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 Relativity Quantum Mechanics with an ApplicatioTn to
 Compton Scattering.

 By P. A. M. DIRAC, 1851 Exhibition Senior Research Student, St. John's

 College, Cambridge.

 (Communicated by R. H. Fowler, F.R.S.-Received April 29, 1926.)

 ? 1. Introduction.

 The new quantum mechanics, introduced by Heisenberg* and since developed

 from different points of view by various authors,t takes its simplest form if

 one assumes merely thatthedynamical variables are numbers of a specialtype

 (called q-numbers to distinguish them from ordinary or c-numbers) that obey

 all the ordinary algebraic laws except the commutative law of multiplication,

 and satisfy instead of this the relations

 qrqs - qsqr =0, PrPs -PsPr ?l (1)

 qrps - psqr 0 (r # s) or ih(r s) J

 where the p's and q's are a set of canonical variables and h is a c-number equal

 to (27t)-' times the usual Planck's constant. Equations (1) may be regarded

 as replacing the commutative law of the classical theory, as one can, with their

 help, build up a complete algebraic theory of quantities that are analytic

 functions of a set of canonical variables. Further, it may easily be seen that

 the quantity [x, y] defined by

 xy-yx =izh[x, y] (2)

 is completely analogous to the Poisson bracket of the classical theory. By

 means of this analogy the whole of the classical dynamical theory, in so far as it

 can be expressed in terms of P.B.'s instead of differential coefficients, may be

 taken over immediately into the quantum theory.

 It has been shown by the authort that the quantum solution of a multi ply

 periodic dynamical system may be effected, as on the classical theory, by the

 introduction of uniformising variables, J's and w's, and the results can then

 * Heisenberg, 'Zeits. f. Phys.,' vol. 33, p. 879 (1925).

 t Born and Jordan, ' Zeits. f. Phys.,' vol. 34, p. 858 (1925); Born, Heisenberg and Jordan,
 ' Zeits. f. Phys.,' vol. 35, p. 557 (1926); Kramers, ' Physica,' vol. 5, p. 369 (1925); Dirac,
 'Roy. Soc. Proc.,' A, vol. 109, p. 642 (1925); Born and Wiener, ' Zeits. f. Phys.,' vol. 36,
 p. 174 (1926) or ' Jour. Math. Phys. Mass.,' vol. 5, p. 84 (1926).

 - 'Roy. Soc. Proc.,' A, vol. 110, p. 561 (1926).
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 406 P. A. M. Dirac,

 be interpreted in a way of which the following is a brief outline. The total

 polarisation of the system can be expanded as a Fourier series in the w's whose

 coefficients are functions of the J's only. On the classical theory,if one takes

 one of these coefficients, say, that of et (aW) where (oaw) - ocxw,. and the ac's

 are integers, and substitutes in it for the J, a set of numbers, K., say, the number

 thus obtained will determine the intensity of the ei (aw) component of the radia-

 tion emitted by the system when in the state fixed by the equations Jr Kc.

 On the quantum theory, however, an ambiguity arises, since in the Fourier

 expansion of the polarisation the coefficients may be either in front of or behind

 their respective exponentials. The ettaw) term, for instance, would be et(aW) = i (aW) C
 where Ca and Ca' are in general two different functions of the J's, so that if one

 substitutes for the J, the values KC, where the /'s are a set of c-numbers that

 may be regarded as fixing a stationary state of the system, one would obtain

 two e' () intensities related to this state. If, now, one puts

 '(i aw) = e (au2) X

 then Ca must be the same function of the J's that Ca' is of the J"s, so that if

 one substituted for the Jr in Ca the values Kr, one would obtain the same result

 (a c-number, of course) as if one substituted for the Jr in Ca' their values given

 by the equations Jr' Kr, and one may therefore suppose this result to deter-

 mine the intensity of a component of the emitted radiation that is symmetrically

 related to the two states of the system given by Jr Kr and Jr' - Kr. It may

 be shown that Jr' J. + ocrh, and hence the two states are respectively the
 initial and final states on Bohr's theory. It may also be shown that the system

 has transition frequencies related to pairs of states as on Bohr's theory.

 It now remains only to determine what values one shall assume the K'S to

 take, and this may require an appeal to physical considerations. For the case

 of the simple harmonic oscillator it has been shown rigorously by Born and

 Jordan* that the action variable can take only a certain discrete set of values,

 one of which gives a state of lowest energy, and their method seems to be

 capable of extension. For the case of Compton scattering by a free electron,

 considered in the present paper, there is no restriction on the values that the

 action variable can take. The initial value of the action variable is now deter-

 mined by the initial velocity of the electron, which must, of course, be given

 from physical considerations.

 It will be observed that the notion of canonical variables plays a very funda-

 * Born and Jordan, loc. cit., ? 5.
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 Relativity Quantumn Mechanics. 407

 mental part in the theory. Any attempt to extend the domain of the present

 quantum mechanics must be preceded by the introduction of canonical variables

 into the corresponding classical theory, with a reformulation of this classical

 theory with P.B.'s instead of differential coefficients. The object of the present

 paper is to obtain in this way the extension of the quantum mechanics to

 systems for which the Hamiltonian involves the tinie explicitly (? 2) and to

 relativity mechanics (?? 3, 4).

 ? 2. Quantum Time.

 Consider a dynamical system of u degrees of freedom for which the Hamil-

 tonian H involves the time explicitly. The principle of relativity demands

 that the time shall be treated on the samne footing as the other variables, and

 so it must therefore be a q-number. On the classical theory it is known that

 one m-ay solve the problem by considering the time t to be an extra co-ordinate

 bf the system, with minus the energy (or perhaps a slightly different quantity)

 V as conjugate momentum. In the solution of the problem there will now be

 complete symnmetry between the new pair of variables t and -W and the

 original u pairs, except for the fact that when one performs the contact trans-

 formation to the uniformising variables, the co-ordinate t itself must be one of

 the new variables. A P.B. is now defined by

 [x, Y]ja = a ax ay ax ay aPr p,t + w (3)
 and is invariant under any contact transformation of the (2u + 2) variables.

 A dynamical system is now determined by an equation between the (2u + 2)

 variables instead of a function of 2u variables-namely, the Hamiltonian
 equation

 H- W=O, (4)
 and the equations of motion are

 aH a (H - ) 1
 apr apt

 t=1 _ aa(H-W) l(5)

 aII(_ W(l
 Pr=a= a (H - W) P.aq, aq, J

 and lastly

 W- -H = Er (aH qr+aHP at at

 a_ (H-W) (5A)
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 408 P. A. M. Dirac.

 From these equations of motion, if x is any function of the (2u + 2) variables

 lax ax .\ ax ax-
 A- Er + ~7 Pr) + + - w (aqr apr at axv

 E (ax a (H -W) ax a(Hl-W) ax a(H W - - -ax a (H-W)
 aq, aPr api. aq ) t aw aw at

 or
 xJ [x, H - W] (6)

 from (3).

 We can take these results directly over into the quantum theory. We assume

 that t and -W are a new pair of conjugate variables, and therefore satisfy the

 equations, supplementary to (1),

 tqr -qrt ?O tpr Prt =O l

 Wqr - qpW ==, "or - prw ? t(7)
 tW-Wt=-ih J

 and that the quantum P.B. [x, y], defined by (2), is now the analogue of the

 classical expression on the right-hand side of (3). The equations of motion are

 assumed to be still given by (6).

 The fact that a dynamical system is now specified by a Hamiltonian equation

 H - W 0 instead of by a Hamiltonian function 1I here leads to a difficulty,
 since the I-lamiltonian equation is not consistent with the quantum conditions

 (1) and (7). For example, if x is a function of the p's and q's only,

 xW - nx 0,

 while in general
 xI: - Hx 5z? Q,

 and these two equations are not consistent with W = H. An ordinary quant-im

 equation gives a correct result when one equates the P.B. of either side with an

 arbitrarv quantity, and must therefore correspond to an identity on the classical

 theory, t.e., a relation that remains true on being diferentiated partially witl
 respect to any of the canonical variables. Now the Hamiltonian equation on

 the classical theory is not an identity. One can perform algebraic operations

 upon it, but one must not differentiate it. There must be a corresponding

 restriction on the use of the quanttum Hamiltonian equation, although it cannot

 easily be specified, as there is no hard-and-fast distinction between algebraic

 operations and differentiations on the quantum theory. This uncertainty does

 not give any trouble inp the presenit paper, however, as we shall follow the

 classical theory so closely that it will be immediately obvious whether any

 quantum operation corresponds to a legitimate classical oper'ation or not.
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 Relativity Quantum Mechanics. 409

 The rules for the solution of the problem on the quantum theory are now,

 as on the classical theory, that one must determine a set of (2u + 2) uniformising

 variables Jo ... J., WO ... W", say, that satisfy the following conditions:-
 (i) They must be canonical variables it being possible to verify this without

 the use of the Hamiltonian equation.

 (ii) One of the w's, w0 say, must be just t.

 (iii) The lHamiltonian equation must become a relation between the J's only.

 (iv) The original variables, when expressed in terms of the new variables, must

 be multiply periodic functions of as many of the w's as possible with the

 periods 27c. They cannot, of course, be periodic functions of w0, since

 t = w0.

 The frequencies associated with the various transitions of the system and the

 corresponding intensities may now be determined as for systems for which the

 Hamiltonian does not contain the time explicitly.

 The fact that w0 t provides us with certain information concerning the

 form of the transformation to the uniformising variables, as on the classical

 theory. Since each of the uniformising variables except Jo commutes with wo,

 i.e., with t, when expressed in terms of the original variables, it must be inde-

 pendent of W. Further, since

 [t, J0] [wO, J0] = - [t, W],
 Jo + W commutes with t, and hence J0, when expressed in terms of the origina

 variables, must equal minus W plus a quantity independent of W. The Hamil-

 tonian equation H - W 0 thus takes the form Ho + Jo = 0, where Ho
 is a function of J1 ... Ju, only. In consequence of these results and the fact

 that t commutes with each of the p's and q's, Born, lleisenberg, and Jordan's

 perturbation theory for systems for which the Hamiltonian contains the time

 explicitly,* in which t is treated as a c-number, can be justified.

 It should be observed that if the Hamiltonian equation of a system is

 F (pr, qr, W, t) 0, it must be put in the standard form (4) before one can
 insert its left-hand side in the P.B. in the equation of motion (6). If one does

 not do this, but simply takes for the right-hand side of (6) the P.B. [x, F], on the

 classical theory, the left-hand side would not be e but dx/dv, where v might be

 any variable. Also, with regard to condition (iii) for the uniformising variables,

 the quantity H - W becomes just the quantity Ho + Jo, but the quantity F
 may not become a function of the J's only, as one may have to divide the

 equation F 0 by a factor which is a function of the w's as well as the J's in

 order to make its left-hand side a function of the J's only.

 * Born, Heisenberg, and Jordan, loc. cit., Kap. 1, ? 5.

This content downloaded from 128.103.149.52 on Mon, 18 Dec 2017 18:21:18 UTC
All use subject to http://about.jstor.org/terms



 410 P. A. M. Dirac.

 ? 3. Quantum Mechanics of Moving Systems.

 A dynamical system that is moving as a whole may be described with, for

 canonical variables, the Cartesian co-ordinates of the centre of gravity x_, X2, X3,
 with Pi, P2, p3, the components of total momentum, for conjugate variables,
 together with the necessary internal variables, which are independent of the

 position and velocity of the centre of gravity. If t is the tine and WT the

 energy, one may introduce the variables

 x4-I c, s=iW/c, (8)

 where i is a root of -1 independent of the root of -1 occurring in the quantum

 conditions, and c is the velocity of light, which is, of course, a c-numiber. The

 principle of relativity requires complete symmetry between the X4, p4 and the

 ?ln pi, the X2, P27 and the X3 P3. Hence, on account of the relations

 [XI, PI] [X, P2] P P p31 1,
 we must have

 [X4, P4] 1
 which gives

 [ict, iW/c] 1
 or

 [t, W] -W 1

 The principle of relativity thus shoTs that W71 is the momentum conjugate
 to t, in agreement with the results of the preceding ?. The remaining ones of

 the quantum conditions (7) may be likewise obtained.

 Let m be the rest-mass of the system, so that nC2 is its proper energy. Then

 m and mC2 are functions of the internal variables only, or, when the system
 consists of a single particle only, so that there are no internal variables, they are

 c-numbers. We have

 W2/12-P12-P22- 1)32 z3m2c2 (9)

 which is the lamniltonian equation for the system. The variables Pl, P2' P3,
 WT and x1, X2, x3, t may be taken to be uniformising variables, as they satisfy

 all the conditions for this except the multiply periodic conditions for the x's,

 which they obviously cannot be expected to satisfy. The remaining uniform-

 ising variables will be functions of the internal variables only.

 The theory maybe extended to systems actedupon by external fields of force,

 provided the classical equations of motion can be put in the Hamiltonian form.

 Suppose, for instance, that the system possesses a total charge e (a c-number),

 considered to be concentrated at its centre of gravity, and is in an electro-

 magnetic field describable by the vector potential c1, KC, K3 and the scalar
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 Relativity Quantum Miechanies. 411

 potential qb, these four quantities being given functions of xl, x2, X3 and t
 Instead of + we may use the quantity

 K., = k,

 analogous to the X4 and p4 introduced by equation (8), so that /1, K2, IC, K4 are
 the components of a 4-vector. On the classical theory the equations of motion

 of the centre of gravity of the system may be written, if one uses the summation

 convention of the tensor calculus,

 d (fit dd 20 - c (a-z - ax ds (,vv-1...4)

 e aKvdxv e dKc (10)
 c ax /ds c ds

 where s is the proper time defined by

 ds2 c C2 dx, dx.
 Now define p,. by

 ds c

 instead of simply by nm dx,lds, which was its previous meaning. The equations
 of motion (10) become

 dm _ o a fK / e K ) (12) ds mec ax,--~p c
 The Hamiltonian equation (9) now becomes, owing to the changed meaning of

 the p's

 l (pV - - (v I- -K) = c2 (13)

 or F 0

 where

 2m (PV c M (PV - KV) + 2rnc,
 while the equations (11) and (12) may be written

 dx, aF

 ds ap,
 and

 dp _ aF
 ds ax

 Further, we have

 - I K) /v C1K + ic2 c2
 am c ~~~~~~~~C
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 412 P. A. M. Dirac.

 with the help of the equation F 0= , so that if q, Pr are a pair of canonically
 conjugate internal variables, the equations of internal motion are

 dq. _ atc2 _a am _ amF aF
 ds apr api. ap am apr

 dpr - anc2 aM 2 -am aF __aF
 ds aq, - qr aq, am a qr;

 All the equations of motion are thus of the Hamiltonian form (5) with the

 Hamiltonian function F. The fact that the total differentiations are performed

 with respect to s irnstead of t is due to the Hamiltonian equation F 0 not being
 in the standard form (4).

 It is thus established that the classical equations of mnotion take the canonical

 form when the variables conjugate to the x,, are defined by (11).* On the
 quantum theory we must therefore still use this definition of pf, and can then

 proceed according to rule with the Hamiltonian equation (13).

 The K's on the classical theory must satisfy the conditions

 aK _ a2K

 ax1 ax,ax,

 These equations may be writtein

 and can then be taken over into the quantum theory. AWith the help of the

 first of these relations, the H.tmiltonian equation (13) may be put in the forms

 2 2 e + e2 - e2 -M c P]vpv -2 PvfCv /C-K,KV :=}24PP 2- K'P + 1 ICIU

 ? 4. Relativity Quantum Mechanics.

 If we proceed to apply the method of ? 2 to the systems considered in ? 3, the

 requirements of the restricted principle of relativity will still iot be completely

 satisfied, owing to the singular part played by the time t as a uniformising

 variable. To get over this difficulty we must again refer to the classical theory.

 The ordinary classical theorems connecting the intensities in various directions

 of components of the emitted radiation with the corresponding amplitudes in

 the Fouriei expansion of the total polarisation are valid only, if the distances

 moved through by the electrons during a period of the component of radiation
 considered are small compared with the wave length of this component, i.e., if

 * It has been sho An by W. Wilson that the momenta defined in this way must be

 used in the ordinary quantum conditions Jp dq n7i [I Roy. Soc. Proc.,' A, vol. 102, p. 478
 (1923)].
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 Relativity Quantum Miechanics. 413

 the velocities of the electrons are small compared with that of light. When this

 condition is not satisfied, in order to determine the intensities for a given direc-

 tion, say, that of the xl axis, one must obtain the Fourier expansion of the total

 polarisation in the form

 2 aCa exp {i (ao) (t x/c)} (16)
 where the (ao)'s are constants, and are the frequencies (multiplied by 27t) of

 the radiation emitted in this direction, and must use these amplitudes Ca instead

 of the usual ones. This is readily seen to be so from the fact that the interchange

 of energy between the system and a field of radiation movinig in the direction of

 the x1 axis of frequency (oc)), is governed entirely by the corresponding coefficient

 Ca defined by (16). The x1 in the expression (16) refers to the point at which

 the charge is supposed to be concentrated. If there are several charges contri-

 buting to the total polarisation, the Fourier expansion (16) of each must be

 obtained separately with its respective xl, and their corresponding amplitudes

 can then be added. In this case one can approximate, if the relative displace-

 ments of the charges are small, by taking the xl of (16) to be the xl of the centre

 of gravity of the system.

 Further, if the total polarisation contains a part that increases uniformly in

 addition to a periodically varying part, which will occur when the whole system

 is charged and is moving uniformly, the non-periodic term to be added to (16)

 must be of the form, a constant times (t - xl/c), instead of a constant times

 t as in the elementary theory, in order that its contribution to the exchange of

 energy with the radiation field previously considered may vanish. The approxi-

 mation of taking xl to refer to the centre of gravity of the systemn is not in

 general valid for this non-periodic term unless the velocity of the centre of

 gravity is small, and the theory would then reduce to the ordinary theory.

 It should be noted that the amplitudes Ce. determine directly the rate per

 unit area (1,, say) at which energy of the radiation passes a fixed point at a

 distance r (a c-number) from the emitting system in the direction of the xl axis,
 by means of the formula

 11 2(C3ICa 12 ; (17)

 and determine the rate of emission of energy by the system in the xl direction

 only through formulae involving the velocity of the centre of gravity of the

 system, which will be found later to be ambiguous on the quantum theory.

 The distinction is important because the intensity I1 is an observable quantity,

 while the rate of emission of energy by the system is not.

 To express the theory of this ? in terms of canonical variables, we observe
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 414 P. A. M. Dirac.

 that the only essential modification in the previous theory required is that

 our standard of a " uniformly increasing variable " must be changed from

 t to (t - x1/c). This can be effected, on both the classical and quantum theories,

 simply by taking (t - xl/c) to be a uniformising variable instead of t in the
 second of the conditions to be satisfied by the uniformising variables (? 2). Of

 course this can be done only when one knows what to take for x1, and at present

 the only cases in which the x1 of expression (16) has a definite meaning are

 those when there is only one charged particle, and when one is able to take the

 X1 of the centre of gravity as a sufficient approximnation. The mnethod of pro-

 cedure in the general case is not yet known. The frequencies given by the

 theory with (t - xl/c) for a uniformising variable are the (ccw)'s of expression
 (16), which are the wave frequencies and not the frequencies of vibration of the

 system.

 An example of the first of these cases in which x1 has a definite meaning will

 be given in the next ?, and an example of the second will now be considered.

 Take the system considered in the previous ? in the absence of an external

 field, when the Hamiltonian equation is (9), and apply the canonical trans-

 formation

 xi = XI P-, P, p1 W0/ei (18)
 The Hamiltonian equation becomes

 2pi' W'/e - p'.2 - P2- p32 M 2c2.

 If we wish to consider the radiation emitted in the direction of the x1 axis,

 we must take t' to be a uniformising variable, and may take for the other uni-

 formisinig variables - W', conjugate to t', and p,', XI'; P25 X2 and p3, X3, together
 with certain J's and w's that are functions of the internal variables only.

 Now consider a particular component of the emitted radiation, say that corres-

 ponding to e"W. We know that te commutes with P2' P3 and Pi," so that

 iw iw P wo i p2e - P2, e3C _w p3

 (pi - W/C) it` = eil' (pi - W/C).

 Hence, according to the principles of ? 1, the particular c-number values possessed

 by P2, P3 and Pi - W/c before the transition are equal to those they possess
 after the transition, so that P2 and p3 are unchanged by the transition, while
 the change in Pi equals 1/c times the change in the energy W. Hence, according

 to the present theory, the system experiences a recoil when it emits radiation,

 in agreement with the light-quantum theory. Each component of the emitted
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 Relativity Quantum Mechanics. 415

 radiation is assoeiated with two momenta of the whole system as well as

 with two energies.

 ? 5. Theory of Compton Scattering.

 Consider a free electron subjected to plane polarised monochromatic incident

 radiation. The electron and incident radiation together may be considered

 to form a dynamical system whose emission spectrum can be determined by

 the methods of the preceding ??, althongh it is usually called not an emission

 spectrum but a scattered radiation.

 Suppose the incident radiation to be moving in the direction of the x1 axis

 with its electric vector in the direction of the x2 axis. The electromagnetic

 field may then be described by the potentials

 Ki = fC3 = KC4 = ? C2-a cos v (ct -xi) (19)

 'where v is 2-c times the wave number of the incident radiation, and a determines

 the intensity of the incident radiation Io through the formula

 co e a2v2/8r. (20)

 Since v and Io can be measured physically they are e-n-umbers, and therefore

 so also is a. We shall suppose a to be small, and shall neglect second order

 effects. The Hamiltonian equation is, if one puts - e for e in (13) and uses

 the values for the K'S given by (19),

 m2c2 =V2/C2 - p2 - {P2 + a' cos v (ct- X1)}2 - P3 (21)
 where

 a' - ea/c (22)

 and is a e-nutnber. Since there are no internal co-ordinates, m is now a c-number,

 being the rest-mass of an electron.

 We shall determine the frequency and intensity of the radiation emitted in

 the direction defined by the direction cosines 11, 12, 13 (c-nnmbers). , This

 reqnires that t' t -(11x1 + 12X2 + 13x3)/c shall be a uniformising variable.
 Apply the linear canonical transformation

 1 I PiPet -xl P1=P 1 AV /e

 ;2' X2 P2-P2 -H 12 W'/c l

 X3 -x3 P3 P3 + 3 W'/C

 t' t - (1X1 -- 12X2 -1- l3x3)/c -w -W. + cp1 J
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 416 P. A. M. Dirac.

 which gives
 (1 11) pj =-Pi +1W/c I

 (11) P2 2P1 ? (1 t1) P2 - 12W/C L

 (1 - P1)3= 13P1 + (1-11)P3 - 13W/c (24)
 (I 11) AV' ' A-Cs J

 The Ha-amiltonian equation (21) becomes, if one neglects a2,

 m2C2 (-WI -- cp11)2/C2 - (-P' p l A-W/C)2

 -(P2' + 12 W'/C +' ces VX1)2 - (P3' + 13 W'/C)2

 _ -2W/c . A-B (25)
 where

 A (1 - 11) PI + +2P2" - 13p3 + 12 a' cos vx'

 IIPI + 12P2 + 13P3 - W/C + 12a' cos vx1
 and

 B P2'2 + P3 2 +- 2a'P2' COS VX1'.

 Equation (25) takes the standard forin

 H -W ' 0 (26)
 where

 H - 1 C (mtmc2 + B) A-. (27)

 Since W' cominutes with A, we could equally well have written (25) in the form.

 22c2 =-22AW'/c- B

 which would have given equation (26) with

 HE -t-c A-- (ns2c2 + B). (27')

 This does not agree with (27) sil ce A does not commute with B. More generally

 we could easily obtain the Hanmiltonian

 H - 12 cfi (2tm2 + B)f2, (28)

 wheref1 andf2 are any two functions of the single variable A such thatfif2 A-1

 We are thus led to an inconsistency, as is always liable to happen when one is

 dealing with the Hamiltonian equation, or any other equation that does not

 correspond to an identity on the classical theory.

 We can get over the difficulty in the present case by showing that all Hamil-

 tonians of the type (28) give the same values for the frequency and intensity

 of the emitted radiation. Let

 2 - cf1* (m2c2 B)f2*

 be another such Hamiltonian, i.e., f1* andf2* are functions of the single variable

 * The notation a/$ is used only when a and B commx-ute, so there is no ambiguity.
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 Relativity Quantum Mechanics. 417

 A such that f1 *f2* A-1, and put fi* bf1, so that b must be a function of
 the single variable A, and must commute with the f's. We must then have

 2* i= f2b-1, so that HI* must be connected with the H of equation (28) by the
 relation

 H1* b H b-1

 If Jr, wr are the uniformising variables when the Hamiltonian is H, then it

 is easily seen that J,= bJ,b-, w* -bwvb1, which are connected with the Jf,
 wr by a contact transformation, are the uniformising variables when the
 Hamiltonian is H*, and that H* is the same function of the Jr* that H is of

 the Jr. It follows that the frequencies are the same with either Hamiltonian.

 Further, if X is any function of the variables of the system, then b X b-1 must

 be the same function of the Jr*, W* that X is of the Jr, Wr. Now take X to

 be the polarisation in any direction perpendicular to the direction of emission

 (these being the only components of the polarisation that matter), so that

 X ;- x1 ?+ X22 + X3X3

 where the X's are c-numbers satisfying ?ill + X212 + ?313 0. We find

 [A, X] ll + X212 + 313 0,

 so that X commutes with A, and therefore with b. W"e now have that X is

 the same function of the J,*, wr* as it is of the Jr, wr, and hence its Fourier
 amplitudes are the same for either Hamiltonian.

 Having thus established that all Haramiltonians of the type (28) lead to the

 same results, we may proceed, using the Hamiltonian (27), which is the most

 convenient one. We see at once that P2' and p3' commute with II, and they
 are therefore constants. The action and angle variables are easily verified to be*

 J - 1 - { (I - 1)p' PI" 12P2 + 13P3 + 12a/ cos vxl'}
 v(1 - 1)

 22 m2c2 - p2'2 - p3'2

 me22 + P2'2 + p3" + 2a'p2' cos vX1'

 - (1-l~) nt2c2+ Bo(9 _ t _ ~A (se2bB 29)

 where
 Bo P2 '2 + p 2

 and

 -vx1 + n2a22 + Bo ' (30)

 * Loc. cit., p. 417.

 VOL. CXJ.-A.
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 since we then have

 [w, J] -( 1 1 E[w, ]

 =Iv 2a's+ 2'_[siyn vxl', P,']M2c2 -P Bo v(l - l ) BomMc2 2 - B

 as
 [sin vx1', pi'] V cos vxl'.

 From (27) and (29) we have

 LI- A m2c2 ? 2c 2 P F p32 (31)
 v(12- 11) J

 Since P2' and p3' commute with J and w, we may take them to be uniformising

 variables, as we then have H a function of P2' p3' and J only. We do not

 require to determine the uniformising variables conjugate to P2' and p3,.
 There is only one component of radiation emitted, namely, that corresponding

 to eiw. Sinlce P2' and p3' commute with eiw, it follows from ? 1 that their
 c-number values remain unchanged during a transition, while the value of J

 is reduced by ht. Thus, if we use the symbol A to denote the increase in the

 c-number value of any constant of integration during a transition, we have

 AP2 %=O, Ap3'z=30, AJ=- h,

 while if v' is 27r times the wave number of the emitted radiation, we have fromr

 Bohr's frequency condition

 All -cAy'= AW'.

 If we neglect small quantities proportional to a or a', the equation AJ =-h

 gives, from (29),
 AA -hv (1 - 11)

 or
 AP1' --hv.

 We now find, using the transformation equations (23),

 Ap1 hv-l1hv')1

 AP2 -12hv' l(32)

 AP3z--1373v'
 AW/c ihv-hv' J

 If one neglects a, then Pi, P2' P3 and W are the ordinary momenta and kinetic
 energy of the electron, and equations (32) are then the equations that express

 the conservation of momentum and energy on Compton's light-quantum theory
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 Relativity Quantum Mechanics. 419

 of scattering.* The present theory thus gives the same values for the frequency

 of the scattered radiation and the recoil momentum of the electron as the light-

 quantum theory.

 ? 6. Intensity of the Scattered Radiation.

 To obtain the intensity of the emitted radiation, we muLst determine the

 amplitudes of vibration in two mutually perpendicular directions that are both

 perpendicular to the direction of emission (11, 12, 13). We may take the direction

 cosines of these two directions to be

 13, 1213 12 11 and 12 1 j32 -1213

 which are easily verified to satisfy all the necessary conditions, and put

 X- 13x- - X2 ' f 1 )(

 y =12X + 1-32 +1 (2 X

 We have from (27)

 [xj, H] -c (m2c2 + B) A-' [x1', A] A-' e-c (1- 1) (M2c2 + B) A-2

 [sin vxj, H] - Ic (M2c2 + B) A-1 [sin vx,', A] A-'

 2-c (M2c2 + B) A-lv (1 - 1t) cos vx1' A-'

 -v-w(1 -l) H cos vx1' A-1

 [x3', H] -1c [X3', B] A-1 + ,c (m2c2 + B) A1 [X3', A] A-'

 - le 2p3'A l+ _1C13 (M2C2+ B)A-2

 I=c (13 + cp3'/H) (M2C2 + B) A-2

 (13 + cp3'/H)/(l - 11) . [x' H],
 so that

 [(1- 11) x3'- (13 + cp3'/H) xl, H] 0,
 or

 (1- 11) X3'- (13 + cp3'/H) xl' = const. (3)
 Also

 [x2', H]2 -- c [x2" B] A1 + Wc (m2c2 + B) A-1 [x2', A] A-1

 - l-c (2P2' + 2a' cos vx1') A-'+ 412C12 (nt2c2 + B) A-2

 - a'c cos vx1'. A-' + 2-c (12 + cp2'/H) (m 2c2 + B) A-2

 a'c/v (1 - 11) H. [sin vx1', H] + (12 + CP2'/H)/(1 - 11) [x1', H],
 so that

 (1- 11)X2' a'c/vH * sin vx1'- (12 + cp2'/H)x1' const. (35)
 * Compton, 'Phys. Rev.,' vol. 21, p. 483 (1923).

This content downloaded from 128.103.149.52 on Mon, 18 Dec 2017 18:21:18 UTC
All use subject to http://about.jstor.org/terms



 420 P. A. M. Dirac.

 From equations (23) we find

 X2 $X2~ X7 x3', (1- XI =- et' - XI -2 + t 3X3,
 -so tht the first of equlations (33) may be written

 (.1- ) X 13 (CP'- X1 - 2x' +lx3) 1 2l3x2 + (12 1- 1lli) X3
 l3ct - 13X1 2 + (1 -123'

 13Ct' + Cp3'/. XI' + const.

 with the help of (34), and similarly the second of equatioins (33) may be

 written

 (1- |1) y 12 (Ct'- XI' -[-12X2 + r.3') + (132 - 1 X - lt2) '2 l215x3
 12C" t2XI + (1- t- 2

 12Ct' -- CP2'/I . x1' -+ a'c'/VIl . sinl vx1' + const.

 with the help of (35).

 We are interested only in the periodic parts of X and Y, and may omit the

 constanrt parts and the parts that increase uniformly with respect tot' or w.
 To the first order in a equation (30) for w may be written

 va1= w-2a'p21/(myb2c2 Bo) . sin w,

 and we now find for the periodic parts of x and y, with the help of (31.),

 Cp3' 2a'p2' 4a'p2'p3 si
 X si_I)Hv(fiC 3)n tv (1UC 2sin w - (1t) II v (M2c2 W- B0) s + 2

 _2a' (M2c2 -P2'2 -}-p3'2)J .
 m2c- -kI B0)2 sin w J

 These equations may be written

 X - 2ia,' f ep2p3J eiW e p2p(J-_hf)
 ~(M 2c2+ Bo)2 (M 2c2 Bo0)2j

 ((m2c2 _ p2/2 + p32) J eV -c t (M2C2 - hzl - p3) (J-_) 1
 ( -I-B2 2+ 0)2 (M2c2 + B0)2 f

 The coefficients in front of etW and behind e`W in the expansion of X or Y are

 not conjugate imaginaries, owing to the fact that J and w are not real. All the

 same, their product must still be a quLarter of the square of the amplit-ude of

 vibration, expressed as a function of the initial value of the action variable. WATe

 thus obtain for the sum of the squares of the aimplitudes of X and Y the value

 C2 4 a'2 {4 P 2'2P3 -2 (2c2 -P2/2 P32)2} J (J - h)/(M2c2 + B0).

 4a'2 J (J-h) 2)2 Ii - m2c2 4rn2c (37)
 (m2c2 + p2 + p32 2 + 2 P'2)2
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 If the electron is initially at rest, except for the small oscillations cansed by the

 incident radiation, we must substitute for p2', P3 and J their values determined
 by the relations

 P1 P2 P 2 P3 = 0, W i2

 which give, from (24)

 P. -- n1mc/(i - 11) P2' =- 2Mc/(1 - 11) p3 =-13Mm/(1 - 11)

 m2c2 + Bo0- M2C2 + p2 2 + P3 2 = 2m2c2/(1 _ t )
 and

 J = A/v(1 -1) =-mc/v(l -1)

 witbh neglect of a. The value of C2 given by (37) now reduces to

 C2 a 2a + (1- _1) a2v '22 - (1 '212 (1 12) V ( v X me M2C2V2 IV

 if we use the Compton relation connecting v' with v, namely,

 1 _1 + h(1-1).
 - v v Mc

 The intensity of the emitted radiation at a distance r from the ernitting
 electron is now given by equation (17) with cv' substituted for (do), .e.,

 =24 '4 ' v, 2 ( 2 - 12) (38)
 8rc3r 2 Mne2cv2 v m2c4r2 v3

 with the help of (20) and (22). This is just (v'/v)3 times its value according to
 the classical theory.

 If the incident radiation is unpolarised, one must average (38) for all directions

 of polarisation of the incident radiation, and the result that the actual intensity

 iS (V'/V)3 times its classical value still holds. This result is not very di-ferent

 from Compton's formula* for the intensity of the scattered radiation. In
 particular, they agree when the angle of scattering is 0 or 1800.

 ? 7. Comparison with EKperiment.

 The result obtained in the preceding ? that the intensity of the radiation

 scattered by a free electron in any direction is (v'/Nv)3 times its value, according

 to the classical theory, where V/v is the ratio of the wave number of the radiation

 scattered in that direction to the wave number of the incident radiation, admits

 of comparison with experiment. This is the first physical result obtained from

 the new mechanics that had not been previously known.t

 * Compton, loc. cit., equation (27).

 t Note added, May, 1926.-This result for unpolarised incident radiation has recently
 been obtained independently by Breit from correspondence principle arguments (' Phys.
 Rev.,' vol. 27, p. 362, 1926).
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 422 P. A. M. Dirac.

 The quantum formula for the intensity at distance r of the radiation scattered

 by N electrons with plane polarised incident radiation of intensity To is

 I1(0, I) 1 Ne4 sin2~
 2 = 2 c4 f 1 + C (I -COS 0) }3'

 where
 cc --tv/mnc

 alnd 0 is the angle of scattering and (, the angle between the direction of the

 scattered radiation and the direction of the electric vector of the incident radia-

 tion. For unpolarised incident radiatioin the formula is

 Ir )- {1T + a (1 - CoS (40)
 The full curve in the figure shows the variatioln of the intensity of the scattered

 radiation with the angle of scatteriing according to formula (40) for unpolarised

 incident radiation of wave length 0 022 A, which makes oc 1 1. The lower

 0~75 |<\ a CIassical Theory /4'

 _ ~ ~~~~~~~ I

 0>5

 ~0'5

 \\?w Quantum Theory

 0w25 . X

 Compbon's Theory \,

 -45 90 135 180
 Angle of Scattering
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 Relativity Quantutm Mechannics. 423

 broken curve is the result given by Compton's theory,* and the upper broken

 curve is given by the classical theory. The crosses indicate experimental values

 obtained by Compton, which have been taken from Compton's paper.t It will

 be observed that the experimental values are all less than the values given by

 the present theory, in roughly the same ratio (75 per cent.), which shows that

 the theory gives the correct law of variation of intensity with angle, and suggests

 that in absolute magnitude Compton's values are 25 per cent. too small.

 One may easily obtain a formula for the total energy removed from the

 primary beam by scattering, by integrating I (0) v/v' over all solid angles. The

 result is

 2rNe 1+ 4 f2(+ _ log () + 22)} me x I-i--2oC oc

 which for ordinary values of oa lies very close to Compton's expression

 8n Ne4 1

 ? 3 m2e4 1 + 2a'

 (e.g., for oc 1 our formula gives a result 5 * 7 per cent. greater than Compton's),

 and is in very good agreement with experiment.

 According to the present theory the state of polarisation of the scattered

 radiation is the same as on the classical theory, since the intensity of either

 polarised component of the scattered radiation in any direction is (V'/V)3 times

 its classical value. The radiation scattered through 900 is thus plane polarised

 for unpolarised incident radiation. This result might have been expected from

 the correspondence principle, since it holds on the classical theory for an electron

 moving with either the initial velocity (i.e., zero) or the final velocity of the

 quantum process. It does not hold for an electron recoiling with that velocity

 that gives the correct frequency distribution when the electron is scattering

 according to the classical theory, and for this reason previous theories have

 predicted a shift from 900 for the angle of scattering which gives plane polarisa-

 tion.1 Experiments have been performed by Jauncey and Stauss to settle this
 question.? They found no shift with incident radiation of 0 54A, and a shift

 of 2-1-, less than half the value they expected, with incident radiation of 0* 25A,

 these results are slightly in favour of the present theory which requires no shift.

 Great accuracy was not attainable owing to the difficulties caused by stray

 radiation.

 * Compton, loc. cit., equation (27). Other formulao have been obtained by Jauncey,
 'Phys. Rev.,' vol. 22, p. 233 (1923).

 t Compton, loc. cit., fig. (7).
 I See Jauncey, 'PPhys. Rev.,' -vol. 23, p. 313 (1924).
 ? JaLncey and Stauss, 'Phys. Rev.,' vol. 23, p. 762 (1924).
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