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ON THE THEORY OF LIGHT PRODUCTION AND LIGHT ABSORPTION 

by A. Einstein 
[Annalen der Physik 20 (1906): 199-206]

In a study published last year1 I showed that the Maxwell theory of
[2] electricity in conjunction with the theory of electrons leads to results that 

contradict the evidence on black-body radiation. By a route described in that 
study, I was led to the view that light of frequency v can only be absorbed 
or emitted in quanta of energy [R/N)0v, where R denotes the absolute 
constant of the gas equation applied to one gram-molecule, N  the number of 
actual molecules in one gram-molecule, 0  the exponential coefficient of 
Wien's (and Planck's) radiation formula, and v the frequency of the light in 
question. This relationship was developed for a range that corresponds to the

[3] range of validity of Wien's radiation formula.
At that time it seemed to me that in a certain respect Planck's theory 

of radiation2 constituted a counterpart to my work. New considerations, which 
are being reported in §1 of this paper, showed me, however, that the theore­
tical foundation on which Mr. Planck's radiation theory is based differs from 
the one that would emerge from Maxwell's theory and the theory of electrons, 
precisely because Planck's theory makes implicit use of the aforementioned 
hypothesis of light quanta.

In §2 of this paper I shall make use of the hypothesis of light quanta 
to derive a relationship between the Volta effect and photoelectric diffusion.

§1. P l a n c k ’s theory of radiation and the light quanta

In §1 of my paper cited above I have shown that the molecular theory of 
heat combined with the Maxwell theory of electricity and the theory of

[1]
[4]

lk. Einstein, Ann. d. Phys. 17 (1905): 132.
2M. Planck, Ann. d. Phys. 4 (1901): 561.
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electrons lead to a formula for black-body radiation that contradicts 
experience

(1 ) n _ R  8 m>2 
~ 7} T .

Here p denotes the density of radiation at temperature T and at a 
frequency between v and v + 1.

What is the reason that Mr. Planck did not arrive at the same formula, 
but obtained instead the expression

(2) [5]

Mr. Planck derived1 the mean energy E v of a resonator of proper 
frequency v situated in a space filled with disordered radiation as given by 
the equation [7]

(3) [8]

This reduced the problem of black-body radiation to the problem of determining
E  as a function of temperature. The latter problem will have been solved if 
one can calculate the entropy of one of many similarly constituted, mutually 
interacting resonators of proper frequency v that are in dynamic 
equilibrium.

Let us envision the resonators as ions that could perform rectilinear 
sinusoidal vibrations about an equilibrium position. The fact that the ions 
have electrical charges is irrelevant in the calculation of this entropy; we 
simply have to conceive these ions as mass points (atoms) whose momentary 
state is completely determined by their instantaneous deviation x from the 
equilibrium position and by their instantaneous velocity dx/dt = £.

LM. Planck, Ann. d. Phys. 1 (1900): 99. [6]
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For the distribution of states of these resonators to be uniquely 
determined in thermodynamic equilibrium, one has to assume that there exists 
an arbitrarily small number of freely moving molecules besides the resonators, 
which by virtue of their collisions with the ions can transmit energy from

[9] resonator to resonator; we will not take into account these molecules in our 
calculation of entropy.

[10] Boltzmann distribution law and would thereby obtain the invalid radiation 
formula (1). One arrives at the route taken by Mr. Planck in the following 
manner.

Let P y - P n be appropriately chosen state variables1 that completely 
determine the state of a physical system (e.g., in our case the values x ar.: 
£ of all the resonators). At the absolute temperature T, the entropy S of 
this system is represented by the equation2

where H  denotes the energy of the system at temperature T, H  denotes the 
energy as a function of p ^ , . . . p n< and the integral is to be extended over all 
possible combinations of the values of jP y . . . p  .

If the system consists of a very large number of molecular structures-- 
and the formula has meaning and validity only in this case--then only those

[13] combinations of values of the p ^ . . . p n whose // differs very little from B  
contribute significantly to the value of the integral appearing in S .3 If 
this is taken into account, it is easily seen that, except for negligible 
quantities, one can put

We could determine E y as a function of temperature from the Maxwell-

,//+A//
[14] S s irl6\B dpV dpn '

[11] 1A. Einstein, Ann. d. Phys. 11 (1903): 170.
2loc. cit. §6.
3Follows from §3 and §4 loc. cit.
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where M l  should be chosen very small, yet large enough to make R l g { M t ) / N  
a negligible quantity. S is then independent of the value of Ml.

If one substitutes the variables x n and f of the resonators insteadU flof dp.,...dp in the equation and takes into account that the equation1 flholding for the a-th resonator is

fE + d E ,“ d x d E  = const. dE r a sft a

(because JE is a quadratic, homogeneous function of and £ft), one
obtains the following expression for S:

(5) Q R 
b = If

where one has put
r//+A#

(5a) V =
1

If one would calculate S  according to this formula, one would again 
arrive at the invalid radiation formula (1). To arrive at Planck's formula, 
one has to postulate that, rather than assume any value whatsoever, the energy 
Ea of a resonator can only assume values that are integral multiples of e, 
where

e = i^v •

This is because, on setting M l  = e, one immediately sees from equation 
(5a) that, except for an inconsequential factor, V turns into the very 
quantity that Mr. Planck named "the number of complexions."

Hence, we must view the following proposition as the basis underlying 
Planck's theory of radiation:

The energy of an elementary resonator can only assume values that are 
integral multiples of (R/N)0i>■, by emission and absorption, the energy of a 
resonator changes by jumps of integral multiples of (R/N)()v.

( f v / M V A i  %1/ m P S  6 e 7 V J tl5 \ j  e f l j e y i e  y  i  e y z f m  ?
xevy?/y£̂ /es &&f=<rjL<r -pne't&Af. A to -h  f

[15]
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However, this assumption involves yet a second one, because it contra­
dicts the theoretical basis from which equation (3) is developed. For if the 
energy of a resonator can only change in jumps, then the mean energy of a 
resonator in a radiation space cannot be obtained from the usual theory of 
electricity, because the latter does not recognize dis tinguished energy values 
of a resonator. Thus, the following assumption underlies Planck's theory:

Although Maxwell's theory is not applicable to elementary resonators, 
nevertheless the mean energy of an elementary resonator in a radiation space

[17] is equal to the energy calculated by means of Maxwell's theory of electricity.
This proposition would be immediately plausible if, in all those parts 

of the spectrum that are relevant for observation, e = (R/N)f)v were small
compared with the mean energy J of a resonator; however, this is not at all
the case, for within the range of validity of Wien's radiation formula, e^v^  
is large compared with 1. It is easy to prove that according to Planck's 
theory of radiation, within the range of validity of Wien's radiation formula,
E J e  has the value e~^v ^ , thus, E  is much smaller than e. Therefore 
only a few resonators have energies different from zero.

In my opinion the above considerations do not at all disprove Planck's 
theory of radiation; rather, they seem to me to show that with his theory of 
radiation Mr. Planck introduced into physics a new hypothetical element: the 
hypothesis of light quanta.

§£!. An expected quantitative relationship between photoelectric 
diffusion and the Volta effect

It is well known that if metals are ordered according to their photo­
electric sensitivity, one obtains the Volta electric potential series, in

[18] which a metal is the more photosensitive the closer it is to the electro- 
tig] positive end of the electric potential series.

To a certain degree, this fact can be understood by assuming only that 
the forces (which are not to be examined here) that produce the active double 
layers reside on the metal-gas interface rather than on the metal-metal 
interface.



DOC. 34 197

Let these forces produce an electric double layer on the surface of a 
piece of metal M  that borders on a gas, and a corresponding potential 
difference V between metal and gas, taken as positive when the metal has the 
higher potential.

Let Vi and ^  be the potential differences between metals and 
#2 in electrostatic equilibrium if they are insulated from each other. If 
the two metals are brought into contact, the electric equilibrium is disturbed 
and complete1 voltage equalization of the metals takes place. Thereby, simple 
layers will be superposed on the aforementioned double layers at the metal-gas 
interfaces; to these corresponds an electrostatic field in the air space whose 
line integral equals the voltage difference.

If Ve and Vf denote the electric potentials at points of the gas t2space directly adjacent to the metals in contact, and V' denotes the 
potential in the interior of the metals, we have

Thus, the electrostatically measurable Volta difference is numerically 
equal to the difference of the potentials assumed by the metals in the gas if 
they are insulated from each other.

If one ionizes the gas, the electric forces present in the gas space 
will cause a migration of the ions, to which there corresponds a current in 
the metals which, at the place of contact of the metals, is directed from the 
metal with the higher V (less electropositive) to the metal with the lower [20]
V (more electropositive). [21]

Suppose a metal M  is insulated in a gas. Let V be its potential 
difference with respect to the gas that corresponds to the double layer. In 
order to move a unit of negative electricity from the metal into the gas, an 
amount of work numerically equal to the potential V has to be performed.
Hence, the greater the V, i.e., the less electropositive the metal, the more [22]
‘We disregard the effect of thermoelectric forces.
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energy is needed for the photoelectric diffusion, i.e., the smaller the 
photoelectric sensitivity of the metal.

So far we have considered the facts without making assumptions about the 
nature of photoelectric diffusion. However, the hypothesis of light quanta 
also yields a quantitative relationship between the Volta effect and photo­
electric diffusion. Thus, to move a negative elementary quantum (charge c) 
from the metal into the gas, it has to be supplied with at least an energy 
Ve. Then, a light species will be able to remove negative electricity from 
the metal only when the "light quantum" of that light species has at least the 
value Ve. We thus obtain

Ve i %  flv
or

V i \  0v ,

where A denotes the charge of one gram-molecule of a univalent ion.
If we now assume that some of the absorbing electrons are able to leave 

the metal as soon as the energy of the light quanta exceeds Ve1 —  which is a 
very plausible assumption —  we obtain

r ^ f v  ,

where v denotes the lowest photoelectrically effective frequency.
Thus, if v j and are the lowest light frequencies acting on the 

metals H^ and M2 , the following equation will hold for the Volta potential 
difference vn  of the two metals:

- <12 " h  - h  -7 - »2>-

or, if F12 is measured in volts:

F12 = 4.2 x 10 l5(u2 - vx) .

'The thermal energy of electrons is disregarded.
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This formula contains the following, at least by and large valid, 
proposition: The more electropositive a metal, the smaller the lowest light
frequency that is effective for that metal. It would be of great interest to 
know whether this formula expresses the facts in a quantitative way as well.

Bern, March 1906. (Received on 13 March 1906)

[23]
[24]


