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ON THE QUANTUM THEORY 
OF RADIATION 

A. EINSTEIN 

The formal similarity between the chromatic distribution curve for 
thermal radiation and the Maxwell velocity-distribution law is too 
striking to have remained hidden for long. In fact, it was this similarity 
which led W. Wien, some time ago, to an extension of the radiation 
formula in his important theoretical paper, in which he derived his 
displacement law 

Q = v*j{vlT). (1) 

As is well known, he discovered the formula 

Q, = a.v3 exp (— hvjkT), (2) 

which is still accepted as correct in the limit of large values of v/T 
(Wien's radiation formula). Today we know that no approach which is 
founded on classical mechanics and electrodynamics can yield a useful 
radiation formula. Rather, classical theory must of necessity lead to 
Rayleigh's formula 

koc 
e^—vKT. (3) 

Next, Planck in his fundamental investigation based his radiation 
formula 

e exp (hv/kT) - 1 K ' 

on the assumption of discrete portions of energy, from which quantum 
theory developed rapidly. It was then only natural that Wien's argu
ment, which had led to eq. (2), should have become forgotten. 

Editor's note. This paper was published as Phys. Zs. 18 (1917) 121. It was first 
printed in Mitteilungen der Physikalischen Gesellschaft Zurich, No. 18, 1916. 

63 



64 A. EINSTEIN 1 

Not long ago I discovered a derivation of Planck's formula which 
was closely related to Wien's original argument * and which was based 
on the fundamental assumption of quantum theory. This derivation 
displays the relationship between Maxwell's curve and the chromatic 
distribution curve and deserves attention not only because of its 
simplicity, but especially because it seems to throw some light on the 
mechanism of emission and absorption of radiation by matter, a 
process which is still obscure to us. By postulating some hypotheses 
on the emission and absorption of radiation by molecules, which 
suggested themselves from quantum theory, I was able to show that 
molecules with a quantum-theoretical distribution of states in thermal 
equilibrium, were in dynamical equilibrium with the Planck radiation; 
in this way, Planck's formula (4) could be derived in an astonishingly 
simple and general way. It was obtained from the condition that the 
internal energy distribution of the molecules demanded by quantum 
theory, should follow purely from an emission and absorption of 
radiation. 

But if these hypotheses on the interaction between radiation and 
matter turn out to be justified, they must produce rather more than 
just the correct statistical distribution of the internal energy of the 
molecules: for there is also a momentum transfer associated with the 
emission and absorption of radiation; this produces, purely through 
the interaction between the radiation and the molecules, a certain 
velocity distribution for the latter. This must evidently be identical 
with the velocity distribution of the molecules which is entirely due 
to their collisions among themselves, i.e. it must agree with the 
Maxwell distribution. It has to be required that the mean kinetic 
energy of a molecule (per degree of freedom) should be equal to \kT 
in a Planck radiation field of temperature T. This requirement should 
hold independently of the nature of the molecules under consideration 
and independently of the frequencies emitted or absorbed by them. 
We want to demonstrate in the present paper that this far-reaching 
requirement is in fact satisfied quite generally, thus lending new 
support to our simple hypotheses concerning the elementary processes 
of emission and absorption. 

To obtain such a result however requires a certain extension of the 
hypotheses, which had been up to now solely concerned with an exchange 

* Verh. d. Deutschen physikal. Gesellschaft 18 Nr. 13/14 (1916) 318. The argu
ments used in that paper are reproduced in the present discussion. 
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of energy. The question arises: does the molecule suffer an impulse 
when it emits or absorbs energy e? As an example, let us consider the 
emission of radiation from the point of view of classical electrodynamics. 
When a body emits an energy e, it has a recoil (momentum) e/c, 
provided the whole of the radiation is emitted in the same direction. 
If, however, the emission process has spatial symmetry, such as in the 
case of spherical waves, no recoil is produced at all. This second 
possibility is also of importance in the quantum theory of radiation. 
If a molecule absorbs or emits energy e in the form of radiation during 
its transition from one quantum-theoretically possible state to another, 
such an elementary process can be thought of as being partially or 
completely directional, or else symmetrical (non-directional). I t will 
become apparent that we shall only then arrive at a theory which is 
free from contradictions, if we consider such elementary processes to 
be perfectly directional; this embodies the main result of the subsequent 
discussion. 

1. Fundamental hypothesis of quantum theory. Canonical dis
tribution of states 

In quantum theory a molecule of a given kind can only exist in a dis
crete set of states Z\, Zz, ... Zn, ..., with (internal) energies e1; s2, ... 
en, ..., apart from its orientation and translatory motion. If such 
molecules belong to a gas at temperature T, the relative frequency 
Wn of such states Zn is given by the formula 

Wn = pn exp ( - enjkT), (5) 

which corresponds to the canonical distribution of states in statistical 
mechanics. In this formula, k=RjN is the well-known Boltzmann 
constant, and pn is a number, independent of T and characteristic for 
the molecule and its nth quantum state, which can be called the 
statistical 'weight' of this state. Formula (5) can be derived from 
Boltzmann's principle, or from purely thermodynamical considerations. 
It expresses the most extreme generalisation of Maxwell's velocity-
distribution law. 

The latest fundamental developments in quantum theory are con
cerned with a theoretical derivation of the quantum-theoretically 
possible states Zn and their weights pn. For the present basic inves
tigation, a detailed determination of the quantum states is not required. 
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2. Hypotheses on the radiative exchange of energy 
Let Zn and Zm be two quantum-theoretically possible states of the gas 
molecule, whose energies are en and em, respectively, and satisfy the 
inequality em>en. Let us assume that the molecule is capable of a 
transition from state Zn into state Zm with an absorption of radiation 
energy sm—en', that, similarly, the transition from state Zm to state Zn 

is possible, with emission of the same radiative energy. Let the 
radiation absorbed or emitted by the molecule have frequency v which 
is characteristic for the index combination (m, n) that we are con
sidering. 

For the laws governing this transition, we introduce a few hypo
theses which are obtained by carrying over the known situation 
for a Planck resonator in classical theory to the as yet unknown one 
in quantum theory. 

(a) Emission of radiation. According to Hertz, an oscillating Planck 
resonator radiates energy in the well-known way, regardless of whether 
or not it is excited by an external field. Correspondingly, let us assume 
that a molecule may go from state Zm to a state Zn and emit radiation 
energy sm—sn with frequency (i, without excitation from external 
causes. Let the probability dW for this to happen during the time 
interval dt, be 

dW = Al dt, (A) 

where /I* is a constant characterising the index combination under 
consideration. 

The statistical law which we assumed, corresponds to that of a 
radioactive reaction, and the above elementary process corresponds 
to a reaction in which only y-rays are emitted. It need not be assumed 
here that the time taken for this process is zero, but only that this 
time should be negligible compared with the times which the molecule 
spends in states Z\, etc. 

(b) Absorption of radiation. If a Planck resonator is located in a 
radiation field, the energy of the resonator is changed through the 
work done on the resonator by the electromagnetic field of the 
radiation; this work can be positive or negative, depending on the 
phases of the resonator and the oscillating field. We correspondingly 
introduce the following quantum-theoretical hypothesis. Under the 
influence of a radiation density q of frequency v, a molecule can make 
a transition from state Zn to state Zm by absorbing radiation energy 
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e«—e», according to the probability law 

&W = BJg d*. (B) 

We similarly assume that a transition Zm-+Zn, associated with a 
liberation of radiation energy em—en, is possible under the influence 
of the radiation field, and that it satisfies the probability law 

dW = BIQ At. (B') 

B% and £* are constants. We shall give both processes the name 
'changes of state due to irradiation'. 

We now have to ask ourselves what is the momentum transfer to 
the molecule for such changes of state. Let us first discuss the case 
of absorption of radiation. If a radiation bundle in a given direction 
does work on a Planck resonator, the corresponding energy is removed 
from the radiation bundle. To this transfer of energy there also corre
sponds a momentum transfer from radiation bundle to resonator, by 
momentum conservation. The resonator is thus acted upon by a force 
in the beam direction of the radiation bundle. If the energy transfer 
is negative, then the force acts on the resonator in the opposite di
rection. If the quantum hypothesis holds, we can obviously interpret 
the process in the following way. If the incident radiation bundle 
produces the transition Zn-^~Zm by absorption of radiation, a momen
tum {em—Bn)lc is transferred to the molecule in the direction of 
propagation of the beam. For the absorption process Zm->Zn, the 
momentum transfer has the same magnitude, but is in the opposite 
direction. For the case where the molecule is acted upon simultaneously 
by several radiation bundles, we assume that total energy em—en 

associated with an elementary process is removed from, or added to, 
a single such radiation bundle. Thus here, too, the momentum trans
ferred to the molecule is (sm—em)/c. 

For an energy transfer by emission of radiation in the case of a 
Planck resonator, no momentum transfer to the resonator takes place, 
since emission occurs in the form of a spherical wave, according to 
classical theory. As was remarked previously, a quantum theory free 
from contradictions can only be obtained if the emission process, just 
as absorption, is assumed to be directional. In that case, for each 
elementary emission process Zm->Zn a momentum of magnitude 
{em—en)jc is transferred to the molecule. If the latter is isotropic, we 
shall have to assume that all directions of emission are equally probable. 
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If the molecule is not isotropic, we arrive at the same statement if the 
orientation changes with time in accordance with the laws of chance. 
Moreover, such an assumption will also have to be made about the 
statistical laws for absorption, (B) and (B'). Otherwise the constants 
B™ and B^ would have to depend on the direction, and this can be 
avoided by making the assumption of isotropy or pseudo-isotropy 
(using time-averages). 

3. Derivation of the Planck radiation law 
We now look for that particular radiation density Q, for which the 
exchange of energy between radiation and molecules in keeping with 
the probability laws (A), (B), and (B') does not disturb the molecular 
distribution of states given by eq. (5). For this it is necessary and 
sufficient that the number of elementary processes of type (B) taking 
place per unit time should, on average, be equal to those of type (A) 
and (B') taken together. From this condition one obtains from (5), 
(A), (B), (B') the equation 

pn exp (-enlkT)B™Q = pm exp (~sm/kT)(Bls + A%) 

for the elementary processes associated with the index combination 
(m, n). 

If, in addition, Q tends to infinity with T, as will be assumed, the 
relation 

pnB% = pmBl (6) 

has to hold between the constants B™ and B™. We then obtain from 
our equation, 

An ; D » 

exp [(em — sn)lkT] — 1 

as the condition for dynamical equilibrium. 
This expresses the temperature dependence of the radiation density 

according to Planck's law. From Wien's displacement law (1) it follows 
immediately that 

An 

- ~ = <*"3 (8) 

and 
«m — en = hv, (9) 

where a and h are universal constants. To compute the numerical 
value of the constant a, one would have to have an exact theory of 
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electrodynamic and mechanical processes; for the present, one has to 
confine oneself to a treatment of the limiting case of Rayleigh's law 
for high temperatures, for which the classical theory is valid in the 
limit. 

Eq. (9) is of course the second principal rule in Bohr's theory of 
spectra. Since its extension by Sommerfeld and Epstein, this may 
well be claimed to have become a safely established part of our 
science. It also contains implicitly the photochemical principle of 
equivalence, as has been shown by me. 

4. A method for calculating the motion of molecules in tne 
radiation field 

We now turn to a discussion of the motion of our molecules under the 
influence of radiation. For this we shall make use of a method which 
is well known from the theory of Brownian motion, and which I 
employed on several occasions for numerical computations of motions 
in a radiation field. To simplify the calculation we shall only consider 
the case where the motions take place in just one direction, the X-
direction of the coordinate system. Furthermore, we shall confine 
ourselves to a calculation of the average value of the kinetic energy 
of the progressive motion, and we shall thus not attempt to prove that 
such velocities v obey the Maxwell distribution law. The mass M of 
the molecule is assumed sufficiently large, so that higher powers of 
vjc can be neglected in comparison with lower ones; we can then 
apply the laws of ordinary mechanics to the molecule. Finally, no 
real loss of generality is introduced if we perform the calculations as 
if the states with index m and n were the only possible states for the 
molecule. 

The momentum Mv of a molecule undergoes two different types 
of change during the short time interval x. Although the radiation is 
equally constituted in all directions, the molecule will nevertheless be 
subjected to a force originating from the radiation, which opposes the 
motion. Let this be equal to Rv, where R is a constant to be determined 
later. This force would bring the molecule to rest, if it were not for 
the irregularity of the radiative interactions which transmit a momen
tum A of changing sign and magnitude to the molecule during time r; 
such an unsystematic effect, as opposed to that previously mentioned, 
will sustain some movement of the molecule. At the end of the short 
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time interval T, the momentum of the molecule will have the value 

Mv — Rvr + A. 

Since the velocity distribution is supposed to remain constant with 
time, the average of the absolute value of the above quantity must be 
equal to Mv; the mean values of the squares of these quantities, taken 
over a long time interval or over a large number of molecules, must 
therefore be equal: 

(Mv — Rvr + A)2 = (M»)». 

Since we were specifically concerned with the systematic effect of 
v on the momentum of the molecule, we shall have to neglect the 
average value vA. Expanding the left-hand side of the equation, one 
therefore obtains 

A* = 2RMvh. (10) 

The mean square value vz, which the radiation of temperature T 
produces in our molecules by interacting with them, must be of the 
same size as the mean square value v2 obtained from the gas laws for 
a gas molecule at temperature T in the kinetic theory of gases. For the 
presence of our molecules would otherwise disturb the thermal equi
librium between the thermal radiation and an arbitrary gas held at 
the same temperature. We must therefore have 

\Mv* = \kT. (11) 
Eq. (10) thus becomes 

3«/T = 2RkT. (12) 

The investigation is now continued as follows. For a given radiation 
(Q(V)), A2 and R can be calculated, using our hypotheses on the 
interaction between radiation and molecules. If the results are inserted 
in eq. (12), this equation must become an identity, if Q is expressed as 
a function of v and T, using Planck's equation (4). 

5. Calculation of R 
Consider a molecule of the kind discussed above, moving uniformly 
with velocity v along the X-axis of the coordinate system K. We wish 
to find the average momentum which is transferred from the radiation 
field to the molecule per unit time. In order to calculate it, we have to 
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describe the radiation in a coordinate system K' which is at rest 
relative to the molecule in question. For we had only formulated our 
hypotheses on emission and absorption for the case of stationary 
molecules. The transformation to the [coordinate] system K' has been 
carried out in a number of places in the literature, particularly accu
rately in Mosengeil's Berlin dissertation. For completeness, however, 
I shall reproduce these simple arguments at this point. 

Referred to K, the radiation is isotropic, i.e. the radiation of 
frequency range dv per unit volume, associated with a given in
finitesimal solid angle dx relative to its direction of propagation, is 
given by 

. * — , (13) 

where Q depends only on the frequency v, but not on the direction. 
To this particular radiation there corresponds a particular radiation 
in K' which is similarly characterised by a frequency range dv' and a 
certain solid angle dx'. The volume density of this particular radiation 
is given by 

d»' 
e'(v',v')dv'-—. (13') 

4n 

This defines Q'. I t depends on the direction, which we shall define in 
the usual way by means of the angle <p' with the X'-axis and the 
angle ip' which the projection in the Y'Z'-plane makes with the Y'-
axis. To these angles correspond the angles <p and ip, which determine 
the direction of dx in K in an analogous manner. 

First of all it is clear that the transformation law between (13) 
and (13') must be the same as that for the squares of the amplitudes, 
A 2 and A '2, of a plane wave with corresponding direction. We therefore 
find, to the desired approximation, that 

Q'(V', <P') dv' dx' v 

— , ' A , = l - 2 - c o s « p , 14 
e(v) dv dx c 

or 

Q'{v', ?') - Q(V) — — [\ - 2 - cos <p). (14') 

The theory of relativity further gives the following formulae, valid 
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to the desired approximation, 

v' = vll cos <pJ, (15) 

V V 
cos q>'= cos q> 1 cos2?), (16) 

c c 

y,' = y>. (17) 

With the same approximation, we have from (15) 

v — v'l 1 H COSf'j. 

Therefore, again to the same approximation, 

Q(V) = gf^'H v' cosq>') 

or 

Q(V) = e(v') + -J-(v') • - v' cos ?.'. (18) 
OV c 

Moreover, from (15), (16) and (17), 

dv v 
-— = 1 H cos <p', 
dv c 

dx sin mdwdw d (cos w) v 
1 —2 —cosy ' . dx' sin qi' d<p' dip' d (cos <p') c 

By means of these two relations and (18), we can write (14') in the 
form 

QV, <P') = [(Qh + YV' cos f' ( 5 " ) J ( ! - 3 y c o s ^ ' ) • (19) 

Using (19) and our hypothesis on the emission and absorption of 
radiation by the molecule, we can easily calculate the average momen
tum transferred to the molecule per unit time. Before doing so, how
ever, we shall have to say a few words in justification of this approach. 
It could be objected that eqs. (14), (15), (16) are based on Maxwell's 
theory of the electromagnetic field which cannot be reconciled with 
quantum theory. But this objection relates more to the form than to 
the real essence of the matter. For whatever the shape of a future 
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theory of the electromagnetic processes, the Doppler principle and the 
aberration law will at all events remain preserved, and hence also 
eqs. (15) and (16). Furthermore, the validity of the energy relation (14) 
certainly extends beyond wave theory; according to the theory of 
relativity, this transformation law also holds, e.g., for the energy 
density of a mass moving with (almost) the velocity of light and having 
infinitesimally small rest density. Eq. (19) can therefore lay claim to 
being valid for any theory of radiation. 

According to (B), the radiation associated with the solid angle dx' 
would give rise to B%Q'(V', q>') dx'jAn elementary absorption processes 
of the type Zn^-Zm per second, if the molecule were to be restored 
to the state Zn immediately after each such elementary process. But 
in reality, the time for remaining in state Zn per second is equal to 
S-ipn exp(-SnlkT) from (5), where the abbreviation 

S =pn exp(— en/kT) + pm exp(— sm/kT) (20) 

has been used. The number of such processes per second is thus really 

^>Bexp(-a„/ar)B^>') * 

For each such elementary process a momentum [{em—en)/c] cos <p' 
gets transmitted to the atom in the direction of the positive X'-axis. 
Analogously we find, starting from (B'), that the corresponding 
number, per second, of elementary processes for an absorption of the 
typ e Zm->Zn is 

1 da:' 
-pmexV{-emlkT)Bls'(v',(P') S "" r v ' ' " • v T ' An ' 

and in such a process a momentum — [(sm—sn)jc\ cos cp' is trans
ferred to the molecule. The total momentum transfer to the molecule 
produced by the absorption of radiation is therefore, per unit time, 

hv' C dx' 
~pnBZ[exp(-enlkT) - « p ( - < W * T ) ] J e'(v't<p')cos<p' — 

This follows from (6) and (9), and the integration extends over all 
elementary solid angles. On integrating, one obtains from (19) 

hv I do\ 
- -^ [Q - &> ̂ -J &B?[e*p(- e^hT) ~ e x P(- W*r)>-
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Here the effective frequency is again denoted by v (instead of v'). 
But this expression represents the whole of the average momentum 

transferred per unit time to a molecule moving with velocity v. For it 
it clear that the elementary radiative emission processes, which take 
place in K' without interaction with the radiation field, have no 
preferred direction, so that they cannot transmit any momentum to 
the molecule, on average. The final result of our discussion is there
fore 

R = i k (Q ~ iv^)p«B^[exV(-enlkT)][\ - exp(-hv/kT)]. (21) 

6. Calculation of I 5 

It is much simpler to calculate the effect of the irregularity of the 
elementary processes on the mechanical behaviour of the molecule, 
because the calculation can be based on a molecule at rest, to the 
degree of approximation to which we had restricted ourselves from the 
Deginning. 

Consider an arbitrary event, causing a momentum transfer A to a 
molecule in the -X'-direction. This momentum can be assumed of 
different sign and magnitude in different cases. Nevertheless A is 
supposed to satisfy a certain statistical law, such that its average 
value vanishes. Now let fa, fa, ... be the momenta transmitted to 
the molecule due to a number of mutually independent causes, so 
that the total momentum transfer A is given by 

A = S fa. 

Then, if the averages fa of the individual fa vanish, 

A2 = S 4 (22) 

If the mean square values fa\ of the individual momenta are all 
equal (A|=A2), and if I is the total number of events producing these 
momenta, the relation 

A* = lW (22a) 
holds. 

According to our hypotheses, a momentum K={hvjc) cos cp is trans
ferred to the molecule for each absorption and emission process. 
Here, cp denotes the angle between the X-axis and a randomly chosen 
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direction. One therefore obtains 

F ' = J(Ai»/cj*. (23) 

Since we assume that all the elementary processes which occur can 
be regarded as mutually independent events, we are allowed to use 
(22a). Then I is the number of elementary events which occur in 
time T. This is twice the number of absorption processes Zn-+Zm 

taking place in time T. We therefore have 

I = — PnB% e x p ( - enlkT)QT (24) 

and from (23), (24) and (22), 

— = -^{—) PnK e x p ( - sn/kT)Q. (25) 

7. Conclusion 
We now have to show that the momenta transferred from the radiation 
field to the molecule according to our basic hypotheses, never disturb 
the thermodynamic equilibrium. For this, we need only insert the 
values for A%\x and R determined by (25) and (21), after replacing 
in (21) the expression 

(e-i"-^-)[i-exP(-M^)] 

by ghvf3kT, from (4). It is then seen immediately that our basic 
equation (12) is identically satisfied. 

We have now completed the arguments which provide a strong 
support for the hypotheses stated in § 2, concerning the interaction 
between matter and radiation by means of absorption and emission 
processes, or in- or outgoing radiation. I was led to these hypotheses 
by my endeavour to postulate for the molecules, in the simplest possible 
manner, a quantum-theoretical behaviour that would be the analogue 
of the behaviour of a Planck resonator in the classical theory. From the 
general quantum assumption for matter, Bohr's second postulate 
(eq. 9) as well as Planck's radiation formula followed in a natural way. 

Most important, however, seems to me to be the result concerning 
the momentum transfer to the molecule due to the absorption and 
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emission of radiation. If one of our assumptions about the momenta 
were to be changed, a violation of eq. (12) would be produced; it 
seems hardly possible to maintain agreement with this relation, im
posed by the theory of heat, other than on the basis of our assumptions. 
The following statements can therefore be regarded as fairly certainly 
proved. 

If a radiation bundle has the effect that a molecule struck by it 
absorbs or emits a quantity of energy hv in the form of radiation 
(ingoing radiation), then a momentum hvjc is always transferred to 
the molecule. For an absorption of energy, this takes place in the 
direction of propagation of the radiation bundle, for an emission in 
the opposite direction. If the molecule is acted upon by several 
directional radiation bundles, then it is always only a single one of 
these which participates in an elementary process of irradiation; this 
bundle alone then determines the direction of the momentum trans
ferred to the molecule. 

If the molecule undergoes a loss in energy of magnitude hv without 
external excitation, by emitting this energy in the form of radiation 
(outgoing radiation), then this process, too, is directional. Outgoing 
radiation in the form of spherical waves does not exist. During the 
elementary process of radiative loss, the molecule suffers a recoil of 
magnitude hvjc in a direction which is only determined by 'chance', 
according to the present state of the theory. 

These properties of the elementary processes, imposed by eq. (12), 
make the formulation of a proper quantum theory of radiation appear 
almost unavoidable. The weakness of the theory lies on the one hand 
in the fact that it does not get us any closer to making the connection 
with wave theory; on the other, that it leaves the duration and direc
tion of the elementary processes to 'chance'. Nevertheless I am fully 
confident that the approach chosen here is a reliable one. 

There is room for one further general remark. Almost all theories 
of thermal radiation are based on the study of the interaction between 
radiation and molecules. But in general one restricts oneself to a 
discussion of the energy exchange, without taking the momentum 
exchange into account. One feels easily justified in this, because the 
smallness of the impulses transmitted by the radiation field implies 
that these can almost always be neglected in practice, when compared 
with other effects causing the motion. For a theoretical discussion, 
however, such small effects should be considered on a completely 
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equal footing with more conspicuous effects of a radiative energy 
transfer, since energy and momentum are linked in the closest possible 
way. For this reason a theory can only be regarded as justified when 
it is able to show that the impulses transmitted by the radiation field 
to matter lead to motions that are in accordance with the theory 
of heat. 
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