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Abstract   
The entangled "measurement state" (MS), predicted by von Neumann to arise 
during quantum measurement, seems to display paradoxical properties such as 
multiple macroscopic outcomes.  But analysis of interferometry experiments 
using entangled photon pairs shows that entangled states differ surprisingly from 
simple superposition states.  Based on standard quantum theory, this paper shows 
that (i) the MS does not represent multiple detector readings but instead represents 
nonparadoxical multiple statistical correlations between system states and 
detector readings, (ii) exactly one outcome actually occurs, and (iii) when one 
outcome occurs, the other possible outcomes simultaneously collapse nonlocally.  
Point (iii) resolves an issue first raised in 1927 by Einstein who demonstrated that 
quantum theory requires instantaneous state collapse.  This conundrum's 
resolution requires nonlocal correlations, which from today's perspective implies 
the MS must be an entangled state.  Thus, contrary to previous presumed proofs 
of the measurement problem's insolubility, we find the MS to be the collapsed 
state and just what we expect upon measurement.   
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1 | INTRODUCTION 
 
 Physicists agree that Schrodinger's equation describes the evolution of non-
relativistic quantum states between measurements, but there is no agreement on 
how states change during measurements.  In fact, an apparent problem arises when 
one applies standard quantum theory (minus the collapse postulate) to 
measurements.  John von Neumann analyzed the problem1 and we follow his 
argument here.  "Measurement" is the experimental determination and 
macroscopic recording of the value of a physical observable associated with a 
quantum system.  von Neumann showed that, unless the system happens to be in 
an eigenstate of the measured observable, measurement leads to a "measurement 
state" (MS) whose mathematical representation is an entangled state that seems 
to predict the detector to be in a macroscopic superposition of exhibiting all of the 
possible outcomes, a paradox known as the "problem of outcomes."   
 This paper shows, based on standard quantum theory without a collapse 
postulate, that this is a pseudo-problem and that, far from predicting superposed 
outcomes, von Neumann's MS predicts an instantaneous collapse to a single 
eigenstate.2  Specifically, we demonstrate, with no assumptions other than 
standard quantum physics (minus the collapse postulate):  (i) The MS has been 
misinterpreted and does not in fact predict paradoxical multiple macroscopic 
outcomes; it instead correctly predicts non-paradoxical multiple statistical 
correlations between system and detector outcomes.  (ii) Exactly one outcome 
actually occurs.  (iii) The entanglement entails that, when one outcome occurs, 
the other outcomes simultaneously and nonlocally remain "dark" (i.e. do not 
occur).  This resolves an objection to quantum physics first raised by Einstein in 
1927. 
 That is, we show von Neumann's enigmatic MS to be in fact the collapsed 
state expected upon measurement.  The collapse is derived (i.e. demonstrated) 
with no assumptions beyond the other standard principles of quantum physics. 
 We show the problem of outcomes arises from a mistaken understanding 
of entangled superpositions, not only in measurements but also in purely 
microscopic processes.  The MS is obviously a superposition of subsystem 
product states.  But the MS is poorly understood because no previous work has 
analyzed its complete phase dependence.  Do the states of individual subsystems 
vary with phase, as they do in simple superpositions?  If not, then what does vary 
with phase, i.e. precisely which entities occupy indefinite states when two or more 
subsystems are entangled?  Such questions show that we do not fully understand 
the MS's phase dependence, i.e. we don't fully understand the MS.    
 We investigate these questions by studying earlier Bell-test quantum-optics 
experiments that measure momentum-entangled two-photon states.  These 
experiments study a purely microscopic entangled superposition (mathematically 
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identical with the MS) across all phases.  The results show that entangled 
superpositions differ sharply from simple superpositions, i.e. the implication of 
the "plus" sign differs surprisingly.  The MS does not represent multiple detector 
readings, but instead represents multiple statistical correlations between system 
states and detector readings.  These correlations are not paradoxical:  a 
macroscopic detector that simultaneously exhibited two states would be 
paradoxical, but a detector that simultaneously participates in two correlations is 
not paradoxical.  Furthermore, the MS directly implies that exactly one of these 
correlations is realized as the measurement outcome.  This resolves the so-called 
"Schrodinger's cat paradox," which in turn resolves the quantum measurement 
problem.3   
 The measurement problem has a long and rich history3,4 that we will not try 
to comprehensively cover here.  The present analysis shares certain features with 
the modal interpretations of quantum physics.5-8  Like the present paper, modal 
interpretations are based on standard quantum mechanics but without the 
projection postulate (von Neumann's "Process 1");1 they are realistic in the sense 
that they presume quantum systems possess real physical properties and they 
provide an objective (independent of humans) description of a single physical 
reality; they presume the dynamical state tells us the possible properties of the 
system and their corresponding probabilities; and they presume the dynamics (for 
non-relativistic systems) is governed by the unitary Schrodinger evolution and by 
the entanglement process presented in Section 2.  However the present analysis 
differs importantly from the modal interpretations' conclusion that "the dynamical 
state never collapses during its evolution."5  On the contrary, this paper deduces 
from quantum theory and from experimental evidence that an instantaneous 
nonlocal collapse takes place, resulting in one outcome occurring while the other 
outcomes simultaneously do not occur.  Thus, while the present paper does not 
postulate collapse, it derives an instantaneous collapse as a consequence of 
entanglement.    
 Other formulations also avoid postulating collapse.  Hugh Everett's many-
worlds interpretation assumes "that there are many worlds which exist in parallel" 
and that a different branch is realized in each different world.9,10  David Bohm's 
hidden variables theory11 assumes that a field (represented by the wave function) 
and particles are both present, with the field guiding the particles.  Mario Bunge's 
realistic formulation12 assumes a representative system/detector interaction and 
derives the Schrodinger evolution of the composite system, allowing one to 
deduce each observable's value from the detector reading.  Gottfried and Yan13,14 
argue that, for all practical purposes, the off-diagonal terms of the exact density 
operator arising from the MS can be ignored, and that this solves the measurement 
problem.  A recent information-based analysis15 regards the MS as the result of 
quantum measurement (as does this paper) and introduces, in addition to the 
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measured quantum system and its measurement apparatus, a "programming 
system" that interacts with the quantum system and apparatus to encode the basis 
information for the system and apparatus, thus avoiding any classical concepts 
within an information-complete quantum formalism.  
 At least six papers--Lev Landau,16 Gerhart Luders,17 Josef Jauch,18 Roland 
Omnes,19 Stefan Rinner and Ernst Werner,20 and S. Perez-Berrliaffa, G. Romero 
and H. Vucetich21--express the effect of measurement as a trace on the composite-
system density operator representing the MS.  This trace operation, which predicts 
definite outcomes at the subsystems, seems to yield just what we want, namely 
that measurement transforms the subsystem states into mixtures over the possible 
eigenstates.  However, several objections are commonly raised against this 
proposal.22  The present paper, in contrast, argues that the MS directly represents 
the collapsed state of the composite system, that the collapse is a consequence of 
entanglement, and that the entanglement is required in order to ensure a 
simultaneous (hence instantaneous) collapse over the separated branches.   
 Section 2 presents von Neumann's derivation of the MS, poses the 
measurement problem, reviews eight presumed measurement problem 
insolubility proofs, and explains why their conclusion cannot be correct. 
 Section 3 presents a crucial clue.  In 1927, Einstein noted that quantum 
theory implies that measurements entail instantaneous collapse and suggested this 
would violate Special Relativity.  However, today (unlike 1927) we know that 
instantaneous nonlocal changes of correlations violating Bell's inequalities really 
occur,23-25 that they do not violate special relativity,26 and that they occur when 
disparate systems are entangled.27, 28  Thus from today's perspective, Einstein's 
argument implies that nonlocal correlations are required during measurements, 
entailing that entanglement is also required.   
 Is von Neumann's MS in fact precisely what we want?  The answer can 
only come from fully understanding the MS, particularly its full phase 
dependence which has not, to this author's knowledge, been previously discussed 
in connection with the measurement problem.  To this end, Section 4 reviews two 
1990 quantum optics experiments exploring an entangled two-photon 
microscopic state that is mathematically identical to the MS.   
 The correct understanding of the microscopic version of the MS is then 
worked out in Section 5.  We find that both entangled sub-systems are in definite 
(i.e. non-superposed) states, but that the degree of correlation between these 
states is in an indefinite state.  This key new finding is summarized in Table 1.   
 Section 6 applies this new insight to the MS.  We find the MS is not a 
macroscopic superposition of different detector states.  It instead represents 
different correlations between detector states and system states.  This is not 
paradoxical.  Furthermore, quantum theory directly implies that precisely one 
outcome is realized.  This resolves the Schrodinger's cat paradox. 
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 Section 7 concludes the analysis by studying a particularly simple 
measurement example that also typifies the essentials of quantum measurements.   
 Section 8 summarizes the results and considers why it has taken so long to 
straighten out this simple misunderstanding of von Neumann's MS.  
 
2 | ENTANGLEMENT AND MEASUREMENT 
 
 The superposition postulate entails that, if |A1> and |A2> are Hilbert space 
vectors ("kets") representing possible states of a quantum system A, then all 
normalized linear superpositions of |A1> and |A2> also represent possible states 
of A.  For example,  
 
 |YA> = |A1> + |A2>        (1)   
    √2 
 
(|A1> and |A2> orthonormal) represents a possible state of A.  The superposition 
postulate is prerequisite to the Hilbert-space representation of quantum states, and 
the basis for conceptualizing quantum states as physically real waves in a quantum 
field that fills the universe.26,29-31  |YA> represents a situation in which A is 
represented neither by |A1> nor by |A2> but incorporates aspects of both, 
including "overlap" effects such as interference.  As Dirac32 put it, A goes "partly 
into each of the two components" and "then interferes only with itself."   
 If quantum system A interacts with another quantum system B, it frequently 
happens that the situation of A and B are then represented by an entangled 
superposition such as  
 
 |YAB > = |A1>|B1> + |A2>|B2> ,      (2)  
    √2  
 
where |Ai> and |Bi> (i=1,2) are orthonormal kets representing the "subsystems" 
A and B, respectively.  Although the physical interpretation of simple 
superpositions such as |YA> is clear, the physical interpretation of entangled 
superpositions such as |YAB > is not comparably clear.  |YAB > is a superposition 
of two products |Ai>|Bi> (i=1,2).  |A1>|B1> is commonly interpreted to 
represent a state of the composite system AB in which A has the properties 
associated with |A1> and B has the properties associated with |B1>, and similarly 
for |A2>|B2>.  But if this is the case, then the physical interpretation of the state 
|YAB > would seem to be that AB simultaneously exhibits properties associated 
with |A1> and |B1> AND properties associated with |A2> and |B2>, where 
"AND" represents the superposition.  In the case of Schrodinger's iconic cat,33 this 
would imply that the nucleus is both decayed and undecayed and, more 
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disturbingly, the cat is both alive and dead.  This paper will demonstrate that both 
quantum experiment and quantum theory show that this is actually not the case.  
Instead, the state |YAB > entails merely that |A1> and |B1> are coherently (in a 
phase-dependent manner) correlated with each other AND |A2> and |B2> are 
coherently correlated with each other (see Sections 4 and 5).  This is not 
paradoxical.   
 Quantum measurements are important examples of entanglement.  As first 
discussed by John von Neumann,1,22 a "measurement" is the determination of the 
value of an observable associated with a quantum system A.  If A happens to be 
represented by an eigenvector of the measured observable, then a good 
measurement will detect the associated eigenvalue.  But what if A is represented 
by a superposition of eigenvectors of the measured observable?  It will suffice for 
this paper's purpose to assume that A's Hilbert space has only two dimensions, 
and that A is represented by the superposition Equation (1).  The kets |Ai> (i=1,2) 
define the eigenvectors of the measured observable.  We assume the existence of 
a detector B designed to distinguish between the |Ai>. 
 For example, |A1> and |A2> could represent the paths of an electron 
passing through the slits of a double-slit apparatus, and B could be an electron 
detector for the "which-slit" observable whose eigenvectors are the |Ai>.  To 
make the which-slit measurement, B must distinguish between the states 
represented by |A1> and |A2>, so B must contain a specific quantum detection 
component having quantum states represented by kets |Bi> such that, if A is in 
the state represented by |Ai>, then detection yields the state represented by |Bi> 
(i = 1, 2)..  Assuming a minimally-disturbing measurement that leaves eigenstates 
unaltered, and letting |Bready> represent the state of B's quantum component prior 
to measurement, the process  
 
 |Ai>|Bready>  ==>  |Ai>|Bi> (i=1,2)      (3) 
 
describes a measurement of the which-slit observable when A's state is 
represented by an eigenstate.  When A is in the state represented by |YA> and B 
measures the which-slit observable, simple linearity of the time evolution implies  
 
 (|A1> + |A2>) |Bready> ==> |A1>|B1> + |A2>|B2>  = |YAB >  (4) 
         √2             √2 
 
Thus von Neumann's straightforward argument shows the measurement creates 
the entangled superposition |YAB >  of Equation (2), where "B" now refers to the 
quantum detection component of the detector.   
 But von Neumann's measurement postulate1 implies that, when the which-
slit observable is measured, A collapses into one of its eigenstates while B 
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collapses into the corresponding detector state.3,32  It is by no means clear that  
|YAB > (Equation (4)) represents such a measurement outcome.  As Myrvdal3 puts 
it, "The problem of what to make of this is called the 'measurement problem'."  
This paper will show that |YAB > does in fact represent the collapsed state and the 
single definite outcome expected from von Neumann's measurement postulate.   
 We have used the same notation, |YAB >, for the arbitrary entangled state 
represented by Equation (2) (where A and B are arbitrary quantum systems) and 
for the specific case of the entangled state that develops when a detector measures 
a quantum system, represented by Equation (4) (where B is now a detector).  We 
will refer to this state in the context of Equation (4) as the "measurement state" 
(MS).  We will also, however, need to refer to the arbitrary entangled state 
Equation (2), especially in Sections 4 and 5 where we analyze an experiment 
involving two microscopically entangled photons.   
 Thus the question of how to interpret entangled states looms large in the 
foundations of quantum physics.  As noted above, the interpretation of general 
entangled states such as the one represented by Equation (2) is already murky as 
compared with the interpretation of simple superposition states such as the one 
represented by Equation (1).  The problem of interpreting the MS is especially 
important, because  macroscopically distinct states now lie on each side of the 
"plus" sign on the right-hand side of Equation (4).  As already discussed, the 
superposition |YA> can be interpreted to represent a situation in which A 
incorporates properties represented by both |A1> and |A2>.  And a product state 
such as |A1>|B1> represents a state of the composite system AB in which A is 
represented by |A1> and B is represented by |B1>.  Thus |YAB > appears to 
describe a detector that simultaneously "points" to two macroscopically different 
outcomes |B1> and |B2>!  The detector seems to display no definite outcome, a 
conundrum known as the "problem of outcomes".3,22,33-47 

 Such a superposition state would be paradoxical.  Schrodinger, who 
imagined a cat attached to the detector in such a way that |B1> included a live cat 
and |B2> included a dead cat, described |YAB> as representing a “living and dead 
cat ...smeared out in equal parts.”33  As one quantum foundations expert writes,  
 

The crucial difficulty is now that it is not at all obvious how one is to regard 
the dynamical evolution described by [Equation (4)] as representing 
measurement in the usual sense.  This is so because [Equation (4)] is ...not 
sufficient to directly conclude that the measurement has actually been 
completed.22   

 
In fact, while measurement should lead to a specific eigenstate of the measured 
observable, Equation (4) appears to entail that "the system has been sucked into a 
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vortex of entanglement and no longer has its own quantum state.  On top of that, 
the entangled state fails to indicate any particular measurement outcome."48  
 As noted, it seems paradoxical that quantum measurements lead to a state 
represented by the MS.  Measurement should lead to a situation in which A is 
represented by one of its eigenvectors |Ai> and B is represented by the 
corresponding |Bi>.  Since quantum uncertainty typically implies unpredictable 
measurement outcomes, it is reasonable to conclude that measurement should lead 
to a state represented by an ignorance-interpretable mixture22 of the products 
|A1>|B1> and |A2>|B2>.  Assuming the initial state is represented by |YA>, such 
a post-measurement mixture would be represented by the density operator  
 
 rmixed    = (|A1>|B1> <B1|<A1| + |A2>|B2> <B2|<A2|) / 2  (5) 
 
This mixture can be interpreted as "the system is represented by a single 
component |Ai>|Bi>, but we cannot know whether i=1 or 2 until we look at the 
outcome." 
 Beginning with von Neumann's analysis, at least eight "measurement 
problem insolubility proofs"1,49-55 have assumed that, in order to obtain definite 
outcomes, the measurement process should transform the composite system AB 
into a mixture analogous to Equation (5).  The initial state of A is assumed to be 
pure and to be represented by a superposition such as Equation (1).  The analysis 
then investigates whether a suitable composite-system post-measurement mixture 
can be reached via a unitary process.  To achieve this, the detector must be 
represented by a mixture initially, because unitary processes cannot turn a pure 
state into a mixture.  Since B is macroscopic, such an initial mixture seems 
appropriate.  Thus von Neuman and seven succeeding analysts asked:  Is there an 
initial mixed-state density operator rready  of B and a unitary process U acting on 
AB such that U transforms the initial composite density operator 
|YA><YA|⊗rready  into the desired composite mixture?  The eight insolubility 
proofs showed, with varying assumptions, the answer is "no," presumably 
demonstrating the measurement problem to be insoluble.   
 Section 3 will show, however, that the premise of these insolubility proofs, 
namely that Equation (5) represents the appropriate post-measurement state, was 
doomed from the start, precisely because it is not entangled and thus cannot have 
the properties required if quantum theory is to describe the measurement process.  
To put this another way, there are reasons why the post-measurement state must 
be an entangled state, which implies that it cannot be a mixture such as Equation 
(5).  Sections 4-7 then show that the MS does have the desired properties.     
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3 | A CRUCIAL CLUE FROM EINSTEIN  
 
 At the 1927 Solvay Conference, five years prior to von Neumann's 
analysis1 of quantum measurement, Einstein asked the audience to consider an 
experiment in which electrons pass through a tiny hole in an opaque screen and 
then impact a large hemispherical detection screen centered at the hole (Fig. 1).   

      
Figure 1.  Einstein's thought experiment.  Each electron diffracts widely, reaching the entire 
screen simultaneously, yet only one point shows an impact.  How do the other points 
instantaneously remain dark?  Does this violate Special Relativity? 
 
 According to the Schrodinger equation, each electron's state diffracts 
widely, spreading and reaching the entire screen simultaneously.  Yet each 
electron registers at only a single point.  How, Einstein asked, do the other points 
instantaneously remain "dark," i.e. not show an impact?  As Einstein put it in his 
notes, this "entirely peculiar mechanism of action-at-a-distance, which prevents 
the wave continuously distributed in space from producing an effect in two places 
on the screen," presents a fundamental problem.  It appears to imply instant 
signaling, violating special relativity.56-58  
 Einstein's argument shows that, under a realistic and objective (independent 
of humans) interpretation of quantum physics, the Schrodinger equation is at odds 
with experimental facts unless the electron's state collapses instantaneously and 
nonlocally upon measurement.26,29  Thus, realistic quantum physics implies 
instantaneously-established nonlocal correlations are essential to the 
measurement process.  Indeed, Fuwa et al.59 experimentally verified the nonlocal 
character of the measurement transition.  Since nonlocality is essential to 
measurement, the presumed post-measurement mixed state was doomed from the 
start precisely because it does not exhibit the required nonlocality.  But entangled 
superpositions do exhibit the required nonlocality.27,28  So from our modern point 
of view, Einstein's argument shows that entanglement, far from being an 
unwelcome paradox, is required in measurements.  This is a crucial clue and good 
news for quantum foundations, because von Neumann's predicted MS is just such 
an entangled superposition!   
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 Gottfried and Yan's argument13,14 should be mentioned.  Their resolution of 
the measurement problem "diagonalizes the density operator."  They form the 
exact density operator r = |YAB> <YAB|, which can be written   
 
 |YAB> <YAB| = rdiagonal + roff-diagonal      (6) 
 
where rdiagonal = rmixed (Equation (5)) and 
 
 roff-diagonal = (|A1>|B1> <B2|<A2| + |A2>|B2> <B1|<A1|) / 2.   (7) 
 
Recall that the exact expectation value of any observable F is  
 
 <F> = Tr (r F) = Σj Σk  rjk Fkj      (8) 

 
where rjk and Fkj are matrix elements of r and F.  Gottfried and Yan argue that 
off-diagonal terms in Equation (8) can be ignored because they involve matrix 
elements such as <B1|<A1|F|A2>|B2> that are non-zero only for a "fantastic" 
observable F because |B1> and |B2> represent the states of widely separated 
detectors.  In Gottfried and Yan's opinion, matrix elements for such fantastic 
observables can, for all practical purposes, be neglected so that we can replace 
r  by rmixed.  But we have seen that this premise is doomed because rmixed lacks the 
required nonlocal properties, so Gottfried and Yan's proposal fails.   
 
4 | EXPERIMENTAL STUDIES OF STATES HAVING 
ENTANGLED SPATIAL PATHS   
 
 Sections 2 and 3 presented the measurement problem and some previous 
research on the problem.  Sections 4-7 will present a suggested resolution.  This 
Section reviews interferometry experiments and theory that investigate the 
microscopic entangled superposition |YAB> Equation (2) over its full 0-to-π range 
of phases, for a system of two momentum-entangled (i.e. path-entangled) 
photons.  The results provide a key insight into solving the measurement puzzle.   
 As preparation, we first study the simple superposition Equation (1).  
Consider the interferometer experiment of Figure 2.  On each experimental trial, 
a photon enters a 50-50 beam splitter BS1 which transforms the photon's state into 
the superposition Equation (1) where |A1> and |A2> respectively represent paths 
1 and 2.  A series of single-photon trials probes this state using mirrors M that 
bring the two branches together, phase shifters f1  and f2  that lengthen the two 
paths by phases f1  and f2 , and a second beam splitter BS2 that mixes the branches 
together.  Measurement occurs at photon detectors B1 and B2.   
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Figure 2.  Mach-Zehnder interferometer experiment.  A photon traverses a beam splitter, 
travels on two phase-shifted paths to another beam splitter, and is detected. 
 
 Figure 3 shows the results.  Varying f1  through 180 degrees causes the 
photon's state to shift from 100% probability of detection at B1, through 
diminishing probabilities at B1 and increasing probabilities at B2, finally reaching 
100% probability of detection at B2.  The photon exhibits similar interference 
upon varying f2 .  Note that A's state depends only on the phase difference f2  - f1. 
 

    
Figure 3.  Single photon interference, pointing to Dirac's conclusion that "each photon 
...interferes only with itself," i.e. each photon follows both paths. 
 
 Since single-trial results vary regardless of which phase shifter varies, it is 
hard to avoid the conclusion that each photon follows both paths.  In fact, let us 
assume the contrary, namely that each photon follows only one path.  Suppose the 
phase shifters are set to ensure 100% probability of detection at B1.  Under our 
assumption, this setting guarantees that every photon following path 1, and every 
photon following path 2, is detected at B1.  Suppose path 2 is now blocked without 
changing the phase settings, so that (still under our one-path assumption) every 
detected photon must now follow path 1 and be detected at B1.  But the 
experiment shows that, to the contrary, 50% of the detected photons now go to 
B2.  Conclusion: each photon follows both paths.  For a full discussion, see.26,29  
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As Paul Dirac put it, "The new theory, which connects the wave function with 
probabilities for one photon, gets over the difficulty by making each photon go 
partly into each of the two components.  Each photon then interferes only with 
itself."32  This illustrates why the "plus" sign in a superposition such as Equation 
(1) is interpreted by the word "and."    
 We turn now to the entangled state Equation (2).  Many Bell inequality tests 
beginning with Clauser's60 and Aspect's61 used polarization-entangled photon 
pairs to study the full phase dependence of this state.  More useful for this paper 
are interferometer experiments by Rarity and Tapster62 and Ou, Zou, Wang and 
Mandel63-65 conducted nearly simultaneously in 1990.  Both of these "RTO 
experiments" (for Rarity, Tapster, and Ou et al.) used momentum-entangled 
photon pairs to conduct Bell inequality tests of the entangled superposition 
Equation (2).   
 Figure 4 shows the layout.  The source creates entangled pairs of photons 
A (moving leftward) and B (moving rightward) by laser down-conversion in a 
non-linear crystal.  The down-converted photons are prepared in the entirely 
microscopic state represented by |YAB> (Equation (2)) by selecting four single-
photon beams, each a plane wave having a distinct momentum (i.e. wave vector), 
from the output of the crystal.  Figure 4 resembles two back-to-back Mach-
Zehnder interferometer experiments (Figure 2) with BS1 located effectively 
inside the source.   

 

 
Figure 4.  The RTO experiments.  In each trial, each of two entangled photons travels two 
phase-shifted paths (one solid, the other dashed) to beam splitters and coincidence detectors.  
Think of one biphoton spreading from the source along both the solid and the dashed paths.   

 
 For simplicity and clarity, Figure 4 differs from the layout shown in RTO's 
reports.  In Figure 4, paired photons are directed oppositely.  This arrangement 
would result if the entanglement were prepared by the cascade decay of an atom 
as in Reference.66  In RTO's experiments, however, down-converted photon pairs 



Art	Hobson	 Entanglement	and	the	measurement	problem	 	13	

are emitted into two angular cones, resulting in photons that are not oppositely 
directed.  Figure 4's simpler geometry is pedagogically useful and has no effect 
on our arguments.     
 Although Figure 4 represents each photon as a wave packet spreading along 
two paths directed leftward or rightward, the composite system AB should be 
regarded as a single object, a "biphoton."  In each trial, a biphoton spreads outward 
from the source along two superposed branches.  One branch, represented by the 
first term |A1>|B1> in Equation (2), spreads along the solid path and the other 
branch, |A2>|B2>, spreads along the dashed path.  As the biphoton AB moves 
outward along the solid path, A encounters a mirror M, then a beam splitter BS 
where it transmits and reflects to detectors A1 and A2; photon B encounters a 
mirror M, a phase shifter fB, and a beam splitter BS where it transmits/reflects to 
detectors B1/B2.  The other half of the entanglement, namely the dashed path, has 
a similar description.  The experiments record outcomes at four photon detectors 
equipped with coincidence timers.   
 Horne, Shimony and Zeilinger66,67 predict RTO's results theoretically and 
we follow their optical-path analysis here.  They begin by calculating the two-
point nonlocal quantum field amplitudes Y(Ai, Bj) at the four coincidence 
detectors (Ai, Bj), and from these results they predict single-photon results.  For 
example, Y(A1, B2) has two contributions, one from phase shifts in the beam 
following the solid path (the first term in |YAB>) and the other from the dashed 
path (the second term).  From Equation (2), assuming distinct plane waves 
exp(ik•x) for each single-photon beam,  
 
 Y(A1,B2) = {exp(ifw)exp[i(fx+fB)] + exp[i(fy +fA)] exp(ifz)}/2√2 (9) 
 
where fw, fx, fy, fz are fixed phase-shifts resulting from mirrors and beam 
splitters, and the additional factor of 1/2 comes from the superpositions created at 
the two beam splitters.  Using the Born rule, Equation (9) implies the coincidence 
probability  
 
 P(A1, B2) = |Y(A1,B2)|2 = [1+cos(fB-fA + fv)]/4            (10) 
 
where fv is a fixed phase arising from fw, fx, fy, fz.  Similarly,  
 
 P(A1, B1) = [1+cos(fB-fA + fu)]/4,              (11) 
 
where fu is another fixed phase.  Remarkably, the sinusoidal terms predict 
coherent (phase-dependent) nonlocal interference between A and B, regardless of 
their separation.  There are similar expressions for P(A2, B1) and P(A2, B2).   
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 Single-photon predictions then follow.  For example, from simple 
probability theory 
 
 P(A1) = P(A1, B1) + P(A1, B2)  
  = [1+cos(fB-fA + fu)]/4 + [1+cos(fB-fA + fv)]/4.           (12) 
 
Horne et al. then show the two fixed phase factors fu and fv differ by π:   
 
 fv = fu + π (mod 2π).                 (13)  
 
Thus the sinusoidal terms in Equation (12) interfere destructively, and P(A1) = 
1/2 regardless of phase.  Equations (12) and (13) show this remarkable result to 
arise from destructive interference of two phase-dependent nonlocal contributions 
from the distant other photon B!  The result at all four single-photon detectors is 
the same:  
 
 P(A1) = P(A2) = P(B1) = P(B2) = 1/2.             (14) 
 
Unlike the non-entangled single-photon superposition |YA>, where the 
superposed photon is coherent (phase-dependent) as shown by Figure 3, each 
entangled photon is "decohered"22 and cannot interfere with itself.  Instead the 
two photons interfere with each other despite being separated by an arbitrary 
distance.  More accurately, each biphoton interferes with itself.  Thus no single-
photon interference fringes are associated with the state represented by |YAB>.   
 Special relativity entails that this must be the case:  Since single-photon 
phase dependence could be used to establish an instantaneous communication 
channel between A and B, entanglement must deprive individual photons of their 
phase.  The result is nonlocal coherence of the biphoton, and decoherence of 
individual photons.  Decoherence is required by special relativity.    
 Equation (14) can also be derived by tracing the pure state density operator 
|YAB><YAB| over one subsystem to obtain the density operator for the other 
subsystem.22  This yields two density operators that appear to be mixtures but are 
not really "ignorance mixtures" as the word "mixture" is usually understood 
because the biphoton is in fact not in a mixed state but rather in a pure state 
represented by |YAB>.  The optical path analysis, above, derives Equation (14) 
while avoiding these controversial22 subtleties.   
 A few definitions can put these predictions into more comprehensible form:  
If one photon is detected in state 1 and the other in state 2, the two outcomes are 
said to be "different."  Otherwise, the outcomes are the "same."  Then from 
Equations (10) and (11), and similar expressions for P(A2, B1) and P(A2, B2),  
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 P(same) = P(A1,B1) + P(A2,B2) = 1/2[1 + cos(fB - fA)]           (15) 
 
 P(different) = P(A1,B2) + P(A2,B1) = 1/2[1 - cos(fB - fA)].          (16) 
 
Their difference, graphed in Figure 5, is called the "degree of correlation": 
 
 C = P(same) - P(different) = cos(fB-fA).             (17) 
 
Section 5 explores its physical significance.  

   
Figure 5.  Results of the RTO experiment, demonstrating nonlocality (violation of Bell's 
inequality).  The two photons interfere with each other across an arbitrary distance, i.e. each 
biphoton interferes with itself. 
 
5 | INTERPRETATION OF ENTANGLED MICROSCOPIC STATES 
 
 The original purpose of RTO's experiments was to demonstrate violations 
of Bell's inequality by comparing theoretical predictions, Figure 5, with 
experimental measurements.  The experimental results agreed with Figure 5 and 
violated Bell's inequality by 10 standard deviations, confirming the nonlocal 
nature of |YAB>.   
 What does Figure 5 mean conceptually?  At zero phase difference, where 
the two phase shifters are set to equal phases, P(same) = 1 and C = P(same) - 
P(different) =  +1.  Thus both stations always agree, despite the presence of beam 
splitters that randomize each photon prior to detection (see Figure 4).  It is as 
though coins were flipped at each station and they always came out either both 
heads or both tails!  Zero is the "measurement" phase angle where B's state is 
perfectly (and instantaneously23-25) correlated with A's state.  The nonlocality is 
intuitively obvious:  Each photon acts like a detector of the state of the other 
photon regardless of separation!  Simply based on this conclusion, we can make 
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an important observation about the entangled MS Equation (4):  Nonlocality is a 
central feature of quantum measurements.      
 For small non-zero phase differences, there is a small probability 
P(different) that results at the two stations will differ, i.e. observation of B no 
longer provides reliable information about A.  With increasing phase difference, 
this unreliability increases until, at π/2, the two detector pairs are entirely 
uncorrelated, and C=0.  As the phase further increases from π/2 to π, P(different) 
increases while P(same) decreases, making C more and more negative.  Finally, 
C = -1 at phase difference π, implying perfect anti-correlation.  Thus C is aptly 
called the "degree of correlation."   
 This description gives us a clear sense of the physical meaning of the fully 
entangled state Equation (2), indicating precisely which entities are superposed.  
The biphoton's phase controls the degree to which the fixed phase-independent 
50-50 states of its two spatially separated subsystems are statistically correlated.  
Compare this with the phase of the simple superposition |YA> (Equation (1)), 
which controls the degree to which the single system A is represented by one or 
the other state.  The entities before and after the plus signs in Equations (1) and 
(2) are conceptually quite different:  Equation (1) sums two states while Equation 
(2) sums two correlations between states.   
 This distinction is crucial.  A state is a situation (or configuration or path) 
of a single quantum object, but a correlation is a statistical relationship between 
two (or more) quantum objects.  A superposition is the simultaneous existence of 
two or more states of a single quantum object.  An entanglement is the 
simultaneous existence of two or more relationships (specifically, correlations) 
between the states of two or more quantum objects.  Creating an entanglement is 
quite a different matter from creating a superposition.   
 To elaborate, Table 1 compares the superposition represented by |YA> 
(columns 1-2) with the entanglement represented by |YAB> (columns 3-5) at five 
different phases.  Column 2 demonstrates interference between the states 
represented by |A1> and |A2>, implying the photon is in a superposition of 
following both paths and that the state of A varies with phase.  The phase 
dependence in column 2 shows that A interferes with itself.   
 In contrast, column 4 shows that, when the subsystems are represented by 
the pure state |YAB>, neither photon has a phase.  Thus neither photon can 
interfere with itself, so neither photon can be represented by a superposition state.  
They are decohered.  Both photons are represented by fixed, phase-independent, 
50-50 states at all phase angles, just as though they were in ignorance mixtures 
(which they are not).  But phase dependence has not vanished, it has only been 
transferred to the composite system.  As column 5 reveals, the degree of 
correlation between the fixed states of A and B now varies with phase.  
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Simple superposition of 1 photon.           Entangled superposition of 2 photons  
f2-f1 State of photon   fB-fA State of each photon Correlation between photons 
0 100% 1, 0% 2      0 50-50 1 or 2 100% corr, 0% anticorr  
π/4 71% 1, 29% 2      π/4 50-50 1 or 2 71% corr, 29% anticorr  
π/2 50% 1, 50%2      π/2 50-50 1 or 2 50% corr, 50% anticorr  
3π/4 29% 1, 71% 2      3π/4 50-50 1 or 2 29% corr, 71% anticorr  
π 0% 1, 100% 2      π 50-50 1 or 2 0% corr, 100% anticorr  
Table 1.  Comparison between a simple superposition (Fig, 2) and an entangled superposition 
(Fig. 4).  In Fig. 2, single-photon states vary with phase.  In Fig. 4, only the correlation 
between single-photon states varies with phase while single-photon states have no phase.  
Thus each biphoton is coherent but its subsystems are incoherent.  That is, entanglement 
decoheres each photon while transferring coherence to the biphoton.   
 
 A photon represented by |YA> is in a coherent (phase-dependent) 
superposition of being in two states (i.e. of following two paths).  |YAB>, on the 
other hand, represents the coherent superposition of two correlations between 
fixed states.  Instead of two coherent states existing simultaneously, two coherent 
relationship between states exist simultaneously.  Neither subsystem is "smeared" 
(as Schrodinger apparently believed); instead, only the relationship between 
subsystems is smeared.  Briefly, |YA> is a superposition of states and |YAB> is a 
superposition of correlations.   
 Thus |YAB> is qualitatively different from |YA>.  |YA> exhibits properties 
of |A1> AND |A2>, where "AND" indicates the superposition.  If you amplify A 
to macroscopic dimensions, you will get a macroscopic superposition.  |YAB> 
exhibits properties of correlations between |A1> and |B1> AND correlations 
between |A2> and |B2>.  If you amplify A and B to macroscopic dimensions, you 
will not get a macroscopic superposition, you will simply get correlations between 
macroscopic objects.  The entanglement process transfers the coherence (phase 
dependence) of each photon to correlations between the two photons, leaving 
individual photons in mixtures that are incoherent but that are not ignorance 
mixtures.  |YAB> is a "superposition of correlations between properties," in 
contrast to |YA> which is a "superposition of properties." 
 There is a better way to think about all this:  Regard AB as a single object, 
a biphoton.  Then Equation (2) describes a superposition of this object.  In the 
RTO experiment (Figure 4), the two superposed states are represented by the solid 
line and the dashed line.  In this context, it makes no sense to speak of the 
superposition of a single subsystem, but it does make sense to speak of the 
superposition of the biphoton.  It is the biphoton that goes through the phases 
graphed in Figure 5 and indicated in Table 1 column 5.  Both branches (solid and 
dashed) of the biphoton exist simultaneously.    
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6 | INTERPRETATION OF THE MEASUREMENT STATE  
 
 Section 4 analyzed the microscopic state represented by Equation (2) 
mathematically, and Section 5 interpreted this state physically.  We now apply 
these insights to the entangled MS of a quantum system A and its detector B as 
derived in Equation (4).   
 In order for B to be a reliable detector, its states must be perfectly correlated 
with A's states--it must exhibit |Bi> when and only when A is represented by |Ai> 
(i = 1, 2).  Thus Figure 5 implies the MS must be established at zero non-local 
phase:  fB-fA=0.  At this phase, two nonlocal perfect statistical correlations 
between a phase-independent 50-50 state of A and the corresponding phase-
independent 50-50 state of B exist simultaneously.  As shown in Section 5, 
contrary to Schrodinger's description,33 neither subsystem state can be "smeared 
out" (superposed) because neither subsystem has a phase.  Instead, correlations 
between fixed states of A and B are smeared as shown in Table 1, while the 
detector indicates a single definite outcome.   
 Applying Table 1 to Schrodinger's example,33 the cat is predicted to be alive 
in 50% of trials, dead in the other 50%, and never in both states simultaneously.  
Phase alterations would not smear the cat, they would smear only the correlations 
between the cat and the nucleus leading not to a smeared cat but only to imperfect 
detection.  There is no paradoxical macroscopic superposition.   
 But if neither A nor B is superposed, what is superposed?  What does the 
MS's "plus" sign really mean?  The answer, from Table 1 at zero phase:  |A1> is 
perfectly correlated with |B1> AND |A2> is perfectly correlated with |B2>, where 
"AND" represents the superposition.  This simply says both correlations exist 
simultaneously:  |A1> if and only if |B1> AND |A2> if and only if |B2>.  Again, 
there is no paradoxical macroscopic superposition.  It's only the correlations 
(relationships) between states, not the states themselves, that are superposed.   
 Entanglement transforms a superposition of 2 states into a superposition of 
two correlations between states.  This makes quantum measurements possible 
because subsystem states can then be amplified to macroscopic dimensions 
without requiring the creation of a macroscopic superposition.  Neither subsystem 
is in a macroscopic superposition. 
 Since neither subsystem is superposed, only a single outcome occurs--a 
conclusion that also follows from Equation (14).  This single definite outcome 
occurs instantly upon entanglement, as facilitated by the nonlocal properties of 
the entangled MS.23-25  Thus we have derived the collapse as an inevitable 
consequence of entanglement, and have no need to postulate such a process.  The 
MS is the collapsed state.  Our conclusion follows merely from standard 
principles of quantum theory with no other assumptions.   
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 So von Neumann's enigmatic measurement state, Equation (4), is just what 
we want.  This entangled pure state provides the desired correlations, a single 
outcome, and the nonlocality required by Einstein's argument.  Note that the 
collapse is established at the microscopic level, prior to macroscopic 
amplification.  The next Section provides an example of the sequence of events.   
 
7 | EXAMPLE 
 
 The following simple example typifies quantum measurements and 
illustrates the preceding insights in terms of a specific measurement process.   
 Consider the set-up in Figure 6.  A single photon traverses a beam splitter, 
creating the superposition represented by Equation (1) whose branches 
correspond to separate paths toward widely separated photon detectors.  
Analogously to Figure 1, we assume the two detectors are equidistant from the 
beam splitter.  Each detector contains a photo-sensitive plate that, upon absorbing 
a photon, releases an electron.   
 Von Neumann's argument implies that, as the two branches of the 
superposition approach the detectors, at some point the branches overlap the 
detectors sufficiently that the entanglement process represented by Equation (4) 
occurs, where |Bready> denotes the microscopic state of the detectors prior to 
entanglement while |B1> and |B2> denote their states following entanglement 
but prior to amplification and macroscopic recording.   

     
Figure 6.  A simple measurement that mirrors Einstein's example (Fig. 1): A photon passes 
through a beam splitter and is measured by photon detectors.  Due to entanglement between 
the two superposed photon branches and the detectors, one electron in one detector absorbs 
the photon's energy while the other detector simultaneously remains "dark." 
 
 At the instant of interaction, the state jumps from a superposition of two 
paths of A (Equation (1)) to a superposition of two correlations between A and B 
(right-hand side of the process in Equation (4)).  This entangled state is not 
paradoxical.  The right-hand side of Equation (4) entails precisely the proper 
correlations:  |A1> if and only if |B1>, AND |A2> if and only if |B2>.  The 
excitation is transferred to only one detector while the other detector remains 



Art	Hobson	 Entanglement	and	the	measurement	problem	 	20	

unexcited.  More correctly, either the solid branch or the dashed branch of the 
superposed biphoton (Figure 4) is randomly selected.  In fact, Fuwa et al.59 show 
experimentally and theoretically that the set-up shown in Figure 6 leads to 
entanglement and that the predicted nonlocal collapse occurs; the nonlocality of 
the collapse is verified quantitatively by the experimental violation of an EPR-
steering inequality.   
 Thus the collapse, a non-linear and irreversible process, occurs at the 
microscopic level.  Once one photoelectron is released, the process is 
thermodynamically irreversible because the electron is released into a vast 
number--a continuum--of free electron states and cannot feasibly be reversed.  
This electron triggers an avalanche of other electrons leading to a macroscopic 
mark at one detector.   
 Other measurement set-ups follow the same general principles.  For 
example, in the measurement described by Einstein (Section 3), each small region 
of the detection screen acts as a single detector, and the diffracted electron's 
quantum state entangles with all these many regions.  Thus the argument above, 
involving only two detectors, must be extended to N detectors.    
 
8 | SUMMARY AND CONCLUSION 
 
 Using only the standard principles of quantum physics, but minus the 
collapse postulate, we have shown that quantum state collapse occurs as a 
consequence of the entanglement that occurs upon measurement as described in 
1932 by von Neumann (Equation (4)).  The entangled "measurement state" of a 
quantum system and its detector is the collapsed state:  It incorporates the required 
perfect correlations between the system and its detector, it predicts precisely one 
definite outcome, and it incorporates the nonlocal properties--the instantaneous 
collapse across all branches of the superposition--that Einstein showed to be 
required in quantum measurements.   
 The measurement state Equation (4) does not describe a detector in a 
paradoxical superposition of displaying multiple outcomes, as had been supposed 
by Schrodinger and others.  Instead, quantum theory concludes that this state 
entails just what we expect following a measurement:  The states represented by 
|A1> and |B1> are perfectly correlated, AND the states represented by |A2> and 
|B2> are perfectly correlated, where "AND" represents the plus sign in the 
mathematical representation of the state.  Entanglement entails merely the 
simultaneous occurrence of two correlations between subsystems, not the 
simultaneous occurrence of two individual states of either subsystem.  There can 
be no paradoxical superposition of different detector states or of different system 
states, because the entanglement has shorn both the detector and the quantum 
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system of their quantum phases.  The phase has been transferred from the 
individual subsystems to the degree of correlation between subsystems.   
 To put all of this more directly, the single quantum object AB (the biphoton) 
collapses from a superposition to one of its members.    
 The measurement state's entanglement and its nonlocal properties, far from 
being paradoxical, are required in order to guarantee that the collapse occurs 
simultaneously across all branches of the superposition.  Eight previous 
insolubility proofs failed because they did not incorporate this required 
nonlocality.  Nonlocality is a central feature of quantum measurement.    
 There is no need for a special collapse postulate because the entangled state 
is the collapsed state.  Collapse occurs instantly upon entanglement.   
 This analysis should not be regarded as one more interpretation of quantum 
physics.  It is instead a correction of the previous misunderstanding of von 
Neumann's entangled measurement state.  It is not surprising that this 
misunderstanding has persisted for nearly 90 years.  After all, entanglement and 
nonlocality are deeply involved in the measurement problem's proper resolution 
but they  only began to be understood in 1964,69 leading to a long period of gradual 
acceptance with confirmation only in 2015.23-25  The delay in understanding 
measurement stemmed from this delay in understanding nonlocality.    
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