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In a recent Letter Dalibard and coworkers have presented an efficient method of computing the development of an open quan-
tum system based on stochastic evolution of the state vector, in which quantum jumps are represented explicitly. Independently
of this pragmatic approach, physicists interested in the “‘quantum measurement problem” have been led to consider continuous
stochastic diffusion equations for the state vector associated to any density operator evolution. We underline the remarkable
convergence of these two trends in physics, and argue that these recent developments may lead to new results and insights into

quantum phenomena.

In Einstein’s paper on the A- and B-coefficients
[1], he assumed that an individual quantum system
like an atom was capable of a transition or jump from
one state to another with the absorption or emission
of radiant energy. Although Einstein’s paper stimu-
lated the development of modern quantum mechan-
ics, such jumps have no formal place in that theory,
for which the state vector represents the properties
of an ensemble of systems and not an individual
system.

Despite the success of the modern theory, many
physicists, particularly experimenters, have insisted
on treating quantum jumps of individual systems as
if they were real, and the state vector as if it repre-
sented the behaviour of an individual system, as ex-
emplified by a single run of a laboratory experiment
(quantum optics provides many examples, see for
instance ref. [2]). And the experimenters’ picture
has given them valuable physical insights [3], which
have sometimes escaped the theoreticians with their

relatively elaborate mathematical tools based on
density operator evolution. For example Itano and
coworkers based their analysis of their “Zeno para-
dox” experiment on quantum jumps [4], although
the same experiment can also be interpreted without
jumps by shifting the quantum-classical boundary
[5].

Now Dalibard, Castin and Molmer [6], and also
Carmichael [7] and Teich and Mahler [8] have
come up with an efficient method of computing the
development of an open system based on stochastic
evolution of the state vector, in which gquantum
jumps are represented explicitly. In addition to the
advantages listed in the above references, this
method, contrary to some others, as explained in ref.
[9], has no problem with the uncertainty relations.

Independently of these developments, Bohm, Bub,
Pearle [10], Gisin [11], Ghirardi, Rimini and We-
ber, Diési, and Bell [12] have proposed alternative
quantum theories in which the state vector repre-
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sents an individual system and follows a stochastic
dynamics.

In particular Didsi, Gisin and Pearle have ob-
tained continuous stochastic diffusion equations for
the state vector from any density operator evolution
equation. Percival [13] has provided a natural sym-
metry condition under which this state vector equa-
tion is unique, and has suggested that the equations
should be used as a practical tool. Given Lindblad’s
[14] expression for the equation of motion for the
density operator

the differential form of the stochastic equation of
motion for the state vector |y is

d|«//>=(—iH|v/>— Y LZLn|w>>dt
+3 (A&, +2<w L] |y dt)L, v , (2)

where d&, represents the 1t6 form of the complex
normalized Wiener process that satisfies

Re(d<,) Re(dg,) =Im(dS,) Im(dE, ) =0, df

Re(d¢,) Im(dg,) =0. (3)
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The theory is given in ref. {11,15]. Equation (2) can
be used, like those of Dalibard et al., to provide an
efficient Monte Carlo solution of problems that are
normally formulated in terms of the time evolution
of the density operator, and applications are already
In progress.

This method has the following advantages over the
methods of Dalibard and coworkers. Equation (2)
i1s derived explicitly and uniquely from any Mar-
kovian density operator evolution equation and its
solutions are continuous in time. Since it uses the
well developed 1t6 stochastic calculus, all the exist-
ing tools [ 16] for numerical integrations of such sto-
chastic equations can be used. The uniqueness of the
diffusion equation provides a one-to-one relation be-
tween a distribution of pure states at an initial time,
and the distribution at later times.

Figure | illustrates an application of our mcthod
to the non-linear absorber:

p=0.1[(a"—a).pl+2a’pa™—{a"a’ pt. (4)

This example has also been treated with the positive
P-representation (an extension of the Wigner func-
tion), but it suffers from runaway problems [17].
The full line in fig. 1 is the direct solution of the den-
sity operator equation. The result based on eq. (2).

100 150 200

Fig. 1. Density operator (full line} and stochastic diffusion (dotted line) methods compared for the nonlinear absorber, eq. (4). The
used time increment is dz=0.02 and 100 samples are used for approximating the average.
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Fig. 2. A sample trajectory of the stochastic process associated to eq. (1) for a spin 3/2 (i.e. a four-level system) with a weak pump
(h=1(S,—S_)), a weak spontaneous decay (L, =0.25_) and a measurement like interaction (L,=5S5,). Note that the solutions of eq.
(1) have many fine spikes that are not seen on the figure because of the time discretization.

the dotted line, agrees for all times, without large
fluctuations, contrary to the positive P-representa-
tion. Other applications are investigated in ref. [18].
In particular fast transitions between quasi-stable
states appear naturally, as well as specific interac-
tions with the environment leading to measurement
like reductions of the state vector, see fig. 2.

There is thus a remarkable convergence of two
trends in physics that have previously been quite dis-
tinct: The quantum measurement ““problem™ as con-
sidered by physicists worried by the foundations of
quantum physics, and the quantum measurement
process as treated pragmatically by experimenters
looking for intuitive pictures and rules for
computation.

It can now be seen that the stochastic reduction
picture of quantum mechanics provides both insight
and practical tools for the solution of physical
problems.
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