits,	a	detector	that	can	detect	
the	 electron's	 position	 as	 it	 passes	 through	 the	 slits	while	 disturbing	 each	 electron	 only	
minimally	(in	the	precise	sense	described	below).			
	 Measurement,	 even	 by	 a	 minimally-disturbing	 "which-path	 detector,"	 changes	
everything.		Exactly	when	the	detector	turns	on,	the	pattern	on	the	screen	changes	from	the	
striped	interference	pattern	to	a	smoothly-spread-out	sum	of	two	single-slit	patterns,	each	
showing	diffraction	but	no	interference.		The	interference	pattern	abruptly	vanishes.		So	far	
as	I	know,	this	experiment	showing	the	jump	from	interference	to	non-interference	has	not	
been	 performed	 with	 electrons	 but	 there	 is	 little	 doubt	 how	 it	 would	 turn	 out.	 	 The	
analogous	experiment	has	been	done	using	light	(photons)	instead	of	electrons,	and	using	
an	interferometer	rather	than	a	double-slit	interference	setup.		A	which-path	detector	was	
randomly	switched	on	or	off	as	each	photon	passed	through	this	experiment;	the	photons	
for	 which	 the	 detector	 was	 "off"	 formed	 an	 interference	 pattern	 while	 the	 photons	 for	
which	the	detector	was	"on"	formed	the	expected	non-interference	pattern	[9].		In	this	so-
called	 "delayed-choice	 experiment,"	 the	 collapses	 were	 instantaneous	 to	 within	 the	
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accuracy	of	the	fast	switching	between	the	two	states;	each	collapse	was	executed	entirely	
while	the	photon	was	inside	the	interferometer.			
	 We	 can	 gain	 considerable	 insight	 by	 studying	how	quantum	 theory	describes	 this	
which-path	measurement	 	 (pp.	63-5	of	 [10]).	 	Note	 that	 this	 is	 in	 fact	 a	measurement	 as	
defined	earlier,	because	the	detector	registers	"slit	1"	or	"slit	2"	macroscopically	 for	each	
electron.	 	Using	 the	 formulation	of	quantum	physics	 that	describes	 states	 as	vectors	 in	 a	
mathematical	Hilbert	space,	let's	denote	the	state	of	one	electron	passing	through	slit	1	as	
|ψ1>	and	the	state	of	one	electron	passing	through	slit	2	as	|ψ2>.	 	 John	von	Neumann,	the	
first	 to	carefully	analyze	measurement	 in	purely	quantum-theoretical	 terms	[11],	 insisted	
on	 treating	 not	 only	 the	 measured	 quantum	 but	 also	 the	 macroscopic	 detector	 as	 a	
quantum	 system	 because,	 after	 all,	 detectors	 are	 made	 of	 atoms	 and	 they	 perform	 a	
quantum	function	by	detecting	individual	quanta.			
	 Accordingly,	 let's	represent	the	"ready	to	detect"	quantum	state	of	 the	detector	by	
|ready>,	 and	 the	 state	 of	 the	 detector	 after	 detecting	 an	 electron	 by	 |1>	 if	 |ψ1>	 was	
detected,	 and	 by	 |2>	 if	 |ψ2>	 was	 detected.	 	 A	 properly	 operating	 detector	 will	 surely	
transition	 from	 |ready>	 to	 |1>	upon	measurement	of	an	electron	 that	has	been	prepared	
(perhaps	by	 simply	 shutting	 slit	2)	 in	 state	 |ψ1>.	 	As	a	 limiting	 idealization,	 let's	 assume,	
with	 von	 Neumann,	 that	 measurement	 of	 an	 electron	 prepared	 in	 state	 |ψ1>	 leaves	 the	
electron	 still	 in	 state	 |ψ1>	 after	 detection.	 	 	 Such	 a	 minimally-disturbing	 measurement	
would	cause	 the	electron-plus-detector	composite	system,	 initially	 in	 the	composite	state	
|ψ1>|ready>,	to	transition	into	the	final	state	|ψ1>|1>.		We	can	summarize	this	process	as	
	
	 |ψ1>|ready>			è			|ψ1>|1>.	 	 	 	 	 	 	 	 (1)	
	
Similarly,	the	minimally-disturbing	measurement	of	an	electron	initially	prepared	in	|ψ2>	is	
described	mathematically	by		
	
	 |ψ2>|ready>			è			|ψ2>|2>.	 	 	 	 	 	 	 	 (2)	
	
	 Now	suppose	both	slits	are	open	so	each	electron	can	pass	through	either	slit,	and	
suppose	the	preparation	and	the	experiment	(e.g.	the	slit	widths)	is	symmetric	with	respect	
to	the	two	slits.		Then	the	state	of	each	electron	as	it	approaches	the	slits	prior	to	detection	
must	be	described	by	the	symmetric	superposition		
	
	 |ψ>	=	(|ψ1>	+	|ψ2>)/√2		 	 	 	 	 	 	 	 (3)	
	
where	the	1/√2	factor	 is	required	for	normalization.	 	 	But	quantum	physics,	 including	 its	
time	dependence,	is	linear.		Thus	(1)	and	(2)	imply	that	|ψ>|ready>	evolves	according	to		
	
	 |ψ>	|ready>			è			(|ψ1>|1>	+	|ψ2>|2>)/√2,		 	 	 	 	 (4)	
	
	 The	final	state		
	
	 |Ψ> =	(|ψ1>|1>	+	|ψ2>|2>)/√2	 	 	 	 	 	 	 (5)	
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following	the	detection	is	said	to	be	"entangled"	because	it	cannot	be	factored	into	a	simple	
product	of	states	of	the	two	sub-systems.		Quantum	entanglement	is	a	large	complex	topic	
(Chapter	9	of	[8]).	 	As	 indicated	schematically	 in	Figure	1,	when	two	independent	quanta	
pass	 near	 each	 other,	 interact,	 and	 subsequently	 separate,	 the	 interaction	 generally	
entangles	 the	 two	 quanta	 and	 the	 entanglement	 then	 persists	 after	 the	 interaction	
regardless	of	how	far	apart	the	two	quanta	might	eventually	travel,	provided	only	that	the	
two	 quanta	 experience	 no	 further	 interactions.	 	 Despite	 their	 possibly	 wide	 spatial	
separation,	 entangled	quanta	have	 a	unity	not	possessed	by	non-entangled	quanta.	 	 This	
unity	is	the	source	of	quantum	non-locality,	as	I'll	discuss	later.		Entanglement	is	ubiquitous	
in	nature;	for	example,	the	electrons	in	any	many-electron	atom	or	molecule	are	entangled	
with	 each	 other	 [12].	 	 Erwin	 Schrodinger	 has	 said	 that	 quantum	 entanglement	 is	 "the	
characteristic	trait	of	quantum	mechanics"	(the	emphasis	is	Schrodinger's)	[13].		 	

	 								 	
Figure	1.	 	When	 the	green	quantum	on	 the	 left	 interacts	with	 the	orange	quantum	at	 the	
bottom,	 their	 two	 spatially-extended	 quantum	 states	 entangle	with	 each	 other	 to	 form	 a	
single	 "bi-quantum"	 (the	 two	 green-and-orange	 quanta	 form	 a	 bi-quantum).	 	 This	 highly	
unified	composite	state	has	non-local	characteristics.		
	 	
	 The	 entangled	 "measurement	 state"	 (5)	 at	 the	 heart	 of	 quantum	measurement	 is	
remarkably	subtle.		To	grasp	it,	we	first	need	to	understand	quantum	superpositions.		A	key	
quantum	principle	says	that	any	linear	combination	of	possible	quantum	states	of	a	system,	
as	 in	 (3)	 and	 (5)	 for	 example,	 is	 also	 a	 possible	 quantum	 state	 of	 that	 system.	 	 Figure	 2	
pictures	an	experiment	that	demonstrates	such	a	superposition	of	states.		It	shows	a	layout	
of	optical	paths	called	a	"Mach-Zehnder	interferometer."		A	light	beam	enters	at	the	lower	
left	by	passing	through	a	"beam	splitter"	BS1;	this	is	a	small	plate	of	glass	(shown	edge-on	
in	Figure	2)	angled	at	45	degrees	so	that	the	reflected	beam	makes	a	right	angle	with	the	
incoming	direction	while	the	transmitted	beam	passes	straight	through	(with	refraction	at	
the	two	surfaces).		It's	designed	to	reflect	50%	and	transmit	50%	of	the	incident	light.		So	



Art	Hobson	 Review	and	suggested	resolution	of	Schrodinger's	cat	 	 6	

the	beam	splits	 and	each	half	 traverses	one	of	 the	 two	paths;	mirrors	M	bring	 the	paths	
back	to	a	crossing	point	as	shown.	 	Devices	called	"phase	shifters,"	denoted	by	φ1	and	φ2,	
are	placed	into	each	path.		A	phase	shifter	can	add	a	short	variable	length	to	a	path,	perhaps	
by	using	mirrors.		A	second	beam	splitter	BS2	can	be	placed	at	the	crossing	point.		Without	
BS2,	each	half-beam	moves	straight	ahead	along	one	path	to	the	detector	on	that	path.			
	 Things	 get	more	 interesting	with	 BS2	 in	 place.	 	 Because	 50%	 of	 each	 of	 the	 two	
beams	 then	 goes	 to	 each	 detector,	 BS2	mixes	 the	 two	 beams	 together	 so	 they	 can	 show	
interference.		The	interferometer	is	constructed	so	that,	when	the	phase	shifters	are	set	to	
zero,	 the	 two	 "optical	 paths"	 (the	 number	 of	 wavelengths,	 after	 accounting	 for	 phase	
changes	upon	reflection	and	refraction)	from	the	entry	point	to	D1	are	equal	while	the	two	
optical	 paths	 to	D2	differ	 by	half	 a	wavelength.	 	 It	 is	 then	 found	 that	 the	 light	 interferes	
constructively	at	D1	and	destructively	at	D2,	so	all	the	light	goes	to	D1.		If	we	then	use	φ1	or	
φ2	 to	add	half	 a	wavelength	 to	 either	path,	 light	 then	 interferes	 constructively	at	D2	and	
destructively	at	D1	so	all	the	light	goes	to	D2.	 	And	as	we	continuously	vary	the	length	of	
one	or	the	other	path	by	varying	one	or	the	other	phase	shifter,	we	find	the	amount	of	light	
arriving	at	D1	varies	continuously	from	100%	down	to	0%,	while	the	amount	arriving	at	D2	
varies	 from	0%	to	100%.	 	The	 two	paths	are	clearly	 interfering.	 	 	This	experiment	 is	 the	
interferometer-based	analog	of	Young's	double-slit	interference	experiment	demonstrating		
the	wave	nature	of	light.				

							 			
Figure	2.	 	A	Mach-Zehnder	interferometer	can	demonstrate	the	interference	of	light	when	
both	beam	splitters	are	present	and	the	phase	shifters	alter	the	length	of	either	path.		But	
light	is	made	of	indivisible	photons.		What	happens	when	only	one	photon	is	present?				
	 	
	 But	light	is	made	of	photons,	and	photons	are	indivisible.		So	how	does	nature	solve	
this	problem	when	we	dim	the	light	to	the	point	where	only	one	photon	at	a	time	traverses	
the	 interferometer?	 	 After	 all,	 the	 photon	 still	 traverses	 BS1,	 yet	 it	 cannot	 split	 in	 two	
because	a	quantum	is	unified	and	can't	be	split.		With	BS2	removed,	we	find	either	D1	or	D2	
registers	a	single	entire	photon,	randomly,	i.e.	with	50-50	probabilities,	regardless	of	how	
the	 phase	 shifters	 are	 set.	 	 Careful	 tests	 verify	 this	 randomness	 as	 absolute,	 i.e.	 more	
random	 then	 any	human	macroscopic	 game,	 such	 as	 coin	 flips,	 that	mimics	 randomness.		
Nature	invents	quantum	randomness	in	order	to	deal	with	obstacles	such	as	beam	splitters	
while	preserving	the	unity	of	the	quantum	(Chapter	6	of	[8]).		Detectors	never	register	half	
a	photon.		You	get	either	a	whole	photon	or	no	photon.				
	 What	happens	in	the	single-photon	experiment	with	BS2	present?	 	Beginning	from	
path	lengths	yielding	constructive	interference	at	D1	and	destructive	interference	at	D2,	as	
the	 phase	 shifters	 vary	 the	 probabilities	 of	 detecting	 the	 photon	 at	D1	 and	D2	 vary	as	 in	
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Figure	3,	which	shows	the	percentage	of	photons	impacting	D1.		Importantly,	these	results	
don't	depend	on	which	phase	shifter	the	experimenter	chooses	to	vary.		Since	each	photon	
responds	 to	 changes	 in	 either	 path	 length,	 each	 photon	 must	 follow	 both	 paths!	 	 This	
verifies	the	superposition	principle	and	shows	that	quanta	can	be	in	two	places	at	the	same	
time.	 	 This	 is	 paradoxical	 if	 you	 assume	 photons	 are	 tiny	 particles,	 but	 if	 you	 assume	
photons	 are	waves	 in	 a	 universal	 field	 it's	 not	 paradoxical:	 	 Each	photon	 simply	 spreads	
along	both	paths,	interfering	with	itself	at	D1	and	D2	[7].				
	 The	interferometer	experiment	of	Figure	2	can	be	performed	with	atoms	and	even	
molecules,	 with	 the	 same	 results:	 	 Atoms	 and	 molecules	 can	 be	 superposed	 along	 two	
paths,	 and	 can	 interfere	with	 themselves	 just	 as	 photons	 can.	 	 So	 these	 objects	 are	 also	
waves	in	fields,	not	tiny	particles.		Search	on	"atom	interferometry"	for	more	information.		

	 	 	 	
Figure	 3.	 	 Evidence	 of	 quantum	 superposition	 in	 the	 experiment	 of	 Figure	 2	 with	 BS2	
inserted.		Each	photon	must	follow	both	path	1	and	path	2	because	these	probabilities	vary	
no	matter	which	phase	shifter	is	varied.				
	 	
	 Furthermore,	we	must	conclude	that	each	photon	travels	both	paths	even	when	BS2	
is	 not	 present	 to	 directly	 verify	 this,	 because	 once	 a	 photon	 enters	 the	 interferometer	 it	
must	behave	in	the	same	manner	regardless	of	whether	BS2	is	placed	or	not	placed	at	the	
far	 end.	 	 Jacque	 et	 al's	 delayed-choice	 experiment	 [9]	 referred	 to	 above	provides	 further	
evidence	 for	 this	 conclusion:	 	 Since	 these	 photons	 "do	 not	 know"	 whether	 BS2	 will	 be	
inserted,	they	must	travel	both	paths	on	all	the	trials	including	those	for	which	BS2	is	not	
inserted.				
	 This	 is	connected	with	entanglement.	 	 	With	BS2	removed,	 the	situation	is	 like	the	
double-slit	experiment	with	a	which-slit	detector	present:	 	Each	photon	is	entangled	with	
macroscopic	detectors	D1	or	D2	as	in	the	right	side	of	(5).		With	BS2	present,	the	two	paths	
mix	and	the	situation	is	 like	the	double-slit	experiment	with	no	which-slit	detector:	 	each	
photon	follows	two	paths	to	each	detector	where	it	interferes	with	itself,	and	we	detect	the	
interference	state	(3).		
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	 All	 of	 this	 suggests	 that	 measurements	 collapse	 superposed	 quantum	 states	 via	
entanglement	of	the	superposed	quantum	with	a	detector.				
	
	
2.		The	apparent	paradox	of	Schrodinger's	cat	
	
It's	physicists'	favorite	tale.		As	Schrodinger	told	it	[14]:			
	

One	 can	 even	 set	 up	 quite	 ridiculous	 cases.	 	 A	 cat	 is	 penned	 up	 in	 a	 steel	
chamber,	 along	 with	 the	 following	 device	 (which	 must	 be	 secured	 against	
direct	 interference	 by	 the	 cat):	 	 In	 a	 Geiger	 counter	 there	 is	 a	 tiny	 bit	 of	
radioactive	substance,	so	small,	that	perhaps	in	the	course	of	the	hour	one	of	
the	 atoms	 decays,	 but	 also,	 with	 equal	 probability,	 perhaps	 none;	 if	 it	
happens,	the	counter	tube	discharges	and	through	a	relay	releases	a	hammer	
which	 shatters	 a	 small	 flask	of	hydrocyanic	 acid.	 	 If	 one	has	 left	 this	 entire	
system	to	itself	for	an	hour,	one	would	say	that	the	cat	still	lives	if	meanwhile	
no	atom	has	decayed.	 	The	psi-function	of	 the	entire	system	would	express	
this	by	having	in	it	the	living	and	dead	cat	(pardon	the	expression)	mixed	or	
smeared	out	in	equal	parts.			
	 It	 is	typical	of	these	cases	that	an	indeterminacy	originally	restricted	
to	the	atomic	domain	becomes	transformed	into	macroscopic	indeterminacy,	
which	can	then	be	resolved	by	direct	observation.		That	prevents	us	from	so	
naively	accepting	as	valid	a	"blurred	model"	for	representing	reality.				
	

	 Mathematically,	 the	 nucleus	 and	 cat	 have	 become	 entangled	 in	 the	measurement	
state	(5),	with	|ψ1>	and	|ψ2>	representing	the	undecayed	and	decayed	states	of	the	nucleus	
and	 |1>	 and	 |2>	 representing	 the	 alive	 and	 dead	 cat.	 	 According	 to	 Schrodinger's	
understanding	 of	 the	 situation,	 the	 indeterminacy	 of	 the	 nuclear	 state	 "becomes	
transformed	into	macroscopic	indeterminacy"	of	the	cat,	and	we	cannot	comfortably	accept	
this	as	a	"blurred"	state--a	cat	that	is	in	a	superposition	of	being	both	alive	and	dead.		This	
paper	 will	 show	 that,	 according	 to	 standard	 quantum	 physics,	 Schrodinger's	 1937	
understanding	was	incorrect:		The	composite	system	(cat-plus-nucleus)	is	not	predicted	to	
be	in	a	superposition	of	two	states	of	the	cat,	or	nucleus,	or	composite	system.		Instead,	the	
composite	system	is	predicted	to	be	in	a	superposition	of	two	correlations	between	the	cat	
and	nucleus,	one	in	which	a	live	cat	is	100%	correlated	with	an	undecayed	nucleus,	and	the	
second	in	which	a	dead	cat	is	100%	correlated	with	a	decayed	nucleus.		Entanglement	has	
transformed	a	pure	 state	 superposition	of	nuclear	 states	 to	 a	pure	 state	 superposition	of	
correlations	between	subsystem	states.		We	will	see	that	this	is	precisely	what	one	expects,	
and	is	not	paradoxical.							
	 The	 problem	 of	 definite	 outcomes	 applies	 of	 course	 to	 more	 than	 Schrodinger's	
dramatized	 example.	 	 Regardless	 of	 whether	 the	 measuring	 instrument	 is	 a	 which-slit	
detector,	a	Geiger	counter,	or	a	cat,	the	entangled	state	(5)	applies.	 	 	This	state	appears	at	
first	 glance	 to	 represent	 a	 quantum	 superposition	 in	 which	 the	 detector	 is	 in	 two	
macroscopically	different	states	simultaneously.		If	so,	then	there	is	an	inconsistency	within	
quantum	 physics,	 because	 it	 obviously	 cannot	 be	 this	 easy	 to	 create	 a	 macroscopic	
superposition.			
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	 Is	it	true	that	(5)	really	represents	a	macroscopic	superposition?		There	is	more	to	
this	entangled	state	than	meets	the	eye.		If	you	assume	the	detector	to	be	in	a	superposed	
state	a|1>	+	b|2>	where	a	and	b	are	complex	constants,	you	soon	find	that	(5)	necessitates	
either	a=0	or	b=0	[15],	implying	that	the	detector	is	not	in	an	individually	superposed	state	
within	 its	 own	Hilbert	 space.	 	 	 The	 same	applies	 to	 the	detected	quantum:	 	 It	 is	not	 in	 a	
superposed	state	a|ψ1>	+	b|ψ2>	with	both	a≠0	and	b≠0.		The	entanglement	process	leaves	
neither	sub-system	superposed!		So	far	as	I	know,	this	simple	fact	has	long	been	ignored	by	
analysts	of	the	measurement	problem.							 
	 The	density	operator	formalism	for	quantum	physics	provides	a	stronger	version	of	
this	 conclusion.	 	 If	 you	 aren't	 familiar	 with	 density	 operators,	 you	 can	 find	 a	
straightforward	presentation	 in	Section	2.4	of	 [10].	 	The	density	operator	 for	 a	quantum	
system	whose	state	is	|ψ>	is	simply	the	projection	operator		
	
	 ρ  =	|ψ>	<ψ|.			 	 	 	 	 	 	 	 	 	 (6)	
	
If	a	system	is	in	a	state	whose	density	operator	is	ρ ,	then	the	standard	quantum	expectation	
value	<O>	of	an	arbitrary	observable	O	is	found	from	
	
 <O>	=	Tr	(ρO)	 	 	 	 	 	 	 	 	 (7)	
	
where	 "Tr"	 represents	 the	 trace	 operation	 (the	 sum	 of	 the	 diagonal	 elements).	 	 This	
approach	is	especially	useful	if	the	quantum	system	is	a	composite	of	two	subsystems	A	and	
B.		Define	the	density	operator	ρA	for	subsystem	A	alone	by	
	
	 ρA	=	TrB	ρ 	 	 	 	 	 	 	 	 	 	 (8)	
	
where	"	TrB"	means	that	the	trace	is	taken	only	over	the	states	of	subsystem	B.	 	It	is	then	
easy	to	show	[10]	that	the	standard	quantum	expectation	values	for	subsystem	A	alone	(the	
values	obtained	by	an	observer	of	A)	are		
	
	 <OA>	=	Tr	(ρA OA	)		 	 	 	 	 	 	 	 	 (9) 

	
where	OA	 means	 any	 observable	 operating	 on	 system	 A	 alone	 (i.e.	 operating	 within	 A's	
Hilbert	space).		
	 Applying	 this	 formulation	 to	 the	 measurement	 state	 (5),	 the	 reduced	 density	
operators	for	the	quantum	system	(call	it	A)	and	its	detector	(call	it	B),	respectively,	are	
	
	 ρA	=	(|ψ1>	<ψ1|	+	|ψ2>	<ψ2|)/2,	 	 	 	 	 	 	 (10)	
	
	 ρB	=	(|1>	<1|	+	|2>	<2|)/2.	 	 	 	 	 	 	 	 (11)	
	
The	plus	signs	in	(10)	and	(11)	make	one	think	of	superpositions	such	as	(3),	but	these	are	
not	superpositions.		The	density	operator	for	(3)	has	cross-terms:			
	
	 ρ 	=	|ψ>	<ψ|	=	(|ψ1>	<ψ1|	+	|ψ1>	<ψ2|	+	|ψ2>	<ψ1|	+	|ψ2>	<ψ2|)/2.	 	 (12)	
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The	two	cross-terms,	involving	both	|ψ1>	and	|ψ2>,	are	missing	from	(10).		So	(10)	does	not	
describe	a	system	in	a	superposition	of	two	quantum	states.		However,	(10)	is	precisely	the	
density	operator	you	should	use	if	you	know	the	quantum	system	is	either	in	state	|ψ1>	or	
in	state	|ψ2>	but	you	didn't	know	which	and	so,	due	your	own	to	lack	of	information,	you	
simply	assign	a	probability	of	1/2	 to	each	of	 these	 two	possibilities	 (Section	2.4	of	 [10]).		
The	same	goes	for	(11).		(10)	and	(11)	are	"classical"	probabilistic	states--analogous	to	the	
"states	of	knowledge"	you	would	assign	 to	a	coin	 flip	when	you	know	the	outcome	 to	be	
either	 heads	 or	 tails	 with	 equal	 probability	 but	 you	 don't	 know	 which.	 	 The	 situation	
described	by	a	density	operator	such	as	(10)	is	known	as	a	"mixture"	of	the	states	|ψ1>		and	
|ψ2>,	as	distinct	from	the	"superposition"	of	states	observed	in	the	experiment	of	Figure	2	
and	represented	by	(3).			
	 Equation	 (9)	 tells	 us	 that	 all	 the	 correct	 statistics	 for	 subsystem	 A	 alone	 can	 be	
found	from	the	standard	formula	(7)	applied	to	subsystem	A	alone.		But	we	have	just	seen	
that	(10) 	is	the	density	operator	one	should	use	if	one	knows	A	to	be	in	either	|ψ1>	or	|ψ2>	
without	 knowing	 which.	 	 The	 same	 goes	 for	 subsystem	 B	 and	 (11).	 	 In	 the	 case	 of	
Schrodinger's	cat,	it	follows	that	an	observer	of	the	cat	alone	sees	outcomes	appropriate	to	a	
cat	 that	 is	 either	 alive	 or	 dead,	 not	 both.	 	 	 For	 subsystems,	 the	 interference	 terms	 are	
missing,	and	an	"ensemble"	of	repeated	trials	must	exhibit	a	nonsuperposed	mixture	rather	
than	a	superposion.			This	is	the	clear	prediction	of	quantum	physics	for	the	entangled	state	
(5).		Others	have	long	come	to	the	same	conclusion	(see	pp.	183-185	of	[16],	also	[17]).				
	 But	we	must	be	careful,	because	(10)	and	(11)	are	not	complete	descriptions	of	the	
quantum	states	of	the	nucleus	or	the	cat.		In	fact,	(10)	and	(11)	are	not	quantum	states	at	all	
but	merely	"reduced	states"	arising	from	the	actual	state	(5)	of	the	composite	system.			In	
the	case	of	Schrodinger's	cat,	(10)	and	(11)	give	the	correct	predictions	for	observations	of	
either	 the	 nucleus	 alone	 or	 the	 cat	 alone,	 but	 they	 do	 not	 represent	 the	 state	 of	 either	
subsystem	because	this	is	given	by	(5).		In	fact,	when	two	quanta	are	entangled,	neither	one	
has	a	quantum	state	of	its	own	(Figure	1)!			
	 Physicists,	 philosophers	 and	 mathematicians	 who	 specialize	 in	 quantum	
foundations	have	in	the	past	objected	to	the	argument	that	reduced	density	operators	can	
be	 adduced	 in	 this	 manner	 to	 clarify	 the	 measurement	 problem.	 	 They	 offer	 two	 key	
objections	 (Section	2.4	of	 [10]):	 	The	 first,	 "basis	 ambiguity,"	 charges	 that	 the	 "basis	 set"	
(the	 set	 of	 orthogonal	 eigenvectors)	 for	 the	 operator	 (11)	 (for	 example)	 is	 entirely	
ambiguous,	 so	 (11)	 cannot	 represent	 a	 true	 quantum	 state.	 	 It's	 true	 that	 (11)	 doesn't	
represent	the	true	state	of	a	subsystem,	because	(11)	is	actually	just	the	identity	operator	
|1>	<1|	+	|2>	<2|	in	B's	subspace,	divided	by	2,	so	that	any	other	orthogonal	basis	set	could	
be	used	 instead.	 	For	example,	given	only	the	description	(11),	subsystem	B	could	 just	as	
well	be	described	by	any	other	pair	of	orthonormal	vectors	 in	B's	 subspace,	 for	example	
(|1>	±	|2>)/√2.		But	B's	state	of	affairs	is	certainly	not	entirely	described	by	(11).		Rather,	it	
is	described	by	the	composite	state	(5).		Equation	(11)	merely	tells	us	the	following:		If	the	
cat	and	nucleus	are	in	the	state	(5)	then,	when	one	looks	at	the	cat,	one	is	going	to	see	a	cat	
that	is	either	alive	or	dead.		There	is	no	claim	that	(11)	represents	the	complete	quantum	
state	of	the	cat.			That	is,	there	is	no	claim	that	the	cat	is	really	in	either	the	state	|1>	or	the	
state	 |2>,	 because	 the	 state	 it's	 really	 in	 is	 admittedly	 (5).	 	 Thus	 the	 basis	 ambiguity	
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objection	to	our	conclusion	(namely,	that	Schrodinger's	cat	is	either	alive	or	dead,	not	both)	
fails.							
	 The	 second	 key	 objection	 is	 that	 (10)	 and	 (11)	 are	 "improper	 density	 operators"	
because	 they	 arise	 not	 from	 insufficient	 knowledge	 (as	 classical	 probabilities	 arise)	 but	
from	reductions	of	the	full	density	operator	(5)	to	the	Hilbert	subspaces	of	each	subsystem.			
It's	 true	 that	 these	 reduced	 density	 operators	 do	 not	 arise	 from	 insufficient	 knowledge	
about	 the	actual	state.	 	 In	 fact	we	have	complete	knowledge	of	 the	state	of	both	A	and	B,	
namely	the	measurement	state	(5).		So	the	objection	fails	not	because	it	is	false	but	because	
it	 is	 irrelevant:	 	 The	 reduced	 operators	 admittedly	 do	 not	 represent	 the	 state	 of	 the	
composite	system.		They	tell	us	what	we	will	observe	at	the	nucleus	and	at	the	cat,	but	they	
tell	 us	 nothing	 about	 the	 correlations	 between	 these	 observations,	 so	 these	 density	
operators	do	not	tell	us	the	real	state	of	the	system.					
	
3.		The	unity	of	the	quantum		
	
And	 so	 the	 plot	 thickens.	 	 The	 entangled	 state	 (5)	 properly	 describes	 both	 individual	
subsystems.	 	However,	 the	plus	sign	 in	(5)	signifies	a	superposition	of	 the	two	terms,	yet	
we	know	that	neither	subsystem	A	nor	subsystem	B	is	superposed.		What	is	the	meaning	of	
this	plus	 sign?	 	This	 superposition	arose	 from	the	superposition	represented	by	 (3).	 	We	
cannot	 logically	 ignore	 it--a	 strategy	 known	 as	 the	 "shut	 up	 and	 calculate"	 approach	 to	
quantum	measurement.	 	 	 Instead,	 we	must	 ask:	 	 Exactly	 what	 is	 superposed	 when	 two	
subsystems	are	in	this	entangled	state?	
	 Superpositions	preserve	the	all-important	unity	of	the	quantum.		When	Max	Planck	
proposed	in	1900	that	electromagnetic	radiation	occurs	in	energy	steps	of	magnitude	E	=	
hf,	he	tacitly	 implied	the	central	quantum	principle:	 	The	unity	of	an	 individual	quantum.		
Energy	 (electromagnetic	 energy	 in	 the	 case	 of	 radiation)	 comes	 in	 spatially	 extended	
bundles,	 each	 having	 a	 definite	 and	 identical	 quantity	 of	 energy.	 	 You	 can't	 have	 half	 a	
quantum,	or	2.7	quanta.		You	must	have	either	0	or	1	or	2	etc.	quanta.		In	its	own	way,	this	
is	 a	 fairly	 natural	 notion--apparently	 nature	 prefers	 to	 sub-divide	 the	 universe	 into	 a	
countable	 or	 even	 a	 finite	 set	 of	 entities	 as	 opposed	 to	 an	 uncountable	 continuum.	 	 The	
spatial	extension	of	these	bundles	then	entails	nonlocality:	 	 If	you	have	one	quantum	and	
you	destroy	it	(by	transforming	it	to	something	else),	you	must	destroy	all	of	it	everywhere	
simultaneously,	because	you	can't	at	any	time	have	just	part	of	a	quantum.		Louis	de	Broglie	
put	it	perfectly	in	1924,	regarding	another	kind	of	quantum	namely	the	electron:				
	

The	 energy	 of	 an	 electron	 is	 spread	 over	 all	 space	 with	 a	 strong	
concentration	 in	 a	 very	 small	 region.	 	 ...That	 which	 makes	 an	 electron	 an	
atom	of	energy	 is	not	 its	 small	volume	 that	 it	occupies	 in	 space--I	 repeat	 it	
occupies	all	space--but	the	fact	that	it	is	undividable,	that	it	constitutes	a	unit.		
[18]			

	
When	you	transform	the	state	of	a	quantum,	you've	got	 to	 transform	the	entire	extended	
quantum	all	at	once.		Hence	there	are	quantum	jumps.		Furthermore,	composite	entangled	
systems	such	as		atoms	also	behave	in	a	unified	fashion.		This	unity	is	also	the	source	of	the	
nonlocality	 seen	 in	 experiments	 involving	 entangled	 pairs	 of	 photons.	 	 Nonlocality	 is	
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exactly	what	one	would	expect,	given	the	unity	and	spatial	extension	of	the	quantum	and	
the	unitary	(i.e.	unity-preserving)	nature	of	the	entanglement	process.				
	 Standard	 nonrelativistic	 quantum	 theory	 prescribes	 two	 kinds	 of	 time	 evolution:	
collapse	upon	measurement,	and	the	Schrodinger	equation	between	measurements.		A	key	
feature	 of	 the	 Schrodinger	 equation	 is	 that	 it	 prescribes	 a	 so-called	 "unitary"	 time	
evolution,	meaning	 time	evolution	 that	preserves	pure	 states,	 i.e.	 transforms	unit	Hilbert	
space	vectors	into	other	unit	vectors.		Again,	this	is	required	physically	by	the	unity	of	the	
quantum:		If	a	quantum	is	described	by	a	pure		quantum	state	at	t=0,	it	should	remain	pure		
at	 later	 times.	 	 This	 notion	 prompts	 us	 to	 ask	 whether	 the	 measurement	 process	 also	
preserves	 pure	 states.	 	 At	 least	 in	 the	 case	 of	 the	 idealized	process	 described	 in	 (4),	 the	
answer	is	"yes"	because	both	the	"before"	and	"after"	states	are	pure.			
	 The	 measurement	 state	 (5),	 since	 it	 is	 pure,	 represents	 a	 highly	 unified	 state	 of	
affairs,	even	though	one	of	its	subsystems	is	a	macroscopic	detector.		Thus	we	suspect	that	
this	 state,	 like	 its	progenitor	 (3),	 is	 truly	 a	 superposition	 in	which	 the	 superposed	 terms	
represent	two	situations	or	states	of	the	same	object.		But	precisely	what	is	that	object,	i.e.	
what	is	superposed?		We	have	seen	that	states	of	subsystem	A	are	not	superposed,	nor	are	
states	 of	 subsystem	B.	 	 The	 conventional	 interpretation	 (which,	 as	we	will	 see,	 is	 subtly	
incorrect)	 of	 a	 product	 state	 such	 as	 |ψ1>|1>	 is	 that	 it	 represents	 a	 state	 of	 a	 composite	
system	AB	 in	which	subsystem	A	 is	 in	state	 |ψ1>	while	B	 is	 in	state	 |1>.	 	 In	 this	case,	 (5)	
would	 represent	 a	 superposition	 in	which	AB	 is	 simultaneously	 in	 the	 state	 |ψ1>|1>	 and	
also	 in	 the	 state	 |ψ2>|2>.	 	 The	 situation	 of	 Schrodinger's	 cat	 would	 be:	 	 a	 live	 cat	 and	
undecayed	nucleus	 superposed	with	 a	 dead	 cat	 and	decayed	nucleus.	 	 This	 is	 at	 least	 as	
physically	 outrageous	 as	 a	 live	 cat	 superposed	 with	 a	 dead	 cat,	 and	 it	 contradicts	 the	
physical	implications	(a	cat	that	is	either	alive	or	dead)	of	the	reduced	states	(10)	and	(11)	
as	described	in	Section	2.			Something	is	wrong.			
	 The	remainder	of	this	paper	will	demonstrate	that,	according	to	standard	quantum	
theory	 (and	 of	 course	 according	 to	 experiment),	 the	 measurement	 state	 (5)	 represents	
none	of	these	paradoxical	situations.			
	
4.		Experimental	nonlocality	and	entanglement	
	
The	 unity	 of	 the	 quantum	 suggests	 that	 the	measurement	 state	 (5)	 represents	 a	 unified,	
hence	superposed	and	pure,	quantum	state	of	the	composite	system.		But	precisely	what	is	
superposed?	 	 We	 studied	 the	 simple	 (i.e.	 non-composite)	 superposition	 (3)	 via	 the	
interference	exhibited	in	the	experiment	of	Figure	2.		Varying	the	length	of	either	path	1	or	
path	 2	 created	 varying	 interference	 effects	 in	 the	 detectors,	 demonstrating	 each	 photon	
really	must	 travel	both	paths	 to	 its	detector.	 	Quantum	theory	agrees	entirely	with	 these	
conclusions,	 as	 can	 be	 shown	 by	 using	 photon	 wavelengths	 to	 show	 that	 the	 path	
differences	correctly	predict	the	interferences	observed	at	each	detector.			
	 This	 suggests	 that,	 to	 understand	 the	 measurement	 state,	 we	 need	 to	 find	 and	
analyze	entanglement	experiments	that	demonstrate	interference.	 	As	it	happens,	this	has	
been	done	for	several	decades	in	connection	with	quantum	nonlocality.		The	key	theoretical	
analysis	was	 done	 by	 John	 Bell	 [1].	 	Many	 nonlocal	 interference	 experiments	 have	 been	
done	beginning	with	Clauser	and	Freedman	[19],	continuing	with	the	definitive	experiment	
of	Aspect	et	al	[20]	and	other	experiments	such	as	the	two	described	below,	culminating	in	
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experiments	 demonstrating	 nonlocality	 across	 great	 distances	 [21]	 and	 that	
simultaneously	closed	all	possible	loopholes	in	all	the	previous	experiments	[22]	[23]	[24].		
By	now,	it	is	well	known	that	the	entangled	state	(5)	predicts	nonlocal	effects	between	its	
two	 subsystems,	 and	 that	 phase	 variations	 of	 either	 subsystem	 cause	 instantaneous,	 i.e.	
non-local,	readjustments	of	the	possibly-distant	other	subsystem.			
	 But	it's	not	easy	to	vary	the	phase	of	a	cat,	and	as	we	saw	in	the	experiment	of	Figure	
2,	 one	 cannot	 understand	 a	 superposition	without	 varying	 the	 phases	 of	 its	 superposed	
parts.		These	nonlocality	experiments	are	carried	out	with	pairs	of	simpler	quanta	such	as	
photons.	 	 The	 nonlocal	 entanglement	 experiments	 most	 appropriate	 for	 investigating	
measurement	were	 conducted	nearly	 simultaneously	by	Rarity	 and	Tapster	 [25]	 and	Ou,	
Zou,	 Wang,	 and	 Mandel	 [26].	 	 Figure	 4	 shows	 the	 layout	 for	 these	 "RTO"	 (for	 Rarity,	
Tapster,	and	Ou)	experiments.		The	"source"	in	Figure	4	creates	entangled	photon	pairs	by	
"parametric	down-	conversion,"	a	process	which	needn't	concern	us	here.			

	
Figure	4.		The	RTO	experiments	provide	an	ideal	portrait	of	entanglement.		In	each	trial,	the	
source	emits	two	entangled	photons	A	and	B	into	a	superposition	of	the	solid	and	dashed	
paths	to	create	an	entangled	state.			
	 	
	 Compare	 this	 layout	 with	 Figure	 2.	 	 The	 RTO	 experiment	 is	 two	 back-to-back	
interferometer	experiments	but	with	the	first	beam	splitter	for	each	photon	located	inside	
the	source	of	entangled	photons.		Without	entanglement,	each	single	photon	(either	A	or	B)	
would	interfere	with	itself	at	 its	own	detectors	according	to	its	own	phase	shift	φA	or	φB.		
The	 two	entangled	photons	are	emitted	 into	a	superposition	of	 the	solid	path	connecting	
detectors	A1	and	B1,	and	the	dashed	path	connecting	detectors	A2	and	B2.	 	Note	that	the	
two	photons	are	already	entangled	when	they	are	emitted.	
	 The	entanglement	changes	everything.		No	longer	does	either	photon	interfere	with	
itself	at	its	own	detectors.		Instead,	the	photons	are	entangled	in	the	measurement	state	(5)	
with	|ψ1>	and	|ψ2>	representing	(say)	the	solid-line	and	dashed-line	states	of	A	and	|1>	and	
|2>	 representing	 the	 solid-line	 and	 dashed-line	 states	 of	 B,	 although	 in	 the	 RTO	
experiments	neither	 subsystem	 is	macroscopic.	 	Each	photon	now	acts	 like	a	which-path	
detector	 for	 the	 other	 photon.	 	 Recall	 the	 double-slit	 experiment:	 	 When	 a	 which-slit	
detector	 is	 switched	 on,	 the	 pattern	 on	 the	 screen	 switches	 abruptly	 from	 the	 striped	
interference	pattern	indicating	the	pure	state	nature	of	each	electron	across	both	slits,	to	a	
phase-independent	 sum	 of	 two	 non-interfering	 single-slit	 patterns.	 	 The	 entanglement	
between	the	electron	and	the	which-slit	detector	breaks	the	pure	state	into	two	single-slit	
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parts,	 so	 that	 the	measured	electron	comes	 through	either	slit	1	or	slit	2.	 	 	This	suggests	
that	 in	 the	RTO	experiment,	 the	entanglement	 should	break	 the	pure-state	 superposition	
(3)	into	two	non-interfering	parts.			
	 This	is	exactly	what	is	observed.		Both	photons	impact	their	detectors	as	random	50-
50	mixtures,	just	like	a	flipped	coin.		The	entanglement	breaks	the	single-photon	pure	state	
(3)	observed	in	the	experiment	of	Figure	2,	causing	each	photon	to	behave	"incoherently"	
with	no	dependence	on	its	phase	setting.				
	 But	(5)	is	a	pure	state.		Where	has	the	phase	dependence	gone?		The	answer	lies	in	
the	 phase-dependent	 but	 nonlocal	 relationship	 observed	 between	 Figure	 4's	 solid	 and	
dashed	branches.	 	 This	 phase	 dependence	 is	 observed	 experimentally	 in	 coincidence	 (or	
correlation)	 measurements	 comparing	 detections	 of	 entangled	 pairs.	 	 The	 flipped	 coins	
mentioned	above	turn	out	to	be	correlated	with	each	other.		This	phase	dependence	across	
the	 two	 separated	 subsystems	 is	 essential	 to	 preserve	 the	 unity	 of	 the	 (now	 entangled)	
quantum.			
	 This	is	not	an	easy	experiment	to	perform:		The	source	creates	a	stream	of	photon	
pairs,	and	one	must	compare	the	impact	of	a	single	photon	A	at	detectors	A1,	A2	with	the	
impact	of	its	corresponding	entangled	photon	B	at	detectors	B1,	B2.		RTO	figured	out	how	to	
do	this,	with	the	result	shown	in	Figure	5.			

	 	
Figure	5.		Nonlocal	interference	in	the	RTO	experiments.		As	the	nonlocal	phase	difference	
φB	-	φA	varies,	the	"degree	of	correlation"	(see	text	for	precise	definition)	between	A	and	B	
shows	phase-dependent	interference.				
	 	
	 Figure	5	graphs	the	degree	of	correlation	between	A	and	B.		This	is	a	measure	of	the	
agreement	between	 the	outcomes	at	A's	detectors	and	B's	detectors.	 	A	correlation	of	+1	
means	perfect,	or	100%,	agreement:		Either	both	sets	of	detectors	register	outcome	1	(i.e.	
A1	and	B1	click)	or	both	register	outcome	2,	as	in	a	measurement:		You	want	the	which-slit	
detector	to	register	"slit	1"	if	the	electron	is	in	state	|ψ1>,	you	want	it	to	register	"slit	2"	if	
the	 electron	 is	 in	 state	 |ψ2>,	 and	 you	want	 this	 agreement	 on	 every	 trial.	 	 The	 opposite	
extreme	is	a	correlation	of	-1,	meaning	100%	disagreement:		If	one	detector	registers	1,	the	
other	 registers	 2.	 	 Either	 correlation,	 +1	 or	 -1,	 implies	 that	 either	 photon's	 outcome	 is	
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predictable	 from	 the	other	photon's	 outcome.	 	A	 correlation	of	 zero	means	one	photon's	
outcome	does	not	at	all	determine	the	other's	outcome:		Each	photon	has	a	random	50-50	
chance	of	either	outcome	regardless	of	 the	other	photon.	 	Correlations	between	0	and	+1	
mean	 the	 outcomes	 are	 more	 likely	 to	 agree	 than	 to	 disagree,	 with	 larger	 correlations	
denoting	a	higher	probability	of	agreement;	for	example,	a	correlation	of	+0.5	means	a	75%	
probability	of	agreement.		Similarly,	correlations	between	0	and	-1	mean	the	outcomes	are	
more	 likely	 to	 disagree	 than	 to	 agree;	 a	 correlation	 of	 -0.5	means	 a	 75%	 probability	 of	
disagreement.				
	 The	 RTO	 experiment	 agrees	 entirely	 with	 the	 predictions	 of	 standard	 quantum	
physics.		When	an	accounting	is	made	of	the	optical	paths	for	both	photons,	we	obtain	the	
following	result	[27]:			
	
	 P(correlated)	=	P(A1	and	B1)	+	P(A2	and	B2)	=	1/2[1	+	cos(φB	-	φA)]	 	 (13)	
	
	 P(anticorrelated)	=	P(A1	and	B2)	+	P(A2	and	B1)	=	1/2[1	-	cos(φB	-	φA)]		 (14)	
	
where	P(correlated)	is	the	single-trial	probability	that	A's	and	B's	detectors	will	agree,	and	
P(anticorrelated)	is	the	single-trial	probability	that	A's	and	B's	detectors	will	disagree.		The	
degree	of	 correlation,	 defined	 as	P(correlated)	-	P(anticorrelated),	 is	 then	 simply	cos(φB	-	
φA),	as	graphed	in	Figure	5.			
	 In	1964,	John	Bell	published	a	ground-breaking	article	stating	a	sufficient	condition	
for	a	statistical	theory	such	as	quantum	physics	to	meet	the	condition	known	as	"locality."		
He	defined	locality	to	mean	"that	the	result	of	a	measurement	on	one	system	be	unaffected	
by	 operations	 on	 a	 distant	 system	 with	 which	 it	 has	 interacted	 in	 the	 past"	 [1].	 	 Bell	
expressed	 this	 sufficient	 condition	 in	 the	 form	of	 an	 inequality	 (Eq.	 (15)	 of	 [1])	 that	 any	
local	 theory	 must	 obey.	 	 He	 also	 demonstrated	 that	 certain	 statistical	 predictions	 of	
quantum	physics	violate	Bell's	inequality,	i.e.	quantum	physics	makes	nonlocal	predictions.			
The	results	in	Figure	5	turn	out	to	be	a	case	in	point:		Figure	5	violates	Bell's	inequality	at	
all	phase	differences	φB	-	φA	other	than	0,	π,	and	2π.		Let	me	underline	the	meaning	of	this:		
The	violation	of	Bell's	inequality	means	that	the	statistics	of	measurements	on	photon	A--
photon	A's	"statistical	behavior"--is	necessarily	affected	by	the	setting	of	photon	B's	phase	
shifter.				
	 In	fact,	even	without	Bell's	condition,	the	nonlocality	of	this	experiment	is	intuitively	
obvious.	 	Here's	why:	 	Suppose	we	set	 the	phase	shifters	 to	zero	and	that	all	 four	optical	
paths	(two	solid,	two	dashed)	in	Figure	4	are	then	equal;	thus	φB	-	φA	is	zero.		Without	the	
two	 beam	 splitters	 BS,	 the	 two	 photons	 emitted	 into	 the	 solid	 pair	 and	 dashed	 pairs	 of	
paths	would	impact	either	detectors	A1	and	B1	or	A2	and	B2	because	of	the	symmetry	of	
the	experiment	and	 conservation	of	momentum.	 	This	 is	neither	 surprising	nor	nonlocal,	
and	 would	 happen	 even	 if	 the	 photons	 were	 not	 entangled.	 	 But	 a	 beam	 splitter	 is	 a	
randomizing	device	that	mixes	the	solid	and	dashed	paths;	any	photon	passing	through	it	
has	 a	50-50	 chance	of	 reflection	or	 transmission.	 	With	non-entangled	photons	 and	both	
beams	splitters	in	place,	there	would	then	be	no	correlation	between	photon	A's	outcome	
and	 B's	 outcome	 because	 the	 two	 photons	 are	 independent	 of	 each	 other.	 	 With	
entanglement,	the	correlation	is	perfect.		How	does	one	photon	know	which	path	the	other	
photon	 took	 at	 the	 other	 photon's	 beam	 splitter?	 	 	 Each	 photon	 is	 now	 "detecting"	 the	
quantum	 state	 of	 the	 other	 photon,	 from	 a	 distance	 that	 could	 be	 large.	 	 The	 perfect	



Art	Hobson	 Review	and	suggested	resolution	of	Schrodinger's	cat	 	 16	

correlation	 certainly	 "feels"	 nonlocal	 even	 though	 (as	 mentioned	 above)	 this	 perfect	
correlation	at	φB	-	φA	=	0		does	not	violate	Bell's	inequality.		Note	that	such	a	violation	is	a	
sufficient	but	not	necessary	condition	for	nonlocality.				
	 Non-locality	 is	written	 all	 over	 the	RTO	experiment.	 	 Each	photon	 "knows"	which	
direction	the	other	photon	takes	at	its	beam	splitter	and	adjusts	its	selection	accordingly.					
	 The	 key	 nonlocal	 feature	 of	 Figure	 5	 is	 that	 the	 graph,	 which	 is	 simply	 a	 cosine	
function,	has	(φB	-	φA)	as	 its	 independent	variable.	 	Thus	any	desired	shift	 in	correlations	
can	be	made	by	an	observer	at	either	of	the	possibly-widely-separated	phase	shifters.		Bell	
suspected	 that	 this	 situation	meant	 that	 observer	 A	 (call	 her	 Alice)	 could	 use	 her	 phase	
shifter	 to	 alter	 the	 outcomes	 that	would	 have	 occurred	at	both	her	own	and	observer	B's	
(call	 him	 Bob)	 detector	 and,	 following	 up	 on	 this	 hypothesis,	 derived	 his	 inequality	
involving	 the	 probabilities	 at	 both	Alice's	 and	Bob's	 detectors	which,	 if	 violated,	 implied	
that	both	 photons	must	have	 readjusted	 their	 states.	 	 Such	 readjustment	 is	 just	what	we	
expect,	 given	 the	unity	 of	 the	quantum	and	 thus	 the	unity	 of	 atoms	 and	other	 entangled	
systems	such	as	our	two	photons.		The	two	photons	form	a	single	"bi-quantum,"	an	"atom	
of	 light,"	 in	the	pure	state	(5).	 	When	Alice	varies	her	phase	shifter,	both	photons	"know"	
both	 path	 lengths	 and	 readjust	 their	 behavior	 accordingly	 to	 produce	 the	 proper	
correlations.		Analogously,	a	single	photon	"knows"	both	path	lengths	in	the	single-photon	
interferometer	experiment	of	Figure	2.			
	 Finally,	 the	 central	 question	 of	 this	 paper:	 	 What	 is	 actually	 superposed	 in	 the	
entangled	superposition	(5)?	 	 	The	experiment	of	Figure	2	 tests	 the	simple	superposition	
(3),	while	 the	 RTO	 experiment	 tests	 the	 entangled	 superposition	 (5).	 	We	 know	what	 is	
superposed	in	Figure	2,	namely	the	quantum	states	|ψ1>	(path	1)	and	|ψ2>	(path	2).		This	is	
deduced	from	the	effect	that	either	phase	shifter	has	on	both	states.		Now	consider	the	RTO	
experiment.	 	What	 is	 the	 effect	 of	 shifting	 either	 phase	 shifter?	 	 One	 thing	 that	 does	not	
change	is	the	state	("local	state"	would	be	a	better	term,	as	discussed	in	Section	5)	of	either	
photon	A	or	photon	B:		As	we	know,	both	photons	remain	in	50-50	mixtures	regardless	of	
either	 phase	 setting.	 	 What	 does	 change	 with	 variations	 in	 either	 phase	 shifter	 is	 the	
correlations	between	A	and	B.		With	φA	=	φB	=	0		we	have	perfect	correlation:		Either	A1	and	
B1	(which	we	will	denote	(11))	or	A2	and	B2	(denoted	(22)).		As	we	vary	either	φA	or	φB	we	
obtain	non-zero	probabilities	of	 anti-correlated	 individual	 trials,	denoted	 (12)	 (outcomes	
A1	 and	B2)	 and	 (21)	 (A2	 and	B1).	 	When	 the	 non-local	 phase	 angle	 difference	 (φB	 -	φA)	
reaches	 π/2,	 we	 have	 zero	 correlation,	 and	 when	 it	 reaches	 π	 we	 have	 perfect	 anti-
correlation.				
	 Table	 1	 summarizes	 this	 crucial	 point	 in	more	 detail.	 	 The	 column	 titled	 "simple	
superposition"	shows	how	the	superposition	state	of	a	single	photon	(Figure	2)	varies	from	
"100%	state	1"	 to	"100%	state	2"	as	 the	phase	angle	between	the	two	states	varies.	 	The	
column	 titled	 "entangled	 superposition	of	 two	 sub-systems"	 shows	 that	 the	 state	 of	 each	
photon	remains	unchanged	throughout	 the	entire	range	of	both	phase	settings,	while	 the	
nonlocal	correlation	between	the	states	of	the	two	photons	varies	from	"100%	correlated"	to	
"zero	correlation"	and	then	to	"100%	anticorrelated"	as	either	of	the	two	local	phase	angles	
varies.			
	 What	is	superposed	in	the	RTO	experiment?		The	hallmark	of	a	superposition	is	its	
dependence	on	the	phase	difference	between	the	objects	that	are	superposed.			But	Table	1	
exhibits	no	such	phase	dependence	of	the	states	of	the	two	photons.		Each	photon	remains	
in	an	unchanging	50-50	mixture	of	its	own	"path	1"	and	"path	2"	states,	a	situation	that	is	
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radically	 at	 odds	 with	 the	 true	 superposition	 of	 path	 1	 and	 path	 2	 exhibited	 by	 the	
experiment	of	Figure	2.	 	 	Thus	 in	 the	entangled	RTO	state,	neither	photon	 is	superposed.		
We	see	here	the	source	of	the	"classical"	or	non-superposed	nature	of	the	reduced	density	
operators	 (Eqs.	 (10)	 and	 (11)),	 not	 to	 mention	 the	 non-superposed	 and	 hence	 non-
paradoxical	nature	of	Schrodinger's	cat.	 	Our	examination	of	the	phase-dependence	of	the	
measurement	 state	 (5),	 as	 demonstrated	 by	 nonlocality	 experiments	 such	 as	 the	 RTO	
experiment,	reveals	the	true	nature	of	Schrodinger's	cat.			The	last	column	of	Table	1	shows	
us	what	actually	 is	 superposed	when	 two	subsystems	are	entangled	 in	 the	measurement	
state	 (5).	 	 Since	 the	 correlations	 between	 the	 two	photons	 vary	 sinusoidally	 as	 the	 non-
local	phase	angle	between	the	two	photons	varies,	it	is	clearly	these	correlations	between	
the	 states	 of	 the	 two	 photons,	 and	 not	 the	 states	 themselves,	 that	 are	 interfering.	 	 The	
entanglement	has	shifted	the	superposition,	from	the	states	of	one	photon	A	(Eq.	(3),	Figure	
2)	to	the	correlations	between	photon	A	and	photon	B	(Eq.	(5),	Figure	4).					
	 	 	 	 	 	 	 	 	 	 	 	 	 	
Simple	superposition:	 	 					Entangled	superposition	of	two	sub-systems:	 	
φ	 State	of	photon	 	φB	-φA	 State	of	each	photon	 Correlation	between	 	
	 	 	 	 the	two	photons	 	
0	 100%	“1”,	0%	“2”	 			0	 50-50	“1”	or	“2”	 100%	corr,	0%	anti	
π/4	 71%	“1”,	29%	“2”	 			π/4	 50-50	“1”	or	“2”	 71%	corr,	29%	anti	
π/2	 50%	“1”,	50%	“2”	 			π/2	 50-50	“1”	or	“2”	 50%	corr,	50%	anti	
3π/4	 29%	“1”,	71%	“2”	 			3π/4	 50-50	“1”	or	“2”	 29%	corr,	71%	anti	
π	 0%	“1”,	100%	“2”	 			π	 50-50	“1”	or	“2”	 0%	corr,	100%	anti	 	
Table	 1.	 	 In	 a	 simple	 superposition,	 the	 photon's	 state	 varies	 with	 phase	 angle.	 	 In	 an	
entangled	superposition,	the	relationship	between	states	of	the	two	photons	varies,	while	
individual	states	of	both	photons	are	phase-independent	(or	"mixed").	 	
	
	
5.		Summary	and	discussion	
	
In	order	to	resolve	the	problem	of	definite	outcomes	of	measurements,	aka	Schrodinger's	
cat,	 this	 paper	 analyzes	 the	 entangled	 state	 (5)	 of	 a	 microscopic	 quantum	 and	 its	
macroscopic	 measuring	 apparatus.	 	 	 This	 state	 is	 a	 superposition	 of	 the	 two	 composite	
entities	 |ψ1>|1>	 	 and	 |ψ2>|2>,	with	 a	 phase	 angle	 between	 these	 entities	 that	 can	 range	
over	2π	radians.		In	a	measurement,	this	phase	angle	is	fixed	at	zero	because	we	design	the	
detector	 so	 that	 the	 two	 basis	 states	 of	 the	 measured	 quantum	 are	 100%	 positively	
correlated	with	the	basis	states	of	the	measurement	apparatus.			
	 To	resolve	the	problem	of	definite	outcomes	we	must	ask:		Precisely	what	does	the	
composite	 superposition	 (5)	 actually	 superpose,	physically?	 	 	 In	order	 to	understand	 the	
simple	non-composite	superposition	(3),	we	looked	at	the	effect	of	varying	the	phase	angle	
between	 the	 superposed	 entities	 |ψ1>	 and	 |ψ2>	 in	 an	 experimental	 setting	 such	 as	 the	
interferometer	 of	 Figure	 2.	 	 The	 theoretically	 predicted	 and	 experimentally	 observed	
results	 then	made	 it	 obvious	 that	 the	 quantum	whose	 state	 is	 (3)	 flows	 simultaneously	
along	two	separate	paths	described	by	|ψ1>	and	|ψ2>.	
	 To	 understand	 the	 superposition	 (5),	 we	 should	 proceed	 similarly	 by	 studying	
situations	in	which	the	phase	angle	between	the	superposed	entities	|ψ1>|1>		and	|ψ2>|2>	
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varies.	 	 As	 it	 happens,	 theorists	 and	 experimentalists	 studying	 the	 phenomenon	 of	
nonlocality	have	been	doing	this	for	decades,	but	quantum	foundations	specialists	have	not	
particularly	 noticed	 this	work	 in	 connection	with	 the	measurement	 problem.	 	 	 	 	 In	 fact,	
nonlocal	aspects	of	the	state	(5)	have	been	studied	since	Bell's	1964	theoretical	paper	[1]	
and	Clauser	and	Freedman's	1972	experiment	[19].	 	 	The	1990	experiments	of	Rarity	and	
Tapster	[25],	and	of	Ou,	Zou,	Wang,	and	Mandel	[26],	furnish	the	ideal	vehicle	for	such	an	
analysis	and	are	the	central	feature	of	this	paper.		
	 One	lesson	of	this	analysis	is	that,	in	order	to	understand	the	measurement	problem,	
one	must	understand	the	significance	of	nonlocality.		This	is	because	the	key	measurement	
state	 (5)	 that	 caused	 Schrodinger	 and	 decades	 of	 experts	 so	much	 concern	 has	 nonlocal	
characteristics.	 	 	 It	must	 be	 understood	 as	 a	 superposition	 of	 correlations,	 rather	 than	 a	
superposition	of	states,	but	this	cannot	become	apparent	until	one	considers	the	effect	of	
variations	in	the	phase	angle	between	its	superposed	terms.			Such	variations	are	not	part	
of	 the	measurement	 process	 itself	 because	measurements	 are	 designed	 to	 take	 place	 at	
zero	phase	angle.	 	 	Experimental	or	theoretical	studies	of	such	phase	variations	will	have	
nonlocal	 ramifications,	 because	 such	 variations	 are	 inherently	 nonlocal.	 	 	 This	 situation	
would	have	prevented	Schrodinger	 in	1935,	or	 indeed	anyone	prior	 to	Bell's	1964	paper	
and	 the	 experimental	 confirmations	of	 the	 reality	 of	 nonlocality	beginning	 in	1972,	 from	
understanding	the	entangled	superposition	(5).					
	 It's	 worth	 emphasizing	 that,	 when	 two	 subsystems	 are	 entangled	 in	 the	
measurement	state	 (5),	neither	 subsystem	 is	 superposed.	 	Only	correlations	between	 the	
subsystems	are	superposed.		In	the	RTO	experiments,	the	two	correlations	in	question	are	
represented	by	the	solid	and	dashed	paths	connecting	pairs	of	outcomes.			A	pair	of	photons	
entangled	 in	 the	 state	 (5)	 follows	 both	 of	 these	 paths	 simultaneously.	 	 The	 subsystems	
themselves,	however,	are	not	in	superpositions	but	are	instead	in	indeterminate	mixtures	
of	definite	states.			Thus	observers	of	either	subsystem	will	observe	only	definite	outcomes,	
as	predicted	by	the	local	mixtures	(10)	and	(11).				
	 The	RTO	experiments	are	the	entangled	analog	of	the	interferometer	experiment	of	
Figure	 2:	 	 a	 pair	 of	 back-to-back	 interferometer	 experiments,	 with	 an	 entangled	 pair	 of	
quanta	of	which	one	quantum	passes	through	each	interferometer.			The	experiment	and	its	
theoretical	 analysis	 shows	 that,	when	 a	 superposed	 photon	A	 becomes	 entangled	with	 a	
second	photon	B	to	form	the	state	(5),	the	nonlocal	aspect	of	A's	superposition	(Figure	2)	is	
transferred	to	the	correlations	between	A	and	B	(Figure	4).	 	Thus	an	entangled	state	such	
as	(5)	is	neither	a	superposition	of	states	of	A	nor	of	states	of	B,	but	instead	a	superposition	
of	the	correlations	between	the	states	of	A	and	the	states	of	B.			
	 To	 see	 this	 most	 clearly,	 let's	 compare	 the	 simple	 superposition	 (3)	 with	 the	
entangled	superposition	(5).		In	the	simple	superposition,	the	state	observed	by	a	"which-
state"	detector	 varies	 smoothly	 from	100%	 |ψ1>,	 through	50%	 	 |ψ1>	 and	50%	 |ψ2>,	 and	
finally	to	100%	|ψ2>	as	the	phase	angle	φ	between	|ψ1>	and	|ψ2>	varies	from	0	to	π.		In	the	
entangled	superposition,	neither	the	state	of	A	nor	the	state	of	B	varies	as	φA		or	φB	varies;	
both	 A	 and	 B	 remain	 in	 50-50	mixtures	 throughout.	 	What	 does	 vary	 is	 the	 correlation	
between	 A	 and	 B.	 	 A	 non-local	 "correlation	 detector"	 (i.e.	 an	 RTO-type	 of	 experiment!)	
would	 find	 the	 relation	 between	 the	 two	 subsystems	 varies	 from	 100%	 positively	
correlated	(either	the	pair	state	11	or	22,	pictured	by	the	solid	and	dashed	paths	in	Figure	
4),	 to	 50%	 positively	 correlated	 and	 50%	 anti-correlated,	 and	 finally	 to	 100%	 anti-
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correlated	(12	or	21),	as	the	nonlocal	phase	difference	φB	-φA	varies	from	0	to	π.		This	is	a	
superposition	of	correlations,	not	a	superposition	of	composite	states	or	of	non-composite	
(single-system)	states.	
	 This	conclusion	implies	that	our	standard	physical	description	of	a	composite	non-
entangled	 (i.e.	 factorable)	 product	 state	 such	 as	 |ψ1>|1>	 has	 been	 long	mistaken.	 	 	 	We	
usually	regard	|ψ1>|1>	as	a	state	of	the	composite	system	AB,	one	in	which	subsystem	A	is	
in	 state	 |ψ1>	 and	 subsystem	 B	 is	 in	 state	 |1>.	 	 But	 this	 leads	 us	 into	 the	 paradox	 of	
Schrodinger's	 cat,	 where	 (|ψ1>|1>	 +	 |ψ2>|2>)/√2	 represents	 a	 state	 in	 which	 two	
macroscopically	 different	 composite	 states	 exist	 simultaneously	 as	 a	 superposition.		
According	 to	 the	 present	 study,	 quantum	 theory	 and	 quantum	 experiments	 imply	 this	
entangled	 state	 to	 be	 a	 superposition	 of	 correlations	 between	 states	 rather	 than	 a	
superposition	of	composite	states.		Thus	|ψ1>|1>	is	not	a	state	of	the	composite	system,	but	
instead	a	correlation	between	the	two	subsystems.			That	is,	|ψ1>|1>	means	"subsystem	A	is	
in	the	state	|ψ1>	if	and	only	if	subsystem	B	is	in	the	state	|1>,"	an	important	departure	from	
the	usual	description.		
	 Even	 if	 one	 of	 the	 two	 subsystems	 happens	 to	 be	 a	 macroscopic	 detector,	 	 the	
entangled	 state	 (5)	 is	 simply	 a	 non-paradoxical	 superposition	 of	 correlations.	 	 It	 says	
merely	that	the	state	|ψ1>	of	A	is	correlated	with	the	state	|1>	of	B,	and	the	state	|ψ2>	of	A	is	
correlated	with	 the	 state	 |2>	of	B,	with	 the	non-local	phase	angle	φB	-φA	determining	 the	
degree	of	each	correlation.	 	 	In	the	case	of	measurement,	this	phase	angle	is	fixed	at	zero.		
Regardless	 of	 phase	 angle,	 neither	 subsystem	 is	 in	 a	 superposition.	 	 The	 entangled	
measurement	 state	 (5)	 is	 best	 described	 as	 a	 "macroscopic	 correlation":	 	 a	 pair	 of	
superposed	(i.e.	phase-dependent)	quantum	correlations	in	which	one	subsystem	happens	
to	be	macroscopic.	 	 	 It	 is	 technically	very	difficult	 to	 create	a	macroscopic	 superposition,	
but	macroscopic	which-path	detectors	routinely	achieve	the	state	(5).		It's	not	paradoxical,	
even	though	many	analyses	have	puzzled	over	it.			
	 At	least	in	our	idealized	case	of	a	minimally-disturbing	von	Neumann	measurement,	
the	 initial	 stage	of	 the	measurement	process	(through	the	 formation	of	 the	measurement	
state	 (5))	 can	be	described	as	 follows:	 	A	quantum	 in	a	 simple	 superposition	such	as	 (3)	
entangles	 with	 a	 macroscopic	 which-path	 detector.	 	 At	 the	 instant	 of	 entanglement,	 the	
local	states	of	the	both	the	quantum	and	the	detector	undergo	a	radical	change,	a	quantum	
jump.	 	 Locally,	 the	 detector	 and	 the	 quantum	 jump	 into	 mixtures	 (10)	 and	 (11).		
Simultaneously,	 the	 global	 state	 (5)	 continues	 evolving	 smoothly	 according	 to	 the	
Schrodinger	 equation.	 	 	 Entanglement	 causes	 the	 superposed	 single	 quantum	 to	 be	
instantly	transformed	into	superposed	correlations	between	the	quantum	and	the	detector.		
	 This	 stage	 of	 the	 measurement	 process	 is	 entirely	 describable	 in	 terms	 of	 pure	
global	states	following	the	Schrodinger	equation.	 	The	collapse	from	a	local	superposition	
to	 local	 mixtures	 occurs	 because	 of	 the	 formation	 of	 the	 entangled	 state	 (5)	 and	 the	
resulting	 formation	 of	 subsystems	whose	 local	 states	 (Eqs.	 (10)	 and	 (11))	 have	 definite	
outcomes.	 	 	Note	 that	 the	phenomenon	of	nonlocality	 is	essential	 to	preserving	 the	pure-
state	 nature	 (the	 unity)	 of	 the	 composite	 system.	 	 	 To	 put	 this	 more	 intuitively,	 a	 re-
organization	throughout	the	entire	extent	of	the	composite	entangled	system	is	required	in	
order	to	preserve	the	unity	of	the	(now	entangled)	quantum.				
	 According	to	Table	1,	when	two	systems	entangle	to	form	the	state	(5),	both	collapse	
into	phase-independent	local	mixtures.		Relativity	requires	this	phase	independence:		If	any	
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phase-dependent	 aspect	 of	 the	 entangled	 state	 were	 locally	 observable,	 instant	
information-containing	messages	could	be	sent,	violating	special	relativity.	 	Local	states	of	
entangled	subsystems	must	be	invariant	to	phase	changes.	 	Thus,	only	 the	relationship--the	
correlations--between	A	and	B,	but	not	A	or	B	themselves,	can	vary	with	phase	angle.		Since	
local	observers	cannot	detect	these	correlations,	the	entangled	state	cannot	be	used	to	send	
superluminal	signals.		This	is,	ultimately,	the	reason	Schrodinger's	cat	must	be	either	alive	
or	dead	rather	 than	a	superposition	of	both.	 	A	phase-dependent	superposition	 involving	
both	local	states	would	permit	nonlocal	signaling,	violating	relativity.				
	 In	 entanglement,	 nature	 employs	 an	 ingenious	 tactic.	 	 She	 must	 not	 violate	
relativistic	causality,	yet	she	must	be	nonlocal	in	order	to	maintain	the	pure-state	nature	of	
the	 original	 single-quantum	 superposition	 over	 composite	 objects	 such	 as	 bi-photons.		
Thus	she	accomplishes	nonlocality	entirely	via	 the	superposition	of	 correlations,	because	
correlations	 cannot	 be	 locally	 detected	 and	 thus	 their	 superposition	 cannot	 violate	
relativity.	 	 This	 tactic	 lies	 behind	 the	 nonlocal	 spread	 of	 phase-dependence	 over	 large	
spatial	 distances.	 	 By	means	 of	 the	 superposition	 of	 correlations--entanglement--	 nature	
creates	 a	 phase-dependent	 pure-state	 quantum	 structure	 across	 extended	 quantum	
systems	such	as	bi-photons.			
	 I've	 frequently	 used	 the	 term	 "local"	 as	 contrasted	 with	 "global."	 	 For	 composite	
systems,	 and	 especially	 the	 entangled	 measurement	 state,	 it's	 a	 crucial	 distinction.		
Entangled	 states	 such	 as	 (5)	 have	 distinct	 local	 and	 global	 (nonlocal)	 aspects.	 	 The	 local	
description	means	 the	 situation	observed	by	 two	 (or	N	 for	an	entangled	N-body	 system)	
observers,	each	observing	only	one	subsystem.		In	the	case	of	(5),	this	"local	description"	is	
fully	captured	by	the	reduced	density	operators	(10)	and	(11)--each	local	observer	detects	
a	 mixture,	 not	 a	 superposition,	 of	 one	 subsystem.	 	 The	 "global	 description"	 means	 the	
evolving	pure	state	of	the	entire	composite	system,	in	our	case	Eq.	(5).		It	is	a	superposition	
of	nonlocal	correlations	that	can	only	be	detected	by	observing	both	subsystems	and,	via	an	
ensemble	 of	 trials	 that	 individually	 record	 corresponding	 outcomes	 at	 both	 subsystems,	
determining	the	state	of	the	correlations	between	them.		Although	the	global	state	implies	
the	 local	 description,	 the	 local	 description	 cannot	 hint	 at	 the	 global	 correlations	because	
any	such	hint	would	violate	Einstein	causality.	 	Thus,	when	an	electron	shows	up	in	your	
lab,	 neither	 an	 examination	 of	 the	 electron	 nor	 an	 examination	 of	 an	 ensemble	 of	
identically-created	electrons	can	give	you	the	least	hint	of	whether	or	how	this	electron	is	
entangled	with	other	quanta	elsewhere	in	the	universe.			
	 This	 clarification	 of	 entanglement	 resolves	 the	 problem	 of	 definite	 outcomes,	 aka	
Schrodinger's	 cat.	 	 An	 ideal	 measurement	 of	 a	 superposed	 microscopic	 system	 A	 by	 a	
macroscopic	 detector	 B	 establishes	 the	 measurement	 state	 (5)	 at	 100%	 positive	
correlation.		This	state	is	equivalent	to	the	logical	conjunction	"A	is	in	local	state	|ψ1>	if	and	
only	if	B	is	in	local	state	|1>,	AND	A	is	in	local	state	|ψ2>	if	and	only	if	B	is	in	local	state	|2>,"	
where	 AND	 indicates	 the	 superposition.	 	 This	 conjunction	 is	 precisely	 what	 we	 want	
following	a	measurement.		Schrodinger's	cat	is	not	in	the	least	paradoxical.			
	 This	 analysis	 does	 not	 entirely	 resolve	 the	 quantum	 measurement	 problem.	 	 It	
resolves	the	problem	of	definite	outcomes	associated	with	the	measurement	state	(5),	but	
this	 state	 continues	 to	 obey	 Schrodinger's	 equation	 and	 is	 hence	 reversible.	 	 In	 fact,	 the	
entangled	state	between	a	quantum	and	its	which-path	detector	can	actually	be	reversed	in	
the	Stern-Gerlach	experiment		(Figure	11.1	of	[8]).		A	quantum	measurement	must	result	in	
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a	macroscopic	indication	such	as	a	recorded	mark,	and	a	mark	is	irreversible.		 	The	above	
analysis	 shows	 the	 entangled	 state	 (5)	 describes	 a	 mixture	 of	 definite,	 not	 superposed,	
outcomes	of	measurements,	but	these	outcomes	remain	indeterminate	and	the	global	state	
remains	reversible.			
	 The	 irreversibility	 problem	 is	 the	 question	 of	 how	 this	 nonlocal	 superposition	 of	
correlations	 then	 further	 collapses	 irreversibly	 to	 just	 one	 of	 its	 possible	 outcomes,	 a	
collapse	that	occurs	in	the	RTO	experiment	only	when	one	photon	impacts	a	detector.		The	
present	analysis	does	not	claim	to	resolve	this	problem.			In	the	case	of	the	RTO	experiment,	
however,	 it	 seems	 fairly	 clear	 that	 the	 nonlocal	 superposition	 described	 by	 Eq.	 (5)	must	
irreversibly	decohere	[10]	when	either	of	its	subsystems	A	or	B	interacts	with	a	detector.		
The	 RTO	 experiment	 furnishes	 a	 particularly	 good	 setting	 for	 this	 question,	 because	 the	
two	photons	remain	in	the	reversible	entangled	state	(5)	throughout	their	flights	from	the	
source	 to	 detectors,	 and	 thus	 the	 two	 key	 questions	 of	 the	 measurement	 problem	 (the	
problem	 of	 definite	 outcomes	 and	 the	 problem	 of	 irreversibility)	 can	 be	 analyzed	
individually.				
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