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Abstract Origin of life theories often argue that molecular self-organization

explains the spontaneous emergence of structural and dynamical constraints. How-

ever, the preservation of these constraints over time is not well-explained because

of the self-undermining and self-limiting nature of these same processes. A pro-

cess called autogenesis has been proposed in which negative structural coupling

between self-organized processes preserves the constraints thereby accumulated.

This paper presents a computer simulation of this process (the Autogenic Automa-

ton) and compares its behavior to the same self-organizing processes when uncou-

pled. We demonstrate that this coupling produces a second-order constraint that

can both resist dissipation and become replicated in new substrates over time.
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1 Introduction

How could life have emerged? Although understanding life’s origins does not necessarily imply

understanding life as we find it around us today [6], it promises far reaching consequences for

scientific fields such as cognitive science [31] and artificial intelligence [23] as the emergent

dynamics that created life may have also shaped mind, machine and society.

Theories explaining the possible origins of life are as numerous as the properties that are

claimed to define it. Some define life based on a general capacity for replication [34] or the

exchange of energy and matter with an external environment [24, 29]. Others characterize life

as systems using template-based encoding (e.g. RNA) [19] or being composed of autocatalytic

sets [26]. Although each of these theories has its own flavor in explaining life’s possible origins

[21], many assume the involvement of the structure forming dynamics of self-organization.

Despite their often pivotal role in explaining the emergence of life, self-organizing processes

are limited in their capacity to maintain structure [28]. A recently proposed theory suggests

that, beyond mere self-organization, a synergetic coupling between self-organizing processes

is a minimal requirement for life [11]. Through this higher-order linkage, the processes that

generate structure may persistently recreate a capacity for self-creation, leading to robustness

and a potential capacity for long-term sustenance and natural selection. As an example of such

an autogenic process, a proto-life model system called the autogen is described to illustrate how

two self-organizing processes – reciprocal catalysis and self-assembly – maintain each other’s

boundary conditions and thereby mutually increase the probability of persistence over time [10].

Currently, the autogen model is a theoretical proposition that remains to be validated exper-

imentally. As a step toward validation, this paper describes a series of simulation experiments

that investigate the self-organizing and autogenic properties of the autogen model. A simpli-

fied particle system simulation called the Autogenic Automaton models the synergetic linkage
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of self-organizing processes that leads to the emergence of autogens. In the next section this

higher-order linkage is described in more detail, followed by a description of the computa-

tional model and the methods used to simulate and quantify the self-organizing and autogenic

processes that generate, eliminate, and preserve constraint.

2 Autogenesis

Life’s ability to resist degradation and persist in hostile environments is both ubiquitous and

astonishing. Generation of structure, preservation by repair, and trait persistence through repro-

duction are perpetually organized in a continuous struggle against the destabilizing mechanisms

of the second law of thermodynamics. In this section, autogenesis is introduced in three parts:

first, how the inevitable increase of thermodynamic entropy poses a problem for models of life

based on self-organization. Then autogenesis is presented as a three-tiered process hierarchy of

constraint elimination, constraint generation and constraint preservation (and ensuing constraint

selection), after which this hierarchy is exemplified by the autogen model, to be used for the

subsequent simulation experiments.

2.1 Second-Order Self-Organization

Self-organization may occur in open systems that are continually perturbed toward a far-from-

equilibrium state through incessant nonlinear amplification of local fluctuations [28]. These

systems tend to reduce their statistical entropy, i.e. their variety of potential states, thereby

becoming statistically less complex; for this reason, self-organization may also be regarded as

self-simplification [1].

A typical example is the formation of Rayleigh–Bénard convection cells, which may emerge

if a fluid is heated from below, causing fast-moving molecules in the bottom to rise upward

while slow molecules simultaneously move downwards. These two vertical motions lead to
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horizontal heat exchange between upward and downward moving molecules, obstructing the

dissipation of heat from its source to the surface. Under certain conditions (e.g. temperature,

viscosity, shape and size of the surface) hexagonal convection cells develop that minimize the

horizontal heat exchange and thereby maximize vertical heat dissipation [15]. As the number

of potential system states is reduced by the emergence of these cells, the system becomes more

ordered. Other examples include laser beams [16], where optical amplification results in spatial

coherence; vortices, such as whirlpools and tornadoes; and autocatalytic chemical reactions,

where the product of a reaction is also a catalyst for it, leading to a nonlinear reaction increase

under particular proximity conditions [32].

The nonlinear amplification that is typical for self-organization tends to push the thermo-

dynamic conditions for further propagation toward the unfavorable. This may occur up to a

point where the system is no longer far-from-equilibrium and the local thermodynamic entropy

increase comes to a halt. For example, in a reciprocally catalytic set reaction rates may increase

exponentially as more and more catalysts are produced, up until the point when not enough

reactants are available for further propagation, and the self-organizing process ends. Given the

universal presence of self-organization in living systems, how can it be possible that order per-

sists long enough for complex organisms to come about? It has been suggested that the answer

may lie in the hierarchical organization of self-organizing processes [11].

When the product of an autocatalytic reaction enables a second autocatalytic reaction, which

produces a reactant that enables the first (or a third, etc., as long as the causal chain is eventually

closed), a so-called hypercycle emerges [13]. Hypercycles represent one possible way in which

self-organizing processes, autocatalytic cycles in this case, may be linked together in a dynam-

ical process hierarchy. However, with respect to preventing self-undermining this particular

type of second-order self-organization does not provide a sufficient solution: each autocatalytic

cycle that the hypercycle consists of represents a potential weakest link, which may cause the
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fragile hypercycle to break down entirely when reactants or energy for this particular cycle are

no longer available.

Autogenesis requires another type of second-order self-organization where two (or more)

self-organizing processes not only promote each other, but also where they act as a support-

ive environment if one of them breaks down, such that their self-undermining tendencies are

reciprocally counteracted.

2.2 Constraint

The formation of crystals through self-assembly is a self-organizing process. The probability

of particle detachment decreases with the number of adjacent crystal cells that keep a particle

in place, causing a spatial difference between particle positions, such that at some locations

there are many particles present while at other locations there are few particles to none. This

difference, maintained by the attachment and detachment rates of the assembly process, may be

viewed as a constraint on the spatial distribution of particles. More generally, a reduction of the

variety of macroscopic states can be understood as a constraint producing process [9].

From a constraint-centric perspective, the global increase of entropy predicted by the sec-

ond law of thermodynamics appears to run counter to the production of constraint caused by

self-organization. Thermodynamic entropy increase spontaneously introduces noise into the

system, as the probability of a random microscopic event inducing more order is lower than

the probability of an event inducing less order (there are relatively few ordered states), thereby

increasing the variety of macroscopic states. An example of such a constraint eliminating, noise

inducing process is an ice cube melting in a soda drink: considering the possible states of water

molecules in the glass, the number of states where only some of the molecules are arranged in

a solid ice-cube is by far outnumbered by the number of states where they are all mixed up.

Living systems tend to produce constraint as well as preserve it against elimination. This
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capacity allows organisms, and lineages of organisms, to persist over long stretches of time.

Following the type of second-order self-organization described above as autogenesis, constraint

preservation is enabled by a juxtaposition of constraint producing processes, such that they ac-

tively support each other’s persistence [8]. Whereas self-promoting self-organizing processes

(e.g. hypercycles) tend toward self-undermining and ultimately a breakdown of the causal cy-

cle, this reciprocally counteracting juxtaposition actively prevents self-undermining from taking

place.

The relatively stability of these structural synergies allows for a simple type of natural se-

lection to occur, as different kinds of synergies may co-exist within the same system. Some

will be better suited to prevailing conditions than others and therefore have a better chance of

sustaining themselves. This eventually leads to an elimination of noise (or reduction of variety)

on a higher level, as unsuccessful noise-reducing synergies are removed. In this selection logic

a discontinuity becomes apparent again, as the structured parts are separated in a competition

caused by the dissipative potential of the whole. This transition represents a shift in logic com-

parable but opposite to the emergence of ordered structure from chaos: it could be argued that

this shift constitutes a secondary kind of emergent transition between dynamical regimes.

2.3 Autogen

The three-tiered constraint hierarchy of autogenesis is exemplified by a minimal model system

of life, the so-called autogen. In earlier publications (e.g. [10]) this model system was re-

ferred to as ’autocell’. However, since it exemplifies a general class of self-generating systems

(rather than being typically cellular) ’autogen’ is the preferred term. Autogens are formed by a

synergistic relation between self-assembly and reciprocal catalysis, both being self-organizing

processes.
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Figure 1: Illustration of autogen formation (left) and the reactions involved (right). Autogens
constitute a dynamical linkage between self-assembly and reciprocal catalysis. In this model
system, self-assembly is a self-organizing process whereG particles attach to one another, form-
ing Gn crystals of size n. These crystals may break up due to detachment. G particles are
generated by a reciprocally catalytic set of six different particle types (A to F ). In turn, crystals
may contain C and F particles, isolating these catalysts from potential reactants.

In a reciprocally catalytic system, each reaction initially leads to an increased probability for an-

other reaction to take place as more and more catalysts are created. Exponential growth ensues

until the reactants are depleted. Reciprocal catalysis leads to exponential increase of reactions

that is limited solely by the number of available reactants. A boundary or container would

prevent the exhaustion of reactants by removing them from the environment, thereby preserv-

ing a chemical potential for further dissipation [24]. Such a container may itself be formed by

a self-organizing process, e.g. crystal growth through self-assembly [14]. Autogenesis, then,

suggests that the form and function of a self-assembled container is dynamically linked to the

autocatalytic process as it prevents the reactants from being depleted. Similarly, it explains how
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the autocatalytic process dynamically shapes the form and function of the crystals as it affects

the process of self-assembly.

The autogen model is illustrated in figure 1. Particles of type A and B react to form a C

particle, catalyzed by particles of type F . A similar reaction takes place for particles of type D

and E, which form F and G particles, catalyzed by C particles. In the same system, G particles

attach to one another creating self-assembled crystals of type Gn, with n for the number of

G particles the crystal consists of. Due to their particular form, these crystals may contain

catalysts, thereby negatively affecting the immediate production of G particles but ensuring a

potential forG-particle production over time. The negative structural coupling ensures that self-

assembly stops before the catalysts are depleted, even though they are contained and therefore

not readily available in the environment. This reaction potential is employed when a crystal

opens up after detachment: contained catalysts are released, initiating a new chain of catalytic

reactions that provides new G particles used to repair the container, after which it may close

again, thereby completing the work cycle.

The autogenic process as a whole then gains a minimal form of autonomy: as it is able

to do work on its own conditions for sustenance, it grows independent from the conditions

of its environment and becomes more dependent on its own internalized constraint. Under

some conditions that are strived to be maintained, probability of growth and sustainment is

higher than that of breakdown. When the autogen is damaged, it likely begins to repair itself.

Autogenesis is about the higher-order constraint on the constraint generating processes of which

it is constituted, such that a self is reproduced. It is a dynamic for the maintenance of itself as it

maintains an implicit description of its units of preservation.
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3 The Autogenic Automaton

The logical steps building up to autogenesis, exemplified by the autogen model described above,

are simulated with the Autogenic Automaton. Other computational proto-life models have sim-

ulated the formation of containers, the emergence of collectively autocatalystic sets, or both

[25, 33]. Although this simulation falls into the latter category, the goal here is not to provide a

physically accurate model of either self-organizing process, nor of their synergy, but rather on

demonstrating the viability of the logical hierarchy leading up this synergy.

Figure 2: A continuous, closed particle system (left) is modeled in the Autogenic Automaton
as a discrete grid of 10 x 10 tiles (right).

3.1 Model

A two-dimensional 10 x 10 tile grid is used as a discrete model of a closed reaction-diffusion

system (fig. 2). Particle movement and the reaction rules that govern particle attachment, de-

tachment, and the creation and removal of particles are all computated locally per tile. In this

sense, the system resembles a cellular automaton allowing for emergence [4], where tiles may
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be occupied by multiple particles. Diffusion caused by particle-to-particle collisions is approx-

imated by randomly directed movement to a horizontally or vertically neighboring tile with

probability Pmovement = 0.1 at every time step, for each particle.

Particle-to-particle reactions and associated probabilities are modeled after crystallization

and reciprocal catalysis. To this end, six particle types are defined and used for modeling

reciprocal catalysis while a seventh type models the formation of crystals through self-assembly.

3.2 Simulation

The Autogenic Automaton is initialized by assigning random grid locations to a predefined

quantity of particles of each type. Next, for a given number of time steps, new particle positions

are computed and the reaction rules are applied to the particles at each tile.

One advantage of these localized reactions is that only small subsets of the total number of

particles interact at each time step, reducing the computational complexity of the simulation.

Another way to keep the model relatively simple and the simulation computationally tractable

is to model only the aspects of self-organization that are necessary for showing the viability

of autogenesis, which include nonlinear probability functions and reversible reactions. Other

physical properties typical for particle systems (e.g. kinetic energy, dissipation of heat) are not

modeled.

In order to show the generation and elimination of constraint (i.e. macroscopic change)

over time, the simulation starts in non-equilibrium conditions. Due to the absence of heat and

friction, the entropy potential necessary for far-from-equilibrium systems to be self-organizing

is not defined with respect to thermodynamic equilibrium (when all movement and reactions

have ceased to occur) but rather with respect to chemical equilibrium. Thus, the initial set of

particles is not in chemical equilibrium since no crystallization has occured nor has a catalytic

reaction taken place. So, the macrosopic change that is observed in the experiments that follow
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may be attributed to the system moving toward a chemical equilibrium.

3.3 Quantifying Constraint

Through the course of a simulation run, particles move and collide against one another to create

new particles or crystals, or they fall apart. The system moves through various macroscopic

states, caused or maintained by processes that generate, eliminate, preserve or select constraint;

the quantification of statistical entropy described here yields an indirect observation of the un-

derlying processes.

Constraint is expressed by means of the information entropy over the spatial probability

distribution of particular event types in the tile grid [20, 17, 27]. Notable characteristics of

the particle system surface by observing the (in-)homogeneity of the locations of events that

correspond to these characteristics, such as the presence of a particle type or the occurrence of

a specific reaction.

Given a set of probabilities pi for i = 1, . . . , ntiles with 0 ≤ pi ≤ 1 and
∑

i pi = 1, informa-

tion entropy is defined as [30, 7]:

H = −
ntiles∑
i=1

pi log2 pi .

Now, when we consider an event X , we substitute

pi =
|Xi|
|X|

,

with |Xi| the number of events at tile i and |X| =
∑

i |Xi| the total number of events, to obtain

H(X) = −
ntiles∑
i=1

|Xi|
|X|

log2
|Xi|
|X|

.

For ease of interpretation we often consider the so-called normalized information entropy [18]
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Ĥ(X) = − 1

log2 ntiles

ntiles∑
i=1

|Xi|
|X|

log2
|Xi|
|X|

, (3.1)

which normalizes the standard information entropy by its maximum value such that always

0 ≤ Ĥ(X) ≤ 1. For a completely homogeneous distribution of events over tiles we now have

Ĥ(X) = 1, whereas Ĥ(X) = 0 when all events X are concentrated at a single tile.

3.4 Quantifying Multiple Constraint Types

In some cases it is necessary to measure the spatial difference between two event types, X and

Y , using the Kullback-Leibler divergence of their distributions over the grid tiles [22]:

DKL(P ||Q) =
ntiles∑
i=1

pi log2
pi
qi
.

Substituting pi and qi with |Xi|
|X| and |Yi||Y | , respectively, would yield infinite divergence for a dis-

tribution with a tile i such that |Xi| > 0 and |Yi| = 0. To resolve this problem, a smoothing

function is used [3], where

qi =

{
α |Yi||Y | for |Yi| > 0

ε for |Yi| = 0
, (3.2)

with ε = 10−5 and normalization coefficient α chosen such that the probabilities sum to 1.

pi is substituted similarly with |Xi|
|X| . For ease of exposition, we will omit this smoothing in

subsequent formulas.

4 Constraint Generation

The Autogenic Automaton is used to simulate the generation of constraint in two separate self-

organizing processes: the formation of crystals through self-assembly, and the local amplifica-

tion of reactions taking place in a reciprocally catalytic set.
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4.1 Self-Assembly

Self-assembly is modeled by a series of attachment and detachment reactions between G parti-

cles and crystals Gn with reaction parameters γ+ and γ−:

Gn +G� Gn+1 , (4.1)

with n ≥ 1 and G1 ≡ G. If a G particle is located within the same tile as either another G

particle or crystal, the probability of attachment is given by

P+
g = γ+ ∈ [0, 1] .

Modelling detachment as the opposite of attachment, crystals have a probability P−g of a G

particle detaching from the crystal. Larger crystals are more tightly connected and less likely

to break apart than smaller crystals due to a larger number of kinks holding the individual

particles together [5]. An increased size yields a lower probability of detachment and therefore

increases the probability for further growth. This introduces a nonlinearity in the crystal growth

process, reflected in our model system by a detachment probability function that is negatively

exponential to the crystal size n.

P−g = (1 + exp[γ−])−n ,

with γ− ∈ R, n ≥ 2. Following equation (3.1), eventXi is defined with respect to self-assembly

as the observation of a G particle at tile i, where Gn crystals are counted as n observations.

Therefore, the generation of constraint during this process is examined using

Ĥ(G, t) = − 1

log2 ntiles

ntiles∑
i=1

|Gi(t)|
|G(t)|

log2
|Gi(t)|
|G(t)|

,

for the normalized information entropy of G at time t.
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Figure 3: Decrease of normalized information entropy Ĥ(G, t) during self-assembly of 1000
G particles with γ+ = 1, for several detachment probabilities: γ− = −5,

γ− = −4, γ− = −3, γ− = −2, γ− = −1. The
images on the right depict how Ĥ(G, t) correlates with the distribution of G particles over the
grid, ranging from an almost homogeneous distribution (top) to a few Gn crystals (bottom).
Results are averaged over 100 trial runs.

Figure 3 shows the development of Ĥ(G, t) over time, for different values of γ−. With γ− = −5

the probability of detachment P−g is relatively high, such that many crystals fall apart and the

constraint on particle G locations is low. With γ− ∈ [−1,−2], P−g is relatively low: once

formed, crystals do not break apart, leaving no single G particles for attachment and no room

for further growth. The G particle locations are maximally constrained for γ− = −4.
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4.2 Reciprocal catalysis

Particle types A to F are used to model self-organization through reciprocal catalysis. Particles

of type A and type B may react to form a C particle when both are located in the same tile;

similarly for particles D and E forming an F :

A+B
F

� C , (4.2)

D + E
C

� F . (4.3)

Particles F and C are catalysts for reactions (4.2) and (4.3), respectively. Reaction probability

P+
r increases exponentially with n, the number of catalysts present at the same tile i (i.e. n =

|Fi| for the former reaction, and n = |Ci| for the latter)

P+
r = (1 + exp[%+])−(1+n)

−2

,

with %+ ∈ R. The reverse reactions (C particles splitting into A and B particles and F into D

and E) occurs with probability P−r for every C or F particle, at each time step

P−r = %− ∈ [0, 1] .

Similar to self-assembly, reciprocal catalysis is a locally nonlinear process: one catalytic reac-

tion increases the likelihood of another catalytic reaction occuring. However, the observable

artifacts of reciprocal catalysis (i.e. the produced catalysts) may cease to exist once this ampli-

fication process no longer takes place, or they may diffuse to different locations. To quantify

the amount of constraint generated, we therefore use the probability distribution of reaction

locations as observed events, rather than the catalysts themselves.
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Figure 4: Normalized information entropy during reciprocal catalysis, after initialization with
1000 particles distributed equally among types A, B, D, and E. For given %+ and %−, Ĥ(R, t)
is averaged over 5000 time steps and 10 trial runs. The right-side images depict the distribution
of catalytic reactions over the grid.

The constraint generated by reciprocal catalysis is quantified by a decrease in normalized infor-

mation entropy over the distribution of catalytic reaction loci R at time t:

Ĥ(R, t) = − 1

log2 ntiles

ntiles∑
i=1

|Ri(t)|
|R(t)|

log2
|Ri(t)|
|R(t)|

.

In order to investigate the effect of parameters %+ and %− on the normalized information entropy,

Ĥ(R, t) is averaged over time:
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1

tmax

tmax∑
t=1

Ĥ(R, t) .

Results for tmax = 5000 are shown in figure 4. It is found that distribution R is most constrained

for %+ ≈ 6 and %− > 0.5 (i.e. catalysts break up regularly) .

Figure 5: Elimination of constraint: the Autogenic Automaton is initialized with 1000 G

particles and γ+ = 1, γ− = −2. At t = 1000, γ− is changed: γ− = −5,
γ− = −4, γ− = −3, γ− = −2, γ− = −1. For

γ− ∈ [−3,−4] the eventual decrease in information entropy is preceded by an initial increase.
Results are averaged over 100 trials.
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5 Constraint Elimination

Self-organizing processes are enabled by specific conditions that promote local amplifications.

Due to change initiated by self-undermining (or imposed externally) the boundaries of these

conditions may be transgressed leading to an elimination of previously generated constraint.

This process can be demonstrated by means of a so-called process spectometry: after an initial

phase with conditions that enable self-assembly, the value of γ− is changed, and the effect on

the normalized information entropy is observed (fig. 5).

The figure shows that after t = 1000 the normalized information entropy is (initially) higher

for γ− ∈ [−5,−3]. After some time this value decreases as constraint grows: G particles that

have previously detached from small crystals now attach to others, such that only large crystals

remain. Within the 5000 time steps shown, this effect results in higher local concentrations of

G particles, less homogeneity, a lower value of Ĥ(G, t) and more constraint for γ− ∈ [−4,−3].

6 Constraint Preservation

The higher-order linkage between self-assembly and reciprocal catalysis has been discussed in

section 2.3, where a negative structural coupling is suggested that works in two directions:

1. G particles generated by autocatalysis are created in close proximity to one another, due

to the locality of the catalytic amplifications, thereby increasing the likelihood of crystal

growth;

2. crystals may act as containers for catalysts, preventing the reciprocally catalytic process from

undermining itself and preserving a potential for catalysis at a later point in time.

Modeling this synergetic linkage, reaction 4.3 is changed as follows:

D + E
C→ F +G .
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This increases the likelihood of G particles being produced in close proximity to a catalytic

reaction. For the reverse linkage a crystal needs to be capable of containing catalysts upon

formation, to be released again when the crystal breaks up. Therefore reaction 4.1 is changed,

where a crystal of size n containing k C particles andmF particles is denoted asGn(kC,mF ):

Gn(kC,mF ) +G+ pC + qF → Gn+1((k + p)C, (m+ q)F ) ,

Gn(kC,mF )→ Gn−1 +G+ kC +mF ,

with k,m, p, q ≥ 0 and n ≥ 2. The continuous addition of G particles is balanced by removing

G particles at each time step with probability P−g = (1 + exp[γ−])−1.

6.1 Parametrization

Thus far, four reaction parameters have been introduced: γ+, γ−, %+ and %−. The results in

section 4.1 showed that a decrease in Ĥ(G, t) may occur when γ+ is fixed at 1. Similarly,

figure 4 shows that %− > 0.5 allows for relatively low values of Ĥ(R, t). Given these values,

we investigate the ranges of γ− and %+ that allow for both types of self-organization to occur

simultaneously.

The redundancy between the distributions of G particle locations and catalytic reactions

is considered to be an indication of the amount of interaction between both processes, i.e. it

measures whether crystals tend to be located in proximity to catalytic reactions, and vice versa.

This is quantified using the Kullback-Leibler divergence with smoothing (eq. 3.2), which is

symmetrized to obtain a commutative measure:

SDKL(G,R, t) = DKL(G(t)||R(t)) +DKL(R(t)||G(t))

=

ntiles∑
i=1

[
|Gi(t)|
|G(t)|

− |Ri(t)|
|R(t)|

]
log2

[
|Gi(t)|
|G(t)|

/ |Ri(t)|
|R(t)|

]
,
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Figure 6: After initializing the simulation with 1000 particles evenly distributed among typesA,
B, D and E, it is run for 5000 time steps with γ+ = 1, %− = 0.5 and γ−, %+ ∈ [−10, 10]. The
four figures above show the average normalized information entropy of G particle locations (top
left), the average normalized information entropy of catalytic reaction locations (top right), the
average symmetrized Kullback-Leibler divergence with smoothing, where SDKL(γ

−, %+) =
max(SDKL) if no occurences are found (bottom left), and the sum of these three figures, where
SDKL has been normalized using scaling coefficient β (bottom right).
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with smoothing (eq. 3.2) applied if necessary. Running constraint preservation experiments

requires parametrization of γ− and %+ such that

(a) self-assembly takes place (i.e. Ĥ(G, t) is low);

(b) reciprocal catalysis takes place (i.e. Ĥ(R, t) is low);

(c) both processes take place in each other’s proximity (i.e. SDKL(G,R, t) is low).

Figure 6 shows these three measurements averaged over 5000 time steps for different values of

γ− and %+. The desired parameter values are estimated by minimizing

Ĥ(G, t) + Ĥ(R, t) + β SDKL(G,R, t) ,

where coefficient β scales SDKL(G,R, t) to [0, 2]

β = 2
(

max
γ−, ρ+∈[−10,10]

SDKL(G,R, t)
)−1

,

such that the normalized informaties entropies and the divergence between the distributions

contribute equally to the sum.

6.2 Preservation

Using the parameter values found, a process spectrometry is generated (fig. 7). For γ− ∈

[−5,−4] after t = 1000, the high probability of detachment is not conducive for the prolonged

persistence of crystals, and they fall apart. For γ− remaining at 0, Ĥ(G, t) continues to develop

unperturbed. Changing γ− to −1 results in a lower normalized information entropy, as more

G particles detach and subsequently attach to larger crystals (cf. fig. 3). With γ− changed to

−2, Ĥ(G, t) initially drops, but eventually finds a new equilibrium at a higher value than with

γ− ∈ [−1, 0].
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Figure 7: Normalized information entropy Ĥ(G, t) during autogenesis (left) and self-assembly
without reciprocal catalysis where instead of being generated by a catalytic reaction,G particles
are added to random grid locations with the same rate as in the previous simulation (right).
With γ+ = 1, %+ = 6, %− = 0.5, and γ− = 0 for t ∈ [0, 1000], and 1000 particles evenly
distributed among types A, B, D and E initially. For t ∈ [1001, 5000], γ− = −4,

γ− = −3, γ− = −2, γ− = −1, γ− = 0. Results are
averaged over 1000 trials.

By itself, this figure provides limited insight into the processes that underly the production,

elimination and preservation of constraint. However, it may be compared against a similar

experiment that lacks a higher-order linkage. Since Ĥ(G, t) only measures the constraint of the

distribution of G particles, the experiment is repeated without the set of particles necessary for

reciprocal catalysis. During the process spectometry of figure 7 (left), the number ofG particles

that were added at each time step is stored. In this second experiment, G particles are created

at random grid locations at exactly the same rate. This allows for self-assembly to take place

under similar circumstances, but decoupled from reciprocal catalysis. G particle creation occurs

at the same rate, although spatial proximity is no longer biased by reciprocal catalysis, and the

absence of catalysts excludes the possibility of containment.

The results of this self-assembly experiment are shown in figure 7 (right). Comparing both
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figures, it is found for γ− = −2 that constraint is preserved when a synergetic linkage between

self-assembly and reciprocal catalysis is present while it largely falls apart in the case of mere

self-assembly. Also for γ− = −1, the value of Ĥ(G, t) remains lower with this linkage than

without. This is not the case when γ− remains at 0. Here, self-assembly results in a more

constrained system than when combined with reciprocal catalysis.
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Figure 8: Fixing γ− at −0.5 and γ+ = 1, %+ = 6, and %− = 0.5, the grid is again initialized
with 1000 particles of types A, B, D and E. For 1000 trial runs over 5000 time steps, the
mean crystal size and standard error of the mean are reported for the five different containment
capacities.
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7 Constraint Selection

The preservation of constraint is a higher-order process: not only is noise reduced as the spatial

distribution of events becomes more constrained, but the distribution over specific constraint

types, e.g. the specific form of crystals, is itself also reduced.

Figure 9: Due to the way G particles attach to one another, crystals with specific topologies
may come about. This illustration shows several crystals Gn

c of equal size (i.e. n = 5) but with
different capacities (c) for containing catalysts, due their specific form.

In order to experimentally show the emergence of such higher-order constraint, the containment

capacity of crystals is limited by their specific form (fig. 9). This is reflected in the Autogenic

Automaton by initializing each new crystal with property c, a random value ranging from 1 to

5 that indicates the maximum number of catalysts a crystal may contain.

Figure 8 shows the average size of crystals compared against their maximum containment

capacity, for both autogenesis and self-assembly without reciprocal catalysis. The results reveal

two differences. First, a difference in crystal size between autogenesis and self-assembly, which

could have been inferred from the results of the previous constraint preservation experiments.

The second difference is that, for autogenesis, a crystal’s containment capacity is correlated

with its average size. In our model system the removal probability P−g is independent of the

specific crystal form, so the maximum containment of a crystal does not affect its size directly.

Rather, the value of c indirectly affects the growth of crystals, as the numbers of catalysts

present at a tile will affect the production of newG particles, and thereby a crystal’s capacity for

formation (or reconstitution) if those catalysts are released upon detachment. This work cycle
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creates a difference in size between the different crystal topologies, which is maintained despite

the independence between crystal topology and the underlying self-organizing processes.
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Figure 10: Higher-order constraint: the average normalized information entropy over the dis-
tribution of crystal capacities Ĥ(Gn

c , t) is substantially lower for autogenesis than for self-
assembly without reciprocal catalysis. Results averaged over 1000 trial runs.

This higher-order constraint may be quantified using the normalized information entropy over

the distribution of the containment capacities of crystals. With pc the probability that a crystal

has a containment capacity c, |Gn
c | the number of crystals with capacity c and |Gn| =

∑
c |Gn

c |

the total number of crystals,
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pc =
|Gn

c |
|Gn|

,

Ĥ(Gn
c , t) = −

1

log2 5

5∑
c=1

|Gn
c (t)|

|Gn(t)|
log2

|Gn
c (t)|

|Gn(t)|
.

Figure 10 shows the average Ĥ(Gn
c , t) over the simulation runs of the previous experiment for

self-assembly and autogenesis. Selection of crystal topologies induced by specific conditions

accounts for the relatively low normalized information entropy over containment capacities

during autogenesis.

8 Conclusions

Constraint generation, elimination, preservation and selection have been shown to occur in the

Autogenic Automaton simulation under particular conditions. Taken together, these processes

constitute self-organization and autogenesis, albeit in a minimal sense. The self-undermining

tendency of self-assembly and reciprocal catalysis is limited by virtue of their second-order

synergy – a higher-order constraint on these constraint generating processes – leading to preser-

vation of autogens and ultimately selection of crystal topology.

The experimental explorations described in this paper are not intended to quantify autoge-

nesis, or to give a full account of autogenic properties and phenomena. Rather, they serve to

demonstrate (1) the dynamics reversal that takes place in second-order self-organization, and

(2) the higher-order noise reduction constituted by formal type selection that may emerge from

competition between simple autogens. Those properties are what sets autogenic systems apart

from other models of the emergence of proto-life.
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The hierarchical distinction between different types of constraint is reminiscent of a logical-

type distinction. Although the three statistical distributions used here (G particle locations, R

reaction locations, and Gn
c containment capacities) are all subject to quantification in terms of

information entropy, this quantification does not distinguish between physico-chemical con-

straints expressed by the former two, and substrate independent, formal constraint expressed

by the latter. Since the physics underlying the maintenance of far-from-equilibrium states have

largely been ignored in this simulation (cf. [2]), further research and simulation is required to

develop tools capable of expressing this dynamical difference [12].
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protocell—a dissipative particle dynamics study. Artificial Life, 13(4), 319–345.

15. Getling, A. V. (1998). Rayleigh-Bénard convection: structures and dynamics, vol. 11.

World Scientific.

16. Haken (2006). Information and self-organization: a macroscopic approach to complex

systems. Springer.

17. Harder, M., & Polani, D. (2013). Self-organizing particle systems. Advances in Complex

Systems, 16.

28



18. Jost, L. (2006). Entropy and diversity. Oikos, 113, 363–375.

19. Joyce, G. F. (1989). RNA evolution and the origins of life. Nature, 338, 217–224.

20. Kauffman, S. A. (1993). Origins of Order: self-organization and selection in evolution.

New York, NY: Oxford University Press.

21. Kauffman, S. A. (2011). Approaches to the origin of life on earth. Life, 1(1), 34–48.

22. Kullback, S., & Leibler, R. (1951). On information and sufficiency. The Annals of Mathe-

matical Statistics, 22(1), 79–86.

23. Langton, C. G. (1986). Studying artificial life with cellular automata. Physica D, 22,

120–149.

24. Maturana, H. R., & Varela, F. J. (1980). Autopoiesis and cognition. Boston, MA: Reidel.

25. McMullin, B., & Varela, F. J. (1997). Rediscovering computational autopoiesis. In P. Hus-

bands, & I. Harvey, eds., Fourth European Conference on Artificial Life. Cambridge, MA:

MIT Press, (pp. 38–48).

26. Plasson, R., Brandenburg, A., Jullien, L., & Bersini, H. (2011). Autocatalysis: At the root

of self-replication. Artificial Life, 17(3), 219–236.

27. Polani, D. (2008). Foundations and formalizations of self-organization. Advances in Ap-

plied Self-Organizing Systems, 19–37.

28. Prigogine, I., & Stengers, I. (1984). Order Out of Chaos. New York, NY: Bantam Books.

29. Rosen, R. (1991). Life itself: A Comprehensive Inquiry into the Nature, Origin, and Fabri-

cation of Life. New York: Columbia University Press.

29



30. Shannon, C. E. (1948). A mathematical theory of communication. Bell Systems Technical

Journal, 27, 379–423.

31. Thompson, E. (2010). Mind in Life. Cambridge, MA: Harvard University Press.

32. Tyson, J. L. (1976). The Belousov-Zhabotinski Reaction. Berlin: Springer-Verlag.

33. Varela, F. J., Maturana, H. R., & Uribe, R. (1974). Autopoiesis: The organization of living

systems, its characterization and a model. BioSystems, 5, 187–196.

34. von Neumann, J. (1966). The Theory of Self-Reproducing Automata. Chicago, IL: Univer-

sity of Illinois Press.

30



Appendix: Model Description

A non-toroidal two-dimensional 10 x 10 tile grid is used as a discrete model of a reaction-

diffusion system containing seven different types of particles (A to G). At the start of a simu-

lation run, the particles are distributed randomly over the grid. Then, for each time step, each

particle may

1. move to a neighboring tile;

2. collide and react with other particles in the same tile;

3. break up.

These steps are described in more detail below.

Movement

Random movement caused by bouncing agains the edges of the grid, or particle-to-particle col-

lision, is approximated by randomly directed movement to a horizontally or vertically neigh-

boring tile with Pmovement = 0.1 for each particle or crystal.

Collision

Self-assembly of Gn crystals:

Gn +G→ Gn+1 ,

with reaction probability P+
g = γ+ ∈ [0, 1] with n ≥ 1. Reciprocal catalysis of particle types

A to F

A+B
F→ C ,
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and

D + E
C→ F ,

with P+
r = (1 + exp[%+])−(1+n)

−2 , %+ ∈ R and n the number of catalysts present at tile i (i.e.

n = |Fi| for the former reaction, and n = |Ci| for the latter). For the experiments in sections 6

and 7, self-assembly and reciprocal catalysis are combined:

D + E
C→ F +G .

Containment is modeled by modifying the attachment reaction for self-assembly:

Gn(kC,mF ) +G+ pC + qF → Gn+1((k + p)C, (m+ q)F ) .

The experiments in section 7 feature a containment capacity c, representing the maximum num-

ber of catalysts a crystal may contain:

Gn
c (kC,mF ) +G+ pC + qF → Gn+1

c (k′C,m′F ) + p′C + q′F ,

with k′ +m′ ≤ c, k′ + p′ = k + p and m′ + q′ = m + q. If k +m + p + q > c, the order in

which catalyst are contained is determined at random.

Breakup

Particles types G, Gn, C and F have a probability of breaking up:

Gn → Gn−1 +G ,

with γ− ∈ R and P−g = (1 + exp[γ−])−n. If the crystal contains catalysts, they are released

upon detachment (irrespective of the containment capacity c):
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Gn(kC,mF )→ Gn−1 +G+ kC +mF .

Furthermore,

C → A+B ,

and

F → D + E ,

with reaction probability P−r = %− ∈ [0, 1]. In sections 6 and 7, G particles are removed from

the grid with P−g = (1 + exp[γ−])−1.
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