
XfW



EINSTEIN’S STATISTICAL THEORIES

N E of the most remarkable volumes in the whole of scien
tific literature seems to me Vol. 17 (4th series) of A nnalen 

der Physik, 1905. It contains three papers by Einstein, each
dealing with a different subject, and each to-day acknowledged 
to be a masterpiece, the source of a new branch of physics. 
These three subjects, in order of pages, are: theory of photons, 
Brownian motion, and relativity.

Relativity is the last one, and this shows that Einstein’s 
mind at that time was not completely absorbed by his ideas on 
space and time, simultaneity and electro-dynamics. In my 
opinion he would be one of the greatest theoretical physicists 
of all times even if he had not written a single line on rela
tivity—an assumption for which I have to apologise, as it is 
rather absurd. For Einstein’s conception of the physical world 
cannot be divided into watertight compartments, and it is im
possible to imagine that he should have by-passed one of the 
fundamental problems of the time.

Here I propose to discuss Einstein’s contributions to statis
tical methods in physics. His publications on this subject can 
be divided into two groups: an early set of papers deals with 
classical statistical mechanics, whereas the rest is connected with 
quantum theory. Both groups are intimately connected with 
Einstein’s philosophy of science. H e has seen more clearly than 
anyone before him the statistical background of the laws of 
physics, and he was a pioneer in the struggle for conquering 
the wilderness of quantum phenomena. Yet later, when out of 
his own work a synthesis of statistical and quantum principles 
emerged which seemed to be acceptable to almost all physicists, 
he kept himself aloof and sceptical. Many of us regard this as 
a tragedy—for him, as he gropes his way in loneliness, and for
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us who miss our leader and standard-bearer. I shall not try to 
suggest a resolution of this discord. We have to accept the fact 
that even in physics fundamental convictions are prior to rea
soning, as in all other human activities. I t is my task to give 
an account of Einstein’s work and to discuss it from my own 
philosophical standpoint.

Einstein’s first paper of 1902, “Kinetische Theorie des 
Warmegleichgewichtes und des zweiten Hauptsatzes der 
Thermodynamik”1 is a remarkable example of the fact that 
when the time is ripe important ideas are developed almost 
simultaneously by different men at distant places. Einstein says 
in his introduction that nobody has yet succeeded in deriving the 
conditions of thermal equilibrium and of the second law of 
thermodynamics from probability considerations, although 
Maxwell and Boltzmann came near to it. Willard Gibbs is 
not mentioned. In fact, Einstein’s paper is a re-discovery of 
all essential features of statistical mechanics and obviously 
written in total ignorance of the fact that the whole matter 
had been thoroughly treated by Gibbs a year before (1901). 
The similarity is quite amazing. Like Gibbs, Einstein investi
gates the statistical behaviour of a virtual assembly of equal 
mechanical systems of a very general type. A state of the single 
system is described by a set of generalised co-ordinates and 
velocities, which can be represented as a point in a 2«-dimen- 
sional “phase-space;” the energy is given as function of these 
variables. The only consequence of the dynamical laws used 
is the theorem of Liouville according to which any domain in 
the 2«-dimensional phase-space of all co-ordinates and momenta 
preserves its volume in time. This law makes it possible to de
fine regions of equal weight and to apply the laws of prob
ability. In fact, Einstein’s method is essentially identical with 
Gibb’s theory of canonical assemblies. In a second paper, of 
the following year, entitled “Eine Theorie der Grundlagen der 
Thermodynamik,”2 Einstein builds the theory on another basis 
not used by Gibbs, namely on the consideration of a single sys
tem in course of time (later called “Zeit-Gesammtheit” time

1 Annalen der Physik (4 ) , 9, p. 477, (1902).
* Annalen der Physik (4 ) , p. 170, (1903).
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assembly), and proves that this is equivalent to a certain virtual 
assembly of many systems, Gibb’s micro-canonical assembly. 
Finally, he shows that the canonical and micro-canonical distri
bution lead to the same physical consequences.

Einstein’s approach to the subject seems to me slightly less 
abstract than that of Gibbs. This is also confirmed by the fact 
that Gibbs made no striking application of his new method, 
while Einstein at once proceeded to apply his theorems to a case 
of utmost importance, namely to systems of a size suited for 
demonstrating the reality of molecules and the correctness of 
the kinetic theory of matter.

This was the theory of Brownian movement. Einstein’s papers 
on this subject are now easily accessible in a little volume edited 
and supplied with notes by R. Fiirth, and translated into Eng
lish by A. D. Cowper.3 In the first paper (1905) he sets out to 
show “that, according to the molecular-kinetic theory of heat, 
bodies of microscopically visible size suspended in a liquid will 
perform movements of such magnitude that they can be easily 
observed in a microscope, on account of the molecular motion 
of heat,” and he adds that these movements are possibly identi
cal with the “Brownian motion” though his information about 
the latter is too vague to form a definite judgment.

The fundamental step taken by Einstein was the idea of raising 
the kinetic theory of matter from a possible, plausible, useful 
hypothesis to a matter of observation, by pointing out cases 
where the molecular motion and its statistical character can be 
made visible. It was the first example of a phenomenon of 
thermal fluctuations, and his method is the classical paradigma^ 
for the treatment of all of them. H e regards the movement ^  
of the suspended particles as a process of diffusion under the 
action of osmotic pressure and other forces, among which 
friction due to the viscosity of the liquid is the most important 
one. The logical clue to the understanding of the phenomenon 
consists in the statement that the actual velocity of the suspended 
particle, produced by the impacts of the molecules of the liquid 
on it, is unobservable; the visible effect in a finite interval of

'Investigations on the Theory of the Brownian Movement; Methuen & Co., 
London, (1926).
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time t  consists of irregular displacements, the probability of 
which satisfies a differential equation of the same type as the 
equation of diffusion. The diffusion coefficient is nothing but 
the mean square of the displacement divided by 2T. In this 
way Einstein obtained his celebrated law expressing the mean 
square displacement for t  in terms of measurable quantities 
(temperature, radius of the particle, viscosity of the liquid) 
and of the number of molecules in a gramme-molecule (Avo- 
gadro’s number TV). By its simplicity and clarity this paper is 
a classic of our science.

In the second paper (1906) Einstein refers to the work of 
Siedentopf (Jena) and Gouy (Lyons) who convinced them
selves by observations that the Brownian motion was in fact 
caused by the thermal agitation of the molecules of the liquid, 
and from this moment on he takes it for granted that the 
“irregular motion of suspended particles” predicted by him is 
identical with the Brownian motion. This and the following 
publications are devoted to the working out of details (e.g., 
rotatory Brownian motion) and presenting the theory in other 
forms; but they contain nothing essentially new.

I think that these investigations of Einstein have done more 
than any other work to convince physicists of the reality of 
atoms and molecules, of the kinetic theory of heat, and of the 
fundamental part of probability in the natural laws. Reading 
these papers one is inclined to believe that at that time the 
statistical aspect of physics was preponderant in Einstein’s 
mind; yet at the same time he worked on relativity where 
rigorous causality reigns. His conviction seems always to have 
been, and still is to-day, that the ultimate laws of nature are 
causal and deterministic, that probability is used to cover our 
ignorance if we have to do with numerous particles, and that 
only the vastness of this ignorance pushes statistics into the 
fore-front.

Most physicists do not share this view to-day, and the reason 
for this is the development of quantum theory. Einstein’s con
tribution to this development is great. His first paper of 1905, 
mentioned already, is usually quoted for the interpretation 
of the photo-electric effect and similar phenomena (Stokes law
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of photo-luminescence, photo-ionisation) in terms of light- 
quanta (light-darts, photons). As a matter of fact, the main 
argument of Einstein is again of a statistical nature, and the 
phenomena just mentioned are used in the end for confirmation. 
This statistical reasoning is very characteristic of Einstein, and 
produces the impression that for him the laws of probability 
are central and by far more important than any other law. H e 
starts with the fundamental difference between an ideal gas and 
a cavity filled with radiation: the gas consists of a finite number 
of particles, while radiation is described by a set of functions 
in space, hence by an infinite number of variables. This is the 
root of the difficulty of explaining the law of black body radia
tion; the monochromatic density of radiation turns out to be 
proportional to the absolute temperature (later known as the 
law of Rayleigh-Jeans) with a factor independent of frequency, 
and therefore the total density becomes infinite. In order to 
avoid this, Planck (1900) had introduced the hypothesis that 
radiation consists of quanta of finite size. Einstein, however, 
does not use Planck’s radiation law, but the simpler law of Wien, 
which is the limiting case for low radiation density, expecting 
rightly that here the corpuscular character of the radiation will 
be more evident. H e shows how one can obtain the entropy S 
of black body radiation from a given radiation law (mono
chromatic density as function of frequency) and applies then 
Boltzmann’s fundamental relation between entropy S and 
thermodynamic probability W

S =  k  log W
where k is the gas constant per molecule, for determining W . 
This formula was certainly meant by Boltzmann to express 
the physical quantity S in terms of the combinatory quantity 
W , obtained by counting all possible configurations of the 
atomistic elements of the statistical ensemble. Einstein inverts 
this process: he starts from the known function S in order to 
obtain an expression for the probability which can be used as 
a clue to the interpretation of the statistical elements. (The 
same trick has been applied by him later in his work on fluctua
tions;4 although this is of considerable practical importance,

* Annalen der Physik ( 4 ) ,  ig , p. 373, (1906) .
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I shall only mention it, since it introduces no new fundamental 
concept apart from that “ inversion.” )

Substituting the entropy derived from Wien’s law into Boltz
mann’s formula, Einstein obtains for the probability of finding 
the total energy E  by chance compressed in a fraction aV of the 
total volume V ..  . ,

W  — aE/by <C4 tl  dh '
that means, the radiation behaves as if it consisted of independ
ent quanta of energy of size and number n =  E /hv . It is ob
vious from the text of the paper that this result had an over
whelming power of conviction for Einstein, and that it led 
him to search for confirmation of a more direct kind. This he 
found in the physical phenomena mentioned above (e.g., photo
electric effect) whose common feature is the exchange of energy 
between an electron and light. The impression produced on 
the experimentalists by these discoveries was very great. For 
the facts were known to many, but not correlated. At that time 
Einstein’s gift for intuiting such correlations was almost uncanny. 
It was based on a thorough knowledge of experimental facts 
combined with a profound understanding of the present state 
of theory, which enabled him to see at once where something 
strange was happening. His work at that period was essentially 
empirical in method, though directed to building up a con
sistent theory—in contrast to his later work when he was more 
and more led by philosophical and mathematical ideas.

A second example of the application of this method is the 
work on specific heat.5 I t started again with a theoretical con
sideration of that type which provided the strongest evidence 
in Einstein’s mind, namely on statistics. H e remarks that 
Planck’s radiation formula can be understood by giving up the 
continuous distribution of statistical weight in the phase-space 
which is a consequence of Liouville’s theorem of dynamics; in
stead, for vibrating systems of the kind used as absorbers and 
emitters in the theory of radiation most states have a vanish
ing statistical weight and only a selected number (whose 
energies are multiples of a quantum) have finite weights.

‘ “Die Planck’sche Theorie der Strahlung und die Theorie der specifischen 
Warme,” Annalen der Phystk (4 ) , 22, p. 180, (1907).



Now if this is so, the quantum is not a feature of radiation 
but of general physical statistics, and should therefore appear 
in other phenomena where vibrators are involved. This argu
ment was obviously the moving force in Einstein’s mind, and 
it became fertile by his knowledge of facts and his unfailing 
judgment of their bearing on the problem. I wonder whether 
he knew that there were solid elements for which the specific 
heat per mole was lower than its normal value 5.94 calories, 
given by the law of Dulong-Petit, or whether he first had the 
theory and then scanned the tables to find examples. The law 
of Dulong-Petit is a direct consequence of the law of equiparti- 
tion of classical statistical mechanics, which states that each 
co-ordinate or momentum contributing a quadratic term to the 
energy should carry the same average energy, namely Yi R T  
per mole where R  is the gas constant} as R  is a little less than
2 calories per degree and an oscillator has 3 co-ordinates and
3 momenta, the energy of one mole of a solid element per 
degree of temperature should be 6 X YzR T , or 5.94 calories. 
If there are substances for which the experimental value is 
essentially lower, as it actually is for carbon (diamond), boron, 
silicon, one has a contradiction between facts and classical theory. 
Another such contradiction is provided by some substances with 
poly-atomic molecules. Drude had proved by optical experi
ments that the atoms in these molecules were performing oscil
lations about each other; hence the number of vibrating units 
per molecule should be higher than 6 and therefore the specific 
heat higher than the Dulong-Petit value—but that is not always 
the case. Moreover Einstein could not help wondering about 
the contribution of the electrons to the specific heat. At that time 
vibrating electrons in the atom were assumed for explaining the 
ultra-violet absorption; they did apparently not contribute to 
the specific heat, in contradiction to the equipartition law.

All these difficulties were at once swept away by Einstein’s 
suggestion that the atomic oscillators do not follow the equi
partition law, but the same law which leads to Planck’s radia
tion formula. Then the mean energy would not be proportional 
to the absolute temperature but decrease more quickly with 
falling temperature in a way which still depends on the fre-
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quencies of the oscillators. High frequency oscillators like the 
electrons would at ordinary temperature contribute nothing 
to the specific heat, atoms only if they were not too light and 
not too strongly bound. Einstein confirmed that these conditions 
were satisfied for the cases of poly-atomic molecules for which 
Drude had estimated the frequencies, and he showed that the 
measurements of the specific heat of diamond agreed fairly 
well with his calculation.

But this is not the place to enter into a discussion of the 
physical details of Einstein’s discovery. The consequences with 
regard to the principles of scientific knowledge were far reach
ing. It was now proved that the quantum effects were not a 
specific property of radiation but a general feature of physical 
systems. The old rule “natura non facit saltus” was disproved: 
there are fundamental discontinuities, quanta of energy, not 
only in radiation but in ordinary matter.

In Einstein’s model of a molecule or a solid these quanta 
are still closely connected with the motion of single vibrating 
particles. But soon it became clear that a considerable generalisa
tion was necessary. The atoms in molecules and crystals are not 
independent but coupled by strong forces. Therefore the mo
tion of an individual particle is not that of a single harmonic 
oscillator, but the superposition of many harmonic vibrations. 
The carrier of a simple harmonic motion is nothing material at 
a ll; it is the abstract “normal mode,” well known from ordi
nary mechanics. For crystals in particular each normal mode is 
a standing wave. The introduction of this idea opened the way 
to a quantitative theory of thermodynamics of molecules and 
crystals and demonstrated the abstract character of the new 
quantum physics which began to emerge from this work. It 
became clear that the laws of micro-physics differed funda
mentally from those of matter in bulk. Nobody has done more 
to elucidate this than Einstein. I cannot report all his contribu
tions, but shall confine myself to two outstanding investigations 
which paved the way for the new micro-mechanics which 
physics at large has accepted to-day—while Einstein himself 
stands aloof, critical, sceptical, and hoping that this episode may 
pass by and physics return to classical principles.
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The first of these two investigations has again to do with 

the law of radiation and statistics.6 There are two ways of tackling 
problems of statistical equilibrium. The first is a direct one, 
which one may call the combinatory method: After having 
established the weights of elementary cases one calculates the 
number of combinations of these elements which correspond 
to an observable state; this number is the statistical probability 
W , from which all physical properties can be obtained (e.g. 
the entropy by Boltzmann’s formula). The second method 
consists in determining the rates of all competing elementary 
processes, which lead to the equilibrium in question. This is, of 
course, much more difficult; for it demands not only the count
ing of equally probable cases but a real knowledge of the 
mechanism involved. But, on the other hand, it carries much 
further, providing not only the conditions of equilibrium but 
also of the time-rate of processes starting from non-equilibrium 
configurations. A classical example of this second method is 
Boltzmann’s and Maxwell’s formulation of the kinetic theory 
of gases; here the elementary mechanism is given by binary 
encounters of molecules, the rate of which is proportional to 
the number-density of both partners. From the “collision equa
tion” the distribution function of the molecules can be deter
mined not only in statistical equilibrium, but also for the case 
of motion in bulk, flow of heat, diffusion etc. Another example 
is the law of mass-action in chemistry, established by Guldberg 
and Waage; here again the elementary mechanism is provided 
by multiple collisions of groups of molecules which combine, 
split, or exchange atoms at a rate proportional to the number- 
density of the partners. A special case of these elementary 
processes is the monatomic reaction, where the molecules of one 
type spontaneously explode with a rate proportional to their 
number-density. This case has a tremendous importance in 
nuclear physics: it is the law of radio-active decay. Whereas 
in the few examples of ordinary chemistry, where monatomic 
reaction has been observed, a dependence of reaction velocity 
on the physical conditions (e.g. temperature) could be as
sumed or even observed, this was not the case for radio-activity:

*“Zur Quantentheorie der Strahlung,” Phys. Z. 18, p. 121, (1917).
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The decay constant seemed to be an invariable property of the 
nucleus, unchangeable by any external influences. Each in
dividual nucleus explodes at an unpredictable moment} yet if 
a great number of nuclei are observed, the average rate of dis
integration is proportional to the total number present. It looks 
as if the law of causality is put out of action for these processes.

Now what Einstein did was to show that Planck’s law of radia
tion can just be reduced to processes of a similar type, of a more 
or less non-causal character. Consider two stationary states of 
an atom, say the lowest state i and an excited state 2. Einstein 
assumes that if an atom is found to be in the state 2 it has a 
certain probability of returning to the ground state I, emitting 
a photon of a frequency which, according to the quantum law, 
corresponds to the energy difference between the two states} 
i.e. in a big assembly of such atoms the number of atoms in state 
2 returning to the ground state I per unit time is proportional 
to their initial number—exactly as for radio-active disintegra
tion. The radiation, on the other hand, produces a certain prob
ability for the reverse process I -» 2 which represents absorp
tion of a photon of frequency v12 and is proportional to the 
radiation density for the frequency.

Now these two processes alone balancing one another would 
not lead to Planck’s formula} Einstein is compelled to introduce 
a third one, namely an influence of the radiation on the emis
sion process 2 -» I, “induced emission,” which again has a prob
ability proportional to the radiation density for vi2.

This extremely simple argument together with the most 
elementary principle of Boltzmann’s statistics leads at once to 
Planck’s formula without any specification of the magnitude 
of the transition probabilities. Einstein has connected it with 
a consideration of the transfer of momentum between atom and 
radiation, showing that the mechanism proposed by him is not 
consistent with the classical idea of spherical waves but only with 
a dart-like behaviour of the quanta. Here we are not concerned 
with this side of Einstein’s work, but with its bearing on his 
attitude to the fundamental question of causal and statistical 
laws in physics. From this point of view this paper is of particu
lar interest. For it meant a decisive step in the direction of non-
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causal, indeterministic reasoning. Of course, I am sure that 
Einstein himself was—and is still—convinced that there are 
structural properties in the excited atom which determine the 
exact moment of emission, and that probability is called in 

J only because of our incomplete knowledge of the pre-history 
/ of the atom. Yet the fact remains that he has initiated the 
I spreading of indeterministic statistical reasoning from its 

original source, radio-activity, into other domains of physics.
Still another feature of Einstein’s work must be mentioned 

which was also of considerable assistance to the formulation 
of indeterministic physics in quantum mechanics. It is the fact 
that it follows from the validity of Planck’s law of radiation 
that the probabilities of absorption (1 -> 2) and induced emis
sion (2 1) are equal. This was the first indication that inter
action of atomic systems always involves two states in a sym
metrical way. In classical mechanics an external agent like 
radiation acts on one definite state, and the result of the action 
can be calculated from the properties of this state and the ex
ternal agent. In quantum mechanics each process is a transition 
between two states which enter symmetrically into the laws of 
interaction with an external agent. This symmetrical property 
was one of the deciding clues which led to the formulation of 
matrix mechanics, the earliest form of modern quantum me
chanics. The first indication of this symmetry was provided by 

I Einstein’s discovery of the equality of up- and down-ward 
I transition probabilities.

The last of Einstein’s investigations which I wish to discuss 
in this report is his work on the quantum theory of monatomic 
ideal gases.7 In this case the original idea was not his but came 
from an Indian physicist, S. N. Bose; his paper appeared in a 
translation by Einstein8 himself who added a remark that he re
garded this work as an important progress. The essential point 
in Bose’s procedure is that he treats photons like particles of 
a gas with the method of statistical mechanics but with the dif
ference that these particles are not distinguishable. He does not 
distribute individual particles over a set of states, but counts

J

i

1 Berl. Ber. 1924, p. 261, 1925, p. 318.
# S. N. Bose, Zeitschrijt fu r Physik, 26, 178, (1924).
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the number of states which contain a given number of particles. 
This combinatory process together with the physical conditions 
(given number of states and total energy) leads at once to 

. Planck’s radiation law. Einstein added to this idea the sug
gestion that the same process ought to be applied to material 
atoms in order to obtain the quantum theory of a monatomic 
gas. The deviation from the ordinary gas laws derived from 

s ' this theory is called “gas degeneracy.” Einstein’s papers ap- 
v  peared just a year before the discovery of quantum mechanics; 

one of them contains moreover (p. 9 of the second paper) a 
reference to de Broglie’s celebrated thesis, and the remark that 
a scalar wave field can be associated with a gas. These papers 
of de Broglie and Einstein stimulated Schroedinger to develop 
his wave mechanics, as he himself confessed at the end of his 
famous paper.9 It was the same remark of Einstein’s which a 
year or two later formed the link between de Broglie’s theory 
and the experimental discovery of electron diffraction; for, 
when Davisson sent me his results on the strange maxima found 
in the reflexion of electrons by crystals, I remembered Ein
stein’s hint and directed Elsasser to investigate whether those 
maxima could be interpreted as interference fringes of de 
Broglie waves. Einstein is therefore clearly involved in the 
foundation of wave mechanics, and no alibi can disprove it.

I cannot see how the Bose-Einstein counting of equally prob
able cases can be justified without the conceptions of quantum 
mechanics. There a state of equal particles is described not by 
noting their individual positions and momenta, but by a sym
metric wave function containing the co-ordinates as arguments; 

P '—  this represents clearly only one state and has to be counted once. 
A group of equal particles, even if they are perfectly alike, can 
still be distributed between two boxes in many ways—you may 
not be able to distinguish them individually but that does not 
affect their being individuals. Although arguments of this kind 
are more metaphysical than physical, the use of a symmetric 
wave function as representation of a state seems to me prefer
able. This way of thinking has morover led to the other case of

’ “Quantisierung als Eigenwertproblem,” Annalcn der Physik (4 ) , 70, p. 361, 
<19*6)5 «. p. 373.
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gas degeneracy, discovered by Fermi and Dirac, where the 
wave function is skew, and to a host of physical consequences 
confirmed by experiment.

The Bose-Einstein statistics was, to my knowledge, Ein
stein’s last decisive positive contribution to physical statistics. 
His following work in this line, though of great importance 
by stimulating thought and discussion, was essentially critical. 
H e refused to acknowledge the claim of quantum mechanics 
to have reconciled the particle and wave aspects of radiation. 
This claim is based on a complete re-orientation of physical 
principles: causal laws are replaced by statistical ones, deter
minism by indeterminism. I have tried to show that Einstein 
himself has paved the way for this attitude. Yet some principle 
of his philosophy forbids him to follow it to the end. W hat is 
this principle?

Einstein’s philosophy is not a system which you can read in 
a book 5 you have to take the trouble to abstract it from his 
papers on physics and from a few more general articles and 
pamphlets. I have found no definite statement of his about 
the question “What is Probability?” ; nor has he taken part in 
the discussions going on about von Mises’ definition and other 
such endeavours. I suppose he would have dismissed them as 
metaphysical speculation, or even joked about them. From the 
beginning he has used probability as a tool for dealing with 
nature just like any scientific device. H e has certainly very 
strong convictions about the value of these tools. His attitude 
toward philosophy and epistemology is well described in his 
obituary article on Ernst Mach:10
Nobody who devotes himself to science from other reasons than super
ficial ones, like ambition, money making, or the pleasure of brain-sport, 
can neglect the questions, what are the aims of science, how far are its 
general results true, what is essential and what based on accidental 
features of the development?

Later in the same article he formulates his empirical creed 
in these words:
Concepts which have been proved to be useful in ordering things easily 
acquire such an authority over us that we forget their human origin

10 Phys. Zeitschr. 17, p. 101, (1916).
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and accept them as invariable. Then they become “necessities of 
thought,” “given a ■priori,” etc. The path of scientific progress is then, 
by such errors, barred for a long time. It is therefore no useless game 
if we are practising to analyse current notions and to point out on what 
conditions their justification and usefulness depends, how they have 
grown especially from the data of experience. In this way their exag
gerated authority is broken. They are removed, if they cannot properly 
legitimate themselves; corrected, if their correspondence to the given 
things was too negligently established; replaced by others, if a new system 
can be developed that we prefer for good reasons.

That is the core of the young Einstein, thirty years ago. I am sure 
the principles of probability were then for him of the same kind 
as all other concepts used for describing nature, so impressively 
formulated in the lines above. The Einstein of to-day is 
changed. I translate here a passage of a letter from him which 
I received about four years ago (7th November, 1944): “ In 
our scientific expectation we have grown antipodes. You be
lieve in God playing dice and I in perfect laws in the world 
of things existing as real objects, which I try to grasp in a 
wildly speculative way.” These speculations distinguish in
deed his present work from his earlier writing. But if any man 
has the right to speculate it is he whose fundamental results 
stand like rock. What he is aiming at is a general field-theory 
which preserves the rigid causality of classical physics and re
stricts probability to masking our ignorance of the initial condi
tions or, if you prefer, of the pre-history, of all details of the 
system considered. This is not the place to argue about the 
possibility of achieving this. Yet I wish to make one remark, 
using Einstein’s own picturesque language: If God has made 
the world a perfect mechanism, he has at least conceded so much 
to our imperfect intellect that, in order to predict little parts 
of it, we need not solve innumerable differential equations but 
can use dice with fair success. That this is so I have learned, 
with many of my contemporaries, from Einstein himself. I 
think, this situation has not changed much by the introduction 
of quantum statistics 5 it is still we mortals who are playing 
dice for our little purposes of prognosis—God’s actions are as 
mysterious in classical Brownian motion as in radio-activity and 
quantum radiation, or in life at large.
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Einstein’s dislike of modern physics has not only been ex
pressed in general terms, which can be answered in a similarly 
general and vague way, but also in very substantial papers in 
which he has formulated objections against definite statements 
of wave mechanics. The best known paper of this kind is one 
published in collaboration with Podolsky and Rosen.11 That 
it goes very deep into the logical foundations of quantum me
chanics is apparent from the reactions it has evoked. Niels Bohr 
has answered in detail; Schroedinger has published his own 
sceptical views on the interpretation of quantum mechanics; 
Reichenbach deals with this problem in the last chapter of his 
excellent book, Philosophic Foundations of Quantum Mechan
ics, and shows that a complete treatment of the difficulties 
pointed out by Einstein, Podolsky, and Rosen needs an overhaul 
of logic itself. H e introduces a three-valued logic, in which 
apart from the truth-values “ true” and “ false,” there is an 
intermediate one, called “indeterminate,” or, in other words, he 
rejects the old principle of “tertium non d a t u r as has been 
proposed long before, from purely mathematical reasons, by 
Brouwer and other mathematicians. I am not a logician, and 
in such disputes always trust that expert who last talked to me. 
My attitude to statistics in quantum mechanics is hardly affected 
by formal logics, and' I venture to say that the same holds for 
Einstein. That his opinion in this matter differs from mine is 
regrettable, but it is no object of logical dispute between us. 
It is based on different experience in our work and life. But 
in spite of this, he remains my beloved master.
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