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In this paper, we shall show how the theory of measurements is
to be understood from the point of view of a physical interpreta-
tion of the quantum theory in terms of “hidden” variables,
developed in a previous paper. We find that in principle, these
“hidden” variables determine the precise results of each individual
measurement process. In practice, however, in measurements
that we now know how to carry out, the observing apparatus
disturbs the observed system in an unpredictable and uncon-
trollable way, so that the uncertainty principle is obtained as a
practical limitation on the possible precision of measurements.
This limitation is not, however, inherent in the conceptual struc-
ture of our interpretation. We shall see, for example, that simul-
taneous measurements of position and momentum having un-
limited precision would in principle be possible if, as suggested in
the previous paper, the mathematical formulation of the quantum
theory needs to be modified at very short distances in certain

ways that are consistent with our interpretation but not with the
usual interpretation.

We give a simple explanation of the origin of quantum-mechan-
ical correlations of distant objects in the hypothetical experiment
of Einstein, Podolsky, and Rosen, which was suggested by these
authors as a criticism of the usual interpretation.

Finally, we show that von Neumann’s proof that quantum
theory is not consistent with hidden variables does not apply to
our interpretation, because the hidden variables contemplated
here depend both on the state of the measuring apparatus and
the observed system and therefore go beyond certain of von
Neumann’s assumptions.

In two appendixes, we treat the problem of the electromagnetic
field in our interpretation and answer certain additional objections
which have arisen in the attempt to give a precise description for
an individual system at the quantum level.

1. INTRODUCTION

N a previous paper,! to which we shall hereafter refer
as I, we have suggested an interpretation of the

quantum theory in terms of “hidden” variables. We

have shown that although this interpretation provides
a conceptual framework that is broader than that of
the usual interpretation, it permits of a set of three
mutually consistent special assumptions, which lead to
the same physical results as are obtained from the
usual interpretation of the quantum theory. These
three special assumptions are: (1) The y-field satisfies
Schroedinger’s equation. (2) If we write ¥ = R exp(is/%),
then the particle momentum is restricted to p= VS(x).
(3) We have a statistical ensemble of particle positions,
with a probability density, P=|¢(x)|2. If the above
three special assumptions are not made, then one
obtains a more general theory that cannot be made
consistent with the usual interpretation. It was sug-
gested in Paper I that such generalizations may actually
be needed for an understanding of phenomena associ-
ated with distances of the order of 10~ cm or less, but
may produce changes of negligible importance in the
atomic domain.

In this paper, we shall apply the interpretation of
the quantum theory suggested in Paper I to the de-
velopment of a theory of measurements in order to show
that as long as one makes the special assumptions
indicated above, one is led to the same predictions for
all measurements as are obtained from the usual inter-
pretation. In our interpretation, however, the uncer-
tainty principle is regarded, not as an inherent limita-
tion on the precision with which we can correctly
conceive of the simultaneous definition of momentum
and position, but rather as a practical limitation on the
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precision with which these quantities can simultane-
ously be measured, arising from unpredictable and
uncontrollable disturbances of the observed system by
the measuring apparatus. If the theory needs to be
generalized in the ways suggested in Paper I, Secs. 4
and 9, however, then these disturbances could in
principle either be eliminated, or else be made subject
to prediction and control, so that their effects could be
corrected for. Our interpretation therefore demonstrates
that measurements violating the uncertainty principle
are at least conceivable.

2. QUANTUM THEORY OF MEASUREMENTS

We shall now show how the quantum theory of
measurements is to be expressed in terms of our
suggested interpretation of the quantum theory.?

In general, a measurement of any variable must
always be carried out by means of an interaction of the
system of interest with a suitable piece of measuring
apparatus. The apparatus must be so constructed that
any given state of the system of interest will lead to a
certain range of states of the apparatus. Thus, the
interaction introduces correlations between the state
of the observed system and the state of the apparatus.
The range of indefiniteness in this correlation may be
called the uncertainty, or the error, in the measurement.

Let us now consider an observation designed to
measure an arbitrary (hermitian) “observable” Q,
associated with an electron. Let x represent the position
of the electron, ¥ that of the significant apparatus
coordinate (or coordinates if there are more than one).
Now, one can show? that it is enough to consider an
impulsive measurement, i.e., a measurement utilizing a
very strong interaction between apparatus and system

2 For a treatment of how the theory of measurements can be

carried out with the usual interpretation, see D. Bohm, Quantum
Theory (Prentice-Hall, Inc., New York, 1951), Chapter 22.
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QUANTUM THEORY IN TERMS

under observation, which lasts for so short a time that
the changes of the apparatus and the system under
observation that would have taken place in the absence
of interaction can be neglected. Thus, at least while the
interaction is taking place, we can neglect the parts of
the Hamiltonian associated with the apparatus alone
and with the observed system alone, and we need retain
only the part of the Hamiltonian, Hj, representing the
interaction. Moreover, if the Hamiltonian operator is
chosen to be a function only of quantities that commute
with Q, then the interaction process will produce no
uncontrollable changes in the observable, Q, but only in
observables that do not commute with Q. In order that
the apparatus and the system under observation shall
be coupled, however, it is necessary that H; shall also
depend on operators involving y.

For the sake of illustration of the principles involved,
we shall consider the following interaction Hamiltonian :

HI = (ZQPy, (1)

where @ is a suitable constant and p, is the momentum
conjugate to y.

Now, in our interpretation, the system is to be de-
scribed by a four-dimensional but objectively real wave
field that is a function of x and y and by a corresponding
four-dimensional representative point, specified by the
coordinates, x, of the electron and the coordinate, y, of
the apparatus. Since the motion of the representative
point is in part determined by forces produced by the
Y-field acting on both electron and apparatus variables,
our first step in solving this problem is to calculate the
y-field. This is done by solving Schroedinger’s equation,
with the appropriate boundary conditions on .

Now, during interaction, Schroedinger’s equation is
approximated by

1hd¥/dt=—aQp, V= (ia/h)QI¥/dy. 2)

It is now convenient to expand ¥ in terms of the
complete set y,(x) of eigenfunctions of the operator,
Q, where ¢ denotes an eigenvalue of Q. For the sake of
simplicity, we assume that the spectrum of Q is discrete,
although the results are easily generalized to a continu-
ous spectrum. Denoting the expansion coefficients by
fa(», ), we obtain

W (x, 3, ) =220 ¥a(X)f o3, 1)- 3)

Noting that Q¢,(x)=gy(x), we readily verify that
Eq. (2) can now be reduced to the following series of
equations for f4(y, £):

ihdfo(y, ©)/ 9= (ia/R)qfo(y, 1). 4)
If the initial value of f,(y, t) was f,°(y), we obtain as

a solution
fQ(y) l) =fq°(y—aqt/ﬁ2), (5)

V(x, ¥, ) =3¢ ¥a(X)f " (y—agt/1?). (6)

Now, initially the apparatus and the electron were
independent. As shown in Paper I, Sec. 7, in our

and
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interpretation (as in the usual interpretation), inde-
pendent systems must have wave fields ¥(x, y, {) that
are equal to a product of a function of x and a function

of y. Initially, we therefore have

Wo(X, 7) =¥0(X)80(y) =N Lq cate®),  (7)

where the ¢, are the (unknown) expansion coefficients
of ¥4(x), and go(y) is the initial wave function of the
apparatus coordinate, y. The function go(y) will take
the form of a packet. For the sake of convenience, we
assume that this packet is centered at y=0 and that
its width is Ay. Normally, because the apparatus is
classically describable, the definition of this packet is
far less precise than that allowed by the limits of
precision set by the uncertainty principle.

From Egs. (7) and (3), we shall readily deduce that
T () =cqgo(y). When this value of f,°(y) is inserted into
Eq. (6), we obtain

Y (X, y, 1) =24 ca¥o(X)go(y—agt/?). ®)

Equation (8) indicates already that the interaction
has introduced a correlation between ¢ and the appa-
ratus coordinate, y. In order to show what this corre-
lation means in our interpretation of the quantum
theory, we shall use some arguments that have been
developed in more detail in Paper I, Sec. 7, in connection
with a similar problem involving the interaction of two
particles in a scattering process. First we note that
while the electron and the apparatus are interacting,
the wave function (8) becomes very complicated, so
that if it is expressed as

Y(x, v, )=R(x, y, t) exp[iS(x, 3, 1)/ ],

then R and .S undergo rapid oscillations both as a
function of position and of time. From this we deduce
that the “quantum-mechanical” potential,

U= (—#/2mR)(V2R+R/dy?),

undergoes violent fluctuations, especially where R is
small, and that the particle momenta, p=V,S(x, y, )
and p,=0S5(x,9,1)/9dy, also undergo corresponding
violent and extremely complicated fluctuations. Even-
tually, however, if the interaction continues long
enough, the behavior of the system will become simpler
because the packets go(y—agt/%#?), corresponding to
different values of ¢, will cease to overlap in y space.
To prove this, we note that the center of the gth
packet in y space is at

y=aqt/h*; or q=hy/al. 9

If we denote the separation of adjacent values of ¢
by &g, we then obtain for the separation of the centers
of adjacent packets in y space

Sy=atdq/ 2. (10)
It is clear that if the product of the strength of

interaction a, and the duration of interaction, ¢, is large
enough, then 6y can be made much larger than the
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width Ay of the packet. Then packets corresponding
to different values of ¢ will cease to overlap in y space
and will, in fact, obtain separations large enough to be
classically describable.

Because the probability density is equal to | ¥ |2, we
deduce that the apparatus variable, y, must finally
enter one of the packets and remain with that packet
thereafter (since it does not enter the intermediate
space between packets in which the probability density
is practically zero). Now, the packet entered by the
apparatus variable y determines the actual result of the
measurement, which the observer will obtain when he
looks at the apparatus. The other packets can (as
shown in Paper I, Sec. 7) be ignored, because they
affect neither the quantum-mechanical potential acting
on the particle coordinates x and v, nor the particle
momenta, p,=V,S and p,=3S/9dy. Moreover, the
wave function can also be renormalized without affect-
ing any of the above quantities. Thus, for all practical
purposes, we can replace the complete wave function,
Eq. (8), by a new renormalized wave function

Y(x, y) =¢,(x)go(y—agt/?), (11)

where ¢ now corresponds to the packet actually con-
taining the apparatus variable, y. From this wave
function, we can deduce, as shown in Paper I, Sec. 7,
that the apparatus and the electron will subsequently
behave independently. Moreover, by observing the
approximate value of the apparatus coordinate within
an error Ay<Kdy, we can deduce with the aid of Eq. (9)
that since the electron wave function can for all
practical purposes be regarded as y4(x), the observable,
Q, must have the definite value, ¢g. However, if the
product, ‘““atdq/h?” appearing in Egs. (8), (9), (10),
and (11), had been less than Ay, then no clear measure-
ment of Q would have been possible, because packets
corresponding to different ¢ would have overlapped,
and the measurement would not have had the requisite
accuracy.?

Finally, we note that even if the apparatus packets
are subsequently caused to overlap, none of those
conclusions will be altered. For the apparatus variable
y will inevitably be coupled to a whole host of internal
thermodynamic degrees of freedom, y1, ¥2, +* s, as a
result of effects such as friction and brownian motion.
As shown in Paper I, Sec. 7, interference between
packets corresponding to different values of ¢ would be
possible only if the packets overlapped in the space of
Y1, ¥2, * ¥, as well as in y space. Such an overlap,
however, is so improbable that for all practical purposes,
we can ignore the possibility that it will ever occur.

3. THE ROLE OF PROBABILITY IN MEASUREMENTS—
THE UNCERTAINTY PRINCIPLE

In principle, the final result of a measurement is
determined by the initial form of the wave function of

3 A similar requirement is obtained in the usual interpretation.
See reference 2, Chapter 22, Sec. 8.
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the combined system, ¥°(x, y), and by the initial posi-
tion of the electron particle, xo, and the apparatus
variable, yo. In practice, however, as we have seen, the
orbit fluctuates violently while interaction takes place,
and is very sensitive to the precise initial values of x
and y, which we can neither predict nor control. All
that we can predict in practice is that in an ensemble of
similar experiments performed under equivalent initial
conditions, the probability density is | ¥(x, v)|%. From
this information, however, we are able to calculate only
the probability that in an individual experiment, the
result of a measurement of Q will be a specific number
¢. To obtain the probability of a given value of ¢, we
need only integrate the above probability density over
all x and over all values of y in the neighborhood of the
gth packet. Because the packets do not overlap, the
W-field in this region is equal to cgq(X)go(y—agt/#?)
[see Eq. (8)]. Since, by definition, ¥,(x) and go(y) are
normalized, the total probability that a particle is in
the gth packet is

(12)

The above is, however, just what is obtained from
the usual interpretation. We conclude then that our
interpretation is capable of leading in all possible
experiments to identical predictions with those obtained
from the usual interpretation (provided, or course, that
we make the special assumptions indicated in the
introduction).

Let us now see what a measurement of the observable,
Q, implies with regard to the state of the electron
particle and its ¥-field. First, we note that the process
of interaction with an apparatus designed to measure
the observable, Q, effectively transforms the electron
y-field from whatever it was before the measurement
took place into an eigenfunction ¥,(x) of the operator
Q. The precise value of g that comes out of this process
is as we have seen, not, in general, completely pre-
dictable or controllable. If, however, the same measure-
ment is repeated after the y-field has been transformed
into ¥,(x), we can then predict that (as in the usual
interpretation), the same value of ¢, and therefore the
same wave function, ¥,(x), will be obtained again. If,
however, we measure an observable “P”’ that does not
commute with Q, then the results of this measurement
are not, in practice, predictable or controllable. For as
shown in Eq. (8), the ¥-field after interaction with the
measuring apparatus is now transformed into

‘I’(X) Z, t) = ZP Qp, Q¢p(x>g0(z_apt/h‘2)y

where ¢,(x) is an eigenfunction of the operator, P,
belonging to an eigenvalue, p, and where a, , is an
expansion coefficient defined by

Yo(X)=2"p ap, ($p(X).

Since the packets corresponding to different p ulti-
mately become completely separate in z space, we
deduce, as in the case of the measurement of Q, that

Py=cq|2

(13)

(14)
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for all practical purposes, this wave function may be
replaced by

V= 0,,05(X)g0(z— apt/1?),

where p now represents the packet actually entered by
the apparatus coordinate, y. As in the case of measure-
ment of Q, we readily show that the precise value of p
that comes out of this experiment cannot be predicted
or controlled and that the probability of a given value
of p is equal to |a,e|2 This is, however, just what is
obtained in the usual interpretation of this process.

It is clear that if two “observables,” P and Q, do not
commute, one cannot carry out a measurement of both
simultaneously on the same system. The reason is that
each measurement disturbs the system in a way that is
incompatible with carrying out the process necessary
for the measurement of the other. Thus, a measurement
of P requires that wave field, ¢, shall become an
eigenfunction of P, while a measurement of Q requires
that it shall become an eigenfunction of Q. If P and Q
do not commute, then by definition, no y-function can
be simultaneously an eigenfunction of both. In this
way, we understand in our interpretation why measure-
ments, of complementary quantities, must (as in the
usual interpretation) necessarily be limited in their
precision by the uncertainty principle.

4. PARTICLE POSITIONS AND MOMENTA AS
“HIDDEN VARIABLES”

We have seen that in measurements that can now be
carried out, we cannot make precise inferences about
the particle position, but can say only that the particle
must be somewhere in the region in which |¢| is
appreciable. Similarly, the momentum of a particle that
happens to be at the point, x, is given by p=V.S(x), so
that since x is not known, the precise value of p is also
not, in general, inferrable. Hence, as long as we are
restricted to making observations of this kind, the
precise values of the particle position and momentum
must, in general, be regarded as ‘hidden,” since we
cannot at present measure them. They are, however,
connected with real and already observable properties
of matter because (along with the y-field) they deter-
mine in principle the actual result of each individual
measurement. By way of contrast, we recall here that
in the usual interpretation of the theory, it is stated
that although each measurement admittedly leads to a
definite number, nothing determines the actual value
of this number. The result of each measurement is
assumed to arise somehow in an inherently indescrib-
able way that is not subject to a detailed analysis.
Only the statistical results are said to be predictable.
In our interpretation, however, we assert that the at
present ‘“hidden” precisely definable particle positions
and momenta determine the results of each individual
measurement process, but in a way whose precise
details are so complicated and uncontrollable, and so
little known, that one must for all practical purposes
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restrict oneself to a statistical description of the connec-
tion -between the values of these variables and the
directly observable results of measurements. Thus, we
are unable at present to obtain direct experimental
evidence for the existence of precisely definable particle

positions and momenta.

5. “OBSERVABLES” OF USUAL INTERPRETATION ARE
NOT A COMPLETE DESCRIPTION OF SYSTEM
IN OUR INTERPRETATION

We have seen in Sec. 3 that in the measurement of
an “observable,” (0, we cannot obtain enough informa-
tion to provide a complete specification of the state of
an electron, because we cannot infer the precisely
defined values of the particle momentum and position,
which are, for example, needed if we wish to make
precise predictions about the future behavior of the
electron. Moreover, the process of measuring an ob-
servable does not provide any unambiguous information
about the state that existed before the measurement
took place; for in such a measurement, the y-field is
transformed into an in practice unpredictable and
uncontrollable eigenfunction, y,(x), of the measured
“observable” (. This means that the measurement of
an ‘“observable” is not really a measurement of any
physical property belonging to the observed system
alone. Instead, the value of an “observable’” measures
only an incompletely predictable and controllable
potentiality belonging just as much to the measuring
apparatus as to the observed system itself.* At best,
such a measurement provides unambiguous information
only at a classical level of accuracy, where the distur-
bance of the y-field by the measuring apparatus can be
neglected. The usual “observables” are therefore not
what we ought to try to measure at a quantum level of
accuracy. In Sec. 6, we shall see that it is conceivable
that we may be able to carry out new kinds of measure-
ments, providing information not about ‘“observables”
having a very ambiguous significance, but rather about
physically significant properties of a system, such as the
actual values of the particle position and momentum.

As an example of the rather indirect and ambiguous
significance of the “‘observable,” we may consider the
problem of measuring the momentum of an electron.
Now, in the usual interpretation, it is stated that one
can - always measure the momentum ‘“observable”
without changing the value of the momentum. The
result is said, for example, to be obtainable with the
aid of an impulsive interaction involving only operators
which commute with the momentum operator, p,. To
represent such a measurement, we could choose
Hi=—appyin Eq. (1). In our interpretation, however,
we cannot in general conclude that such an interaction
will enable us to measure the actual particle momentum
without changing its value. In fact, in our interpreta-

¢Even in the usual interpretation, an observation must be
regarded as yielding a measure of such a potentiality. See reference
2, Chapter 6, Sec. 9.
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tion, a measurement of particle momentum that does
not change the value of this momentum is possible
only if the y-field initially takes the special form,
exp(ip-x/#). If, however, ¢ initially takes its most
general possible form,

¥=2_p a1 exp(ip- /), (15)

then as we have seen in Secs. 2 and 3, the process of
measuring the “observable” p, will effectively trans-
form the y-field of the electron into

exp(ip./h)

with a probability |a,|? that a given value of p, will
be obtained. When the y-field is altered in this way,
large quantities of momentum can be transferred to the
particle by the changing y-field, even though the
interaction Hamiltonian, H;, commutes with the mo-
mentum operator, p.

As an example, we may consider a stationary state
of an atom, of zero angular momentum. As shown in
Paper I, Sec. 5, the y-field for such a state is real, so
that we obtain

(16)

p=VS=0.

Thus, the particle is at rest. Nevertheless, we see from
Eqgs. (14) and (15) that if the momentum “observable”
is measured, a large value of this “observable” may be
obtained if the y-field happens to have a large fourier
coefficient, a,, for a high value of p. The reason is that
in the process of interaction with the measuring appa-
ratus, the y-field is altered in such a way that it can
give the electron particle a correspondingly large
momentum, thus transforming some of the potential
energy of interaction of the particle with its y-field into
kinetic energy.

A more striking illustration of the points discussed
above is afforded by the problem of a “free” particle
contained between two impenetrable and perfectly
reflecting walls, separated by a distance L. For this
case, the spatial part of the y-field is

Y=sin(2wnx/L),
where # is an integer and the energy of the electron is
E=(1/2m)(nh/L).

Because the y-field is real, we deduce that the particle
is at rest.

Now, at first sight, it may seem puzzling that a
particle having a high energy should be at rest in the
empty space between two walls. Let us recall, however,
that the space is not really empty, but contains an
objectively real y-field that can act on the particle.
Such an action is analogous to (but of course not
identical with) the action of an electromagnetic field,
which could create non-uniform motion of the particle
in this apparently “empty”’ enclosure. We observe that
in our problem, the y-field is able to bring the particle
to rest and to transform the entire kinetic energy into
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potential energy of interaction with the y-field. To
prove this, we evaluate the ‘“quantum-mechanical
potential” for this y-field

—2VR —I2V% 1 suh\?
U=———————————~——~—(——)
L

and note that it is precisely equal to the total energy, E.

Now, as we have seen, any measurement of the
momentum “observable” must change the y-field in
such a way that in general some (and in our case, all)
of this potential energy is transformed into kinetic
energy. We may use as an illustration of this general
result a very simple specific method of measuring the
momentum ‘“‘observable,” namely, to remove the con-
fining walls suddenly and then to measure the distance
moved by the particle after a fairly long time. We can
compute the momentum by dividing this distance by
the time of transit. If (as'in the usual interpretation of
the quantum theory) we assume that the electron is
“free,” then we conclude that the process of removing
the walls should not appreciably change the momentum
if we do it fast enough, for the probability that the
particle is near a wall when this happens can then in
principle be made arbitrarily small. In our interpreta-
tion, however, the removal of the walls alters the
particle momentum indirectly, because of its effect on
the y-field, which acts on the particle. Thus, after the
walls are removed, two wave packets moving in opposite
directions begin to form, and ultimately they become
completely separate in space. Because the probability
density is [¢]? we deduce that the particle must end
up in one packet or the other. Moreover, the reader
will readily convince himself that the particle momen-
tum will be very close to n#k/L, the sign depending
on which packet the particle actually enters. As in
Sec. (2), the packet not containing the particle can
subsequently be ignored. In principle, the final particle
momentum is determined by the initial form of the
y-field and by the initial particle position. Since we do
not in practice know the latter, we can at best predict
a probability of § that the particle ends up in either
packet. We conclude then that this measurement of
the momentum “observable” leads to the same result
as is predicted in the usual interpretation. However,
the actual particle momentum existing before the
measurement took place is quite different from the
numerical value obtained for the momentum ‘ob-
servable,” which, in the usual interpretation, is called
the “momentum.”

6. ON THE POSSIBILITY OF MEASUREMENTS
OF UNLIMITED PRECISION

We have seen that the so-called “observables” do
not measure any very readily interpretable properties
of a system. For example, the momentum “‘observable”
has in general no simple relation to the actual particle
momentum. It may therefore be fruitful to consider
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how we might try to measure properties which, accord-
ing to our interpretation, are (along with the y-field) the
physically significant properties of an electron, namely,
the actual particle position and momentum. In con-
nection with this problem, we shall show that if, as
suggested in Paper I, Secs. 4 and 9, we give up the
three mutually consistent special assumptions leading
to the same results as those of the usual interpretation
of the quantum theory, then in our interpretation, the
particle position and momentum can in principle be
measured simultaneously with unlimited precision.

Now, for our purposes, it will be adequate to show
that precise predictions of the future behavior of a
system are in principle possible. In our interpretation,
a sufficient condition for precise predictions is as we
have seen that we shall be able to prepare a system in
a state in which the y-field and the initial particle
position and momentum are precisely known. We have
shown that it is possible, by measuring the ‘“observ-
able,” Q, with the aid of methods that are now available,
to prepare a state in which the y-field is effectively
transformed into a known form, ¥,(x); but we cannot
in general predict or control the precise position and
momentum of the particle. If we could now measure
the position and momentum of the particle without
altering the y-field, then precise predictions would be
possible. However, the results of Secs. 2, 3, and 4 prove
that as long as the three special assumptions indicated
above are valid, we cannot measure the particle position
more accurately without effectively transforming the
y-function into an incompletely predictable and con-
trollable packet that is much more localized than
¥q(x). Thus, efforts to obtain more precise definition of
the state of the system will be defeated. But it is clear
that the difficulty originates in the circumstance that
the potential energy of interaction between electron
and apparatus, V(x, v), plays two roles. For it not only
introduces a direct interaction between the two parti-
cles, proportional in strength to V(x,y) itself, but it
introduces an indirect interaction between these parti-
cles, because this potential also appears in the equation
governing the y-field. This indirect interaction may
involve rapid and violent fluctuations, even when
V(x, ¥) is small. Thus, we are led to lose control of the
effects of this interaction, because no matter how small
V(x,y) is, very large and chaotically complicated
disturbances in the particle motion may occur.

If, however, we give up the three special assumptions
mentioned previously, then it is not inherent in our
conceptual structure that every interaction between
particles must inevitably also produce large and uncon-
trollable changes in the y-field. Thus, in Paper I, Eq.
(31), we give an example in which we postulate a
force acting on a particle that is not necessarily accom-
panied by a corresponding change in the y-field.
Equation (31), Paper I, is concerned only with a one-
particle system, but similar assumptions can be made
for systems of two or more particles. In the absence of
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any specific theory, our interpretation permits an
infinite number of kinds of such modifications, which
can be chosen to be important at small distances but
negligible in the atomic domain. For the sake of illus-
tration, suppose that it should turn out that in certain
processes connected with very small distances, the

force acting on the apparatus variable is
Fy,=ax,

where a is a constant. Now if “a” is made large enough
so that the interaction is impulsive, we can neglect all
changes in y that are brought about by the forces that
would have been present in the absence of this interac-
tion. Moreover, for the sake of illustration of the
principles involved, we are permitted to make the
assumption, consistent with our interpretation, that
the force on the electron is zero. The equation of
motion of y is then
ij=ax/m.
The solution is
y—yo=(awt®/2m)-+1,

where 7, is the initial velocity of the apparatus variable
and y, its initial position. Now, if the product, a#, is
large enough, then y—yo can be made much larger
than the uncertainty in y arising from the uncertainty
of yo, and the uncertainty of 3, Thus, y—y, will be
determined primarily by the particle position, x. In
this way, it is conceivable that we could obtain a
measurement of x that does not significantly change
%, &, or the y-function. The particle momentum can
then be obtained from the relation, p=VS(x), where
S/h is the phase of the y-function. Thus, precise
predictions would in principle be possible.

7. THE ORIGIN OF THE STATISTICAL ENSEMBLE IN
THE QUANTUM THEORY

We shall now see that even if, because of a failure of
the three special assumptions mentioned in Secs. 1 and
6, we are able to determine the particle positions and
momenta precisely, we shall nevertheless ultimately
obtain a statistical ensemble again at the atomic level,
with a probability density equal to |¢|2 The need for
such an ensemble arises from the chaotically compli-
cated character of the coupling between the electron
and classical systems, such as volumes of gas, walls of
containers, pieces of measuring apparatus, etc., with
which this particle must inevitably in practice interact.
For as we have seen in Sec. 2, and in Paper I, Sec. 7,
during the course of such an interaction, the “quantum-
mechanical” potential undergoes violent and rapid
fluctuations, which tend to make the particle orbit
wander over the whole region in which the y-field is
appreciable. Moreover, these fluctuations are further
complicated by the effects of molecular chaos in the
very large number of internal thermodynamic degrees
of freedom of these classically describable systems,
which are inevitably excited in any interaction process.
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Thus, even if the initial particle variables were well
defined, we should soon in practice lose all possibility
of following the particle motion and would be forced to
have recourse to some kind of statistical theory. The
only question that remains is to show why the proba-
bility density that ultimately comes about should be
equal to |¢¥|? and not to some other quantity.

To answer this question, we first note that a statistical
ensemble with a probability density |¢(x)|? has the
property that under the action of forces which prevail
at the atomic level, where our three special assumptions
are satisfied, it will be preserved by the equations of
motion of the particles, once it comes into existence.
There remains only the problem of showing that an
arbitrary deviation from this ensemble tends, under the
action of the chaotically complicated forces described
in the previous paragraph, to decay into an ensemble
with a probability density of |¢(x)|2. This problem is
very similar to that of proving Boltzmann’s H theorem,
which shows in connection with a different but analo-
gous problem that an arbitrary ensemble tends as a
result of molecular chaos to decay into an equilibrium
Gibbs ensemble. We shall not carry out a detailed
proof here, but we merely suggest that it seems plausible
that one could along similar lines prove that in our
problem, an arbitrary ensemble tends to decay into an
ensemble with a density of |¢(x)|% These arguments
indicate that in our interpretation, quantum fluctua-
tions and classical fluctuations (such as the Brownian
motion) hiave basically the same origin; viz., the cha-
otically complicated character of motion at the micro-
scopic level.

8. THE HYPOTHETICAL EXPERIMENT OF EINSTEIN,
PODOLSKY, AND ROSEN

The hypothetical experiment of Einstein, Podolsky,
and Rosen® is based on the fact that if we have two
particles, the sum of their momenta, p= pi+ ps, com-
mutes with the difference of their positions, &= x;— x,.
We can therefore define a wave function in which p is
zero, while £ has a given value, a. Such a wave function
is

Y=0(x1—x2—a). )
In the usual interpretation of the quantum theory,
p1—p2 and x14-x. are completely undetermined in a
system having the above wave function.

The whole experiment centers on the fact that an
observer has a choice of measuring either the momentum
or the position of any one of the two particles. Which-
ever of these quantities he measures, he will be able to
infer a definite value of the corresponding variable in
the other particle, because of the fact that the above
wave function implies correlations between variables
belonging to each particle. Thus, if he obtains a position
x1 for the first particle, he can infer a position of

8 Einstein, Podolsky, and Rosen, Phys. Rev. 47, 777 (1933).
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x2=a—x; for the second particle; but he loses all
possibility of making any inferences about the momenta
of either particle. On the other hand, if he measures
the momentum of the first particle and obtains a value
of p1, he can infer a value of po= — p1 for the momentum
of the second particle; but he loses all possibility of
making any inferences about the position of either
particle. Now, Einstein, Podolsky, and Rosen believe
that this result is itself probably correct, but they do
not believe that quantum theory as usually interpreted
can give a complete description of how these correlations
are propagated. Thus, if these were classical particles,
we could easily understand the propagation of correla-
tions because each particle would then simply move
with a velocity opposite to that of the other. But in
the usual interpretation of quantum theory, there is no
similar conceptual model showing in detail how the
second particle, which is not in any way supposed to
interact with the first particle, is nevertheless able to
obtain either an uncontrollable disturbance of its posi-
tion or an uncontrollable disturbance of its momentum
depending on what kind of measurement the observer
decided to carry out on the first particle. Bohr’s point
of view is, however, that no such model should be
sought and that we should merely accept the fact that
these correlations somehow manage to appear. We must
note, of course, that the quantum-mechanical descrip-
tion of these processes will always be consistent, even
though it gives us no precisely definable means of
describing and analyzing the relationships between the
classically describable phenomena appearing in various
pieces of measuring apparatus.

In our suggested new interpretation of the quantum
theory, however, we can describe this experiment in
terms of a single precisely definable conceptual model,
for we now describe the system in terms of a combi-
nation of a six-dimensional wave field and a precisely
definable trajectory in a six-dimensional space (see
Paper I, Sec. 6). If the wave function is initially equal
to Eq. (17), then since the phase vanishes, the particles
are both at rest. Their possible positions are, however,
described by an ensemble, in which x;—x;=a. Now,
if we measure the position of the first particle, we
introduce uncontrollable fluctuations in the wave
function for the entire system, which, through the
“quantum-mechanical” forces, bring about correspond-
ing uncontrollable fluctuations in the momentum of
each particle. Similarly, if we measure the momentum
of the first particle, uncontrollable fluctuations in the
wave function for the system bring about, through the
“quantum-mechanical” forces, corresponding uncon-
trollable changes in the position of each particle. Thus,
the ‘“‘quantum-mechanical” forces may be said to
transmit uncontrollable disturbances instantaneously
from one particle to another through the medium of
the ¢-field.

What does this transmission of forces at an infinite
rate mean? In nonrelativistic theory, it certainly causes
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no difficulties. In a relativistic theory, however, the
problem is more complicated. We first note that as long
as the three special assumptions mentioned in Sec. 2
are valid, our interpretation can give rise to no incon-
sistencies with relativity, because it leads to precisely
the same predictions for all physical processes as are
obtained from the usual interpretation (which is known
to be consistent with relativity). The reason why no
contradictions with relativity arise in our interpretation
despite the instantaneous transmission of momentum
between particles is that no signal can be carried in
this way. For such a transmission of momentum could
constitute a signal only if there were some practical
means of determining precisely what the second particle
would have done if the first particle had not been
observed ; and as we have seen, this information cannot
be obtained as long as the present form of the quantum
theory is valid. To obtain such information, we require
conditions (such as might perhaps exist in connection
with distances of the order of 10 cm) under which the
usual form of the quantum theory breaks down (see
Sec. 6), so that the positions and momenta of the
particles can be determined simultaneously and pre-
cisely. If such conditions should exist, then there are
two ways in which contradictions might be avoided.
First, the more general physical laws appropriate to
the new domains may be such that they do not permit
the transmission of controllable aspects of interparticle
forces faster than light. In this way, Lorentz covariance
could be preserved. Secondly, it is possible that the
application of the usual criteria of Lorentz covariance
may not be appropriate when the usual interpretation
of quantum theory breaks down. Even in connection
with gravitational theory, general relativity indicates
that the limitation of speeds to the velocity of light
does not necessarily hold universally. If we adopt the
spirit of general relativity, which is to seek to make the
properties of space dependent on the properties of the
matter that moves in this space, then it is quite con-
ceivable that the metric, and therefore the limiting
velocity, may depend on the y-field as well as on the
gravitational tensor g*’. In the classical limit, the
dependence on the y-field could be neglected, and we
would get the usual form of covariance. In any case,
it can hardly be said that we have a solid experimental
basis for requiring the same form of covariance at very
short distances that we require at ordinary distances.

To sum up, we may assert that wherever the present
form of the quantum theory is correct, our interpreta-
tion cannot lead to inconsistencies with relativity. In
the domains where the present theory breaks down,
there are several possible ways in which our interpre-
tation could continue to treat the problem of covariance
consistently. The attempt to maintain a consistent
treatment of covariance in this problem might perhaps
serve as an important heuristic principle in the search
for new physical laws.
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9. ON VON NEUMANN’S DEMONSTRATION THAT
QUANTUM THEORY IS INCONSISTENT WITH
HIDDEN VARIABLES

Von Neumann® has studied the following question:
“If the present mathematical formulation of the quan-
tum theory and its usual probability intepretation are
assumed to lead to absolutely correct results for every
experiment that can ever be done, can quantum-
mechanical probabilities be understood in terms of any
conceivable distribution over hidden parameters?”
Von Neumann answers this question in the negative.
His conclusions are subject, however, to the criticism
that in his proof he has implicitly restricted himself to
an excessively narrow class of hidden parameters and
in this way has excluded from consideration precisely
those types of hidden parameters which have been
proposed in this paper.

To demonstrate the above statements, we summarize
Von Neumann’s proof briefly. This proof (which begins
on p. 167 of his book), shows that the usual quantum-
mechanical rules of calculating probabilities imply that
there can be no ‘““dispersionless states,” i.e., states in
which the values of all possible observables are simul-
taneously determined by physical parameters associated
with the observed system. For example, if we consider
two noncommuting observables, p and ¢, then Von
Neumann shows that it would be inconsistent with the
usual rules of calculating quantum-mechanical proba-
bilities to assume that there were in the observed
system a set of hidden parameters which simultaneously
determined the results of measurements of position and
momentum ‘‘observables.” With this conclusion, we
are in agreement. However, in our suggested new
interpretation of the theory, the so-called ‘“observ-
ables” are, as we have seen in Sec. 5, not properties
belonging to the observed system alone, but instead
potentialities whose precise development depends just
as much on the observing apparatus as on the observed
system. In fact, when we measure the momentum
“observable,” the final result is determined by hidden
parameters in the momentum-measuring device as well
as by hidden parameters in the observed electron.
Similarly, when we measure the position “observable,”
the final result is determined in part by hidden param-
eters in the position-measuring device. Thus, the sta-
tistical distribution of “hidden” parameters to be used
in calculating averages in a momentum measurement
is different from the distribution to be used in calcu-
lating averages in a position measurement. Von Neu-
mann’s proof (see p. 171 in his book) that no single
distribution of hidden parameters could be consistent
with the results of the quantum theory is therefore
irrelevant here, since in our interpretation of measure-
ments of the type that can now be carried out, the
distribution of hidden parameters varies in accordance
with the different mutually exclusive experimental

6 J. von Neumann, Mathematische Grundlagen der Quanten-
mechanik (Verlag. Julius Springer, Berlin, 1932).
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arrangements of matter that must be used in making
different kinds of measurements. In this point, we are
in agreement with Bohr, who repeatedly stresses the
fundamental role of the measuring apparatus as an
inseparable part of the observed system. We differ
from Bohr, however, in that we have proposed a method
by which the role of the apparatus can be analyzed
and described in principle in a precise way, whereas
Bohr asserts that a precise conception of the details of
the measurement process is as a matter of principle
unattainable.

Finally, we wish to stress that the conclusions drawn
thus far refer only to the measurement of the so-called
“observables” carried out by the methods that are now
available. If the quantum theory needs to be modified
at small distances, then, as suggested in Sec. 6, precise
measurements can in principle be made of the actual
position and momentum of a particle. Here, it should
be noted that Von Neumann’s theorem is likewise
irrelevant, this time because we are going beyond the
assumption of the unlimited validity of the present
general form of quantum theory, which plays an
integral part in his proof.

10. SUMMARY AND CONCLUSIONS

The usual interpretation of the quantum theory
implies that we must renounce the possibility of de-
scribing an individual system in terms of a single
precisely defined conceptual model. We have, however,
proposed an alternative interpretation which does not
imply such a renunciation, but which instead leads us
to regard a quantum-mechanical system as a synthesis
of a precisely definable particle and a precisely definable
y-field which exerts a force on this particle. An experi-
mental choice between these two interpretations cannot
be made in a domain in which the present mathematical
formulation of the quantum theory is a good approxi-
mation; but such a choice is conceivable in domains,
such as those associated with dimensions of the order
of 10~ cm, where the extrapolation of the present
theory seems to break down and where our suggested
new interpretation can lead to completely different
kinds of predictions.

At present, our suggested new interpretation provides
a consistent alternative to the usual assumption that no
objective and precisely definable description of reality
is possible at the quantum level of accuracy. For, in
our description, the problem of objective reality at the
quantum level is at least in principle not fundamentally
different from that at the classical level, although new
problems of measurement of the properties of an indi-
vidual system appear, which can be solved only with
the aid of an improvement in the theory, such as the
possible modifications in the nuclear domain suggested
in Sec. 6. In this connection, we wish to point out that
what we can measure depends not only on the type of
apparatus that is available, but also on the existing
theory, which determines the kind of inference that can
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be used to connect the directly observable state of the
apparatus with the state of the system of interest. In
other words, our epistemology is determined to a large
extent by the existing theory. It is therefore not wise
to specify the possible forms of future theories in terms
of purely epistomological limitations deduced from
existing theories.

The development of the usual interpretation of the
quantum theory seems to have been guided to a
considerable extent by the principle of not postulating
the possible existence of entities which cannot now be
observed. This principle, which stems from a general
philosophical point of view known during the nineteenth
century as “positivism” or “empiricism” represents an
extraphysical limitation on the possible kinds of theories
that we shall choose to take into consideration.” The
word “‘extraphysical” is used here advisedly, since we
can in no way deduce, either from the experimental
data of physics, or from its mathematical formulation,
that it will necessarily remain forever impossible for us
to observe entities whose existence cannot now be
observed. Now, there is no reason why an extraphysical
general principle is necessarily to be avoided, since such
principles could conceivably serve as useful working
hypotheses. The particular extraphysical principle de-
scribed above cannet, however, be said to be a good
working hypothesis. For the history of scientific research
is full of examples in which it was very fruitful indeed
to assume that certain objects or elements might be
real, long before any procedures were known which
would permit them to be observed directly. The atomic
theory is just such an example. For the possibility of
the actual existence of individual atoms was first postu-
lated in order to explain various macrophysical results
which could, however, also be understood directly in
terms of macrophysical concepts without the need for
assuming the existence of atoms. Certain nineteenth-
century positivists (notably Mach) therefore insisted
on purely philosophical grounds that it was incorrect to
suppose that individual atoms actually existed, because
they had never been observed as such. The atomic
theory, they thought, should be regarded only as an
interesting way of calculating various observable large-
scale properties of matter. Nevertheless, evidence for
the existence of individual atoms was ultimately dis-
covered by people who took the atomic hypothesis
seriously enough to suppose that individual atoms
might actually exist, even though no one had yet
observed them. We may have here, perhaps, a close
analogy to the usual interpretation of the quantum
theory, which avoids considering the possibility that
the wave function of an individual system may repre-
sent objective reality, because we cannot observe it
with the aid of existing experiments and theories.

7 A leading nineteenth-century exponent of the positivist point
of view was Mach. Modern positivists appear to have retreated
from this extreme position, but its reflection still remains in the

philosophical point of view implicitly adopted by a large number
of modern theoretical physicists, i
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Finally, as an alternative to the positivist hypothesis
of assigning reality only to that which we can now
observe, we wish to prevent here another hypothesis,
which we believe corresponds more closely to conclu-
sions that can be drawn from general experience in

actual scientific research. This hypothesis is based on -

the simple assumption that the world as a whole is
objectively real and that, as far as we now know, it can
correctly be regarded as having a precisely describable
and analyzable structure of unlimited complexity. The
pattern of this structure seems to be reflected com-
pletely but indirectly at every level, so that from
experiments done at the level of size of human beings,
it is very probably possible ultimately to draw inferences
concerning the properties of the whole structure at all
levels. We should never expect to obtain a complete
theory of this structure, because there are almost
certainly more elements in existence than we possibly
can be aware of at any particular stage of scientific
development. Any specified element, however, can in
principle ultimately be discovered, but never all of
them. Of course, we must avoid postulating a new
element for each'new phenomenon. But an equally
serious mistake is to admit into the theory only those
elements which can now be observed. IFor the purpose
of a theory is not only to correlate the results of obser-
vations that we already know how to make, but also to
suggest the need for new kinds of observations and to
predict their results. In fact, the better a theory is able
to suggest the need for new kinds of observations and
to predict their results correctly, the more confidence
we have that this theory is likely to be good represen-
tation of the actual properties of matter and not simply
an empirical system especially chosen in such a way as
to correlate a group of already known facts.

APPENDIX A. PHOTOELECTRIC AND
COMPTON EFFECTS

In this appendix, we shall show how the electro-
magnetic field is to be described in our new interpre-
tation, with the purpose of making possible a treatment
of the photoelectric and Compton effects. For our
purposes, it is adequate to restrict ourselves to a gauge
in which divA=0, and to consider only the transverse
part of the electromagnetic field, for in this gauge, the
longitudinal part of the field can be expressed through
Poisson’s equation entirely in terms of the charge
density. The Fourier analysis of the vector potential is
then

AX)=4r/V) 2k €x,uq, u6™* (A1)
with

%_
dx,1” = q—k, p-

The ¢, . are coordinates of the electromagnetic field,
associated with oscillations of wave number, k, and
polarization direction, p, where ey, is a unit vector
normal to k and p runs over two indices, corresponding
to a pair of orthogonal directions of polarization. V is
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the volume of the box, which is assumed to be very
large.

We also introduce the momenta ]k .= dqx .*/ 9",
canonically conjugate® to the ¢x ,. We have for the

transverse part of the electric field

10A A

) > ew o[ [ s*e™ = (A2)
c ot k,u

and for the magnetic field
HE)=VXA=—Ar/V)453x,u kX ex,1)qx, ue™ = (A3)

The Hamiltonian of the radiation field corresponds to
a collection of independent harmonic oscillators, each
with angular frequency, w=kc. This Hamiltonian is

H® =%y y [Tk o lw b*+ B0 ugx, ™). (A4)

Now, in our interpretation of the quantum theory,
the quantity ¢x . is assumed to refer to the actual value
of the k, u Fourier component of the vector potential.
As in the case of the electron, however, there is present
an objectively real superfield that is a function of all
the electromagnetic field coordinates gy, ,. Thus, we have

TR =T (- gy ). (AS)
Writing ¥® = R exp(4.S/#), we obtain (in analogy with
Paper 1, Sec. 4)

g1, u/ 0t=T1x, *= 85/, u*.

The function R(---qx .- --) has two interpretations.
First, it defines an additional quantum-mechanical
term appearing in Maxwell’s equations. To see the
origin of this term, let us write the generalized Hamil-
ton-Jacobi equation of the electromagnetic field, analo-
gous to Paper I, Eq. (4),

(A6)

as as

as
-—*+Z (ke)*qx, uqr, ™

—+2
at k.#aqk,yaqk’" k,p

52 PR(+ quu )

> =0.
2R k.

(A7)
99, uOqs, ™

The equation of motion of g, derived from the
Hamiltonian implied by Eq. (A7) becomes
*) (A8)

6 h2 2
e
aqk,“ 2R w.p’ aqk,, u’an', !

G, wtE2q, u=

Since Maxwell’s equations for empty space follow
when the right-hand side is zero, we see that the
“quantum-mechanical” terms can profoundly modify
the behavior of the electromagnetic field. In fact, it is
this modification which will contribute to the explana-

8See G. Wentzel, Quantum Theory of Fields (Interscience
Publishers, Inc., New York, 1948).
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tion of the ability of an oscillator, gy, , to transfer large
quantities of energy and momentum rapidly even when
gx, » is very small, for when gy, , is small, the right-hand
side of Eq. (A8) may become very large.

The second interpretation of R is that as in Paper I,
Eq. (5), it defines a conserved probability density that
each of the ¢i , has a certain specified value. From
this fact, we see that although large transfers of energy
and momentum to a radiation oscillator can occur in a
short time when R is small, the probability of such a
process is (as was also shown in Paper I, Sec. 7) very
small.

In the lowest state (when no quanta are present)
every oscillator is in the ground state. The super
wave fields is then

\I,(](R) = CXp[‘— Zk, n (kCQk, w1, n*+ %7’kd)]~ (Ag)

If the K/, u’ oscillator is excited to the nth quantum
state, the super wave field is

T = (g w)e D, (A10)
where %, is the nth hermite polynomial. As shown in
Paper I, Sec. 5, the stationary states of such a system
correspond to a quantized energy equal to the same
value, E,= (n-+%)#kc, obtained from the usual interpre-
tation. In nonstationary states, however, Eqs. (A7)
and (A8) imply that the energy of each oscillator may
fluctuate violently, as was also true of nonstationary
states of the hydrogen atom (see Paper I, Sec. 7).

A nonstationary state of particular interest in the
photoelectric and Compton effects is a state corre-
sponding to the presence of an electromagnetic wave
packet containing a single quantum. The super wave
field for such a state is

TpB =3y fulh—ko)g, e~ F®,  (All)

where f,(k—k) is a function that is large only near
k=ko and the first hermite polynomial is represented
by qx, 4, to which it is proportional.

To prove that Eq. (All) represents an electro-
magnetic wave packet, we can evaluate the difference

(AW )= W )n— W o)ns (A12)

where (W(x))s is the actual mean energy density
present (averaged over the ensemble), and (Wo(x)) is
the mean energy that would be present even in the
ground state, because of zero-point fluctuations. We
have

<W(X)>A":ff’”f\h°*(m(”'q“”‘"')

[6:09+5:(5)]
% 8

Tp B (e oy e )

X (- dgqyu-+), (A13)
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<W°(x>>“v=ff'"f‘I’o*‘R)("'Qk,u"')

[E*(x)+H*(x)]
X —

ToB (- e+ +)
8w *

X (- dgyu ). (Al4)

Obtaining ¢(x) from Eq. (A2), §(x) from Eq. (A3),
¥p® from Eq. (A10), ¥o® from Eq. (A9), we readily
show that

<AW(X)>AV= Z k p Zk’, g fu(k_ ko)f“' (k’ — ko)

Xei(k+k’)~x (Als)

€k, p* €k’ p-

This means that the wave packet implies an excess
over zero-point energy that is localized within a region
in which the packet function, g(x) is appreciable, where

$(X) =21 u fu(k—Ko)e™ ey, p. (A16)

We are now ready to treat the photoelectric and
Compton effects. The entire treatment is so similar to
that of the Franck-Hertz experiment (Paper I, Sec. 7)
that we need merely sketch it here. We begin by
adding to the radiation Hamiltonian, H®, the particle
Hamiltonian,

H®=(1/2m)[p— (¢/c) A(x) T

(We restrict ourselves here to nonrelativistic treat-
ment.) The photoelectric effect corresponds to the
transition of a radiation oscillator from an excited
state to the ground state, while the atomic electron is
ejécted, with an energy E=/hv—I, where I is the
ionization potential of the atom. The initial super wave
field, corresponding to an incident packet containing
only one quantum, plus an atom in the ground state is
(see Eq. (A11))

W =yo(x) exp(—iBot/B)¥ o™ (- - qi u* * )
X2k, #fu(k_' ko)qk. e~ ket

By solving Schroedinger’s equation for the combined
system, we obtain an asymptotic wave field analogous
to Paper I, Eq. (26), containing terms corresponding
to the photoelectric effect. These terms, which must
be added to ¥, to yield the complete superfield, are
(asymptotically)

OU= TP (- g )T fulk—ko)

(A17)

(A18)

explik’- r—ih(k2/2m)t]
X

gu(0, ¢, k), (A19)

r

where the energy of the outgoing electron is E= #%'?/2m
= fikc+ Eo. The function g.(6, ¢, #") is the amplitude
associated with the y-field of the outgoing electron.
This quantity can be calculated from the matrix ele-
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ment of the interaction term, — (¢/c)p- A(x), by meth-
ods that are easily deducible from the usual perturbation
theory.®

The outgoing electron packet has its center at
r=(%k'/m)i. Eventually, this packet will become com-
pletely separated from the initial electron wave func-
tion, Yo(x). If the electron happens to enter the outgoing
packet, the initial wave function can subsequently be
ignored. The system then acts for all practical purposes
as if its wave field were given by Eq. (A9), from which
we conclude that the radiation field is in the ground
state, while the electron has been liberated. It is
readily shown that, as in the usual interpretation, the
probability that the electron appears in the direction
6, ¢ can be calculated from |g.(0, ¢, &) |2 (see Paper I,
Sec. 7).

To describe the Compton effect, we need only add
to the super wave field the term corresponding to the
appearance of an outgoing electromagnetic wave, as
well as an outgoing electron. This part is asymptotically

OWp=WoB (- v -qy - +) qu(k"'kﬂ)
k’,u

ekt

XCk', p'k'“Qk', w8k, ,u’k"‘(oy d’)
s

ihk''%
Xexp(~ik’ct—
2m

), (A20)

where

(F2E'"2) 2m)+ Tk o= Biko+ Es.

The quantity, cw,.** is proportioned to the matrix
element for a transition in which the Kk, u-radiation
oscillator falls from the first excited state, to the ground
state, while the k’, p’-oscillator rises from the ground
state to the first excited state. This matrix element is
determined mainly by the term (e?/8mc?)A%(x) in the
hamiltonian.

It is easily seen that the outgoing electron packet
eventually becomes completely separated both from
the initial wave field, ¥;(x, « - x4 - -), and from the
packet for the photoelectric effect, §¥, [defined in Eq.
(A19)]. If the electron should happen to enter this
packet, then the others can be ignored, and the system
acts for all practical purposes like an outgoing electron,
plus an independent outgoing light quantum. The
reader will readily verify that the probability that the
light quantum k', u’ appears along with an electron
with angles 6, ¢ is precisely the same as in the usual
interpretation.

APPENDIX B. A DISCUSSION OF INTERPRETATIONS
OF THE QUANTUM THEORY PROPOSED
BY DE BROGLIE AND ROSEN

After this article had been prepared, the author’s
attention was called to two papers in which an inter-
pretation of the quantum theory similar to that sug-
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gested here was proposed, first by L. de Broglie,® and
later by N. Rosen.’ In both of these papers, it was
suggested that if one writes ¥ =R exp(is/%), then one
can regard R? as a probability density of particles
having a velocity, v=Vs/m. De Broglie regarded the
y-field as an agent “guiding” the particle, and therefore
referred to ¢ as a “pilot wave.” Both of these authors
came to the conclusion that this interpretation could
mnot consistently be carried through in those cases in
which the field contained a linear combination of sta-
tionary state wave functions. As we shall see in this
appendix, however, the difficulties encountered by the
above authors could have been overcome by them, if
only they had carried their ideas to a logical conclusion.

De Broglie’s suggestions met strong objections on the
part of Pauli in connection with the problem of
inelastic scattering of a particle by a rigid rotator.
Since this problem is conceptually equivalent to that of
inelastic scattering of a particle by a hydrogen atom,
which we have already treated in Paper I, Sec. 7, we
shall discuss the objections raised by Pauli in terms of
the latter example.

Now, according to Pauli’s argument, the initial
wave function in the scattering problem should be
W=exp(ipo- y/%)¥o(x). This corresponds to a stationary
state for the combined system, in which the particle
momentum is po, while the hydrogen atom is in its
ground state, with a wave function, ¥o(x). After inter-
action between the incident particle and the hydrogen
atom, the combined wave function can be represented as

¥=3"n fu(¥)¥n(x), (B1)

where ¥,(x) is the wave function for the nth excited
state of the hydrogen atom, and f,(y) is the associated
expansion coefficient. It is easily shown®? that asym-
ptotically, f.(y) takes the form of an outgoing wave,
Jn(¥)~gn(0, ®)e*/r, where (hkn)*/2m=1[(hike)*/2m]
+E,—E,. Now, if we write y=R exp(iS/%), we find
that the particle momenta, p,=V,S(x,y) and p,
=V,S(x, y), fluctuate violently in a way that depends
strongly on the position of each particle. Thus, neither
atom nor the outgoing particle ever seem to approach
a stationary energy. On the other hand, we know from
experiment that both the atom and the outgoing particle
do eventually obtain definite (but presumably unpre-
dictable) energy values. Pauli therefore concluded that
the interpretation proposed by de Broglie was un-
tenable. De Broglie seems to have agreed with the
conclusion, since he subsequently gave up his suggested
interpretation.®

9 L. de Broglie, An Introduction to the Study of Wave Mechanics
(E. P. Dutton and Company, Inc., New York, 1930), see Chapters
6, 9, and 10.

1051)\7. Rosen, J. Elisha Mitchel Sci. Soc. 61, Nos. 1 and 2 (August,
1945).

11 Reports on the 1927 Solvay Congress (Gauthiers-Villars et Cie.,
Paris, 1928), see p. 280.

2N. F. Mott and H. S. W. Massey, The Theory of Atomic
Collisions (Clarendon Press, Oxford, 1933).
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Our answer to Pauli’s objection is already contained
in Paper I, Sec. 7, as well as in Sec. 2 of this paper.
For as is well known, the use of an incident plane
wave of infinite extent is an excessive abstraction, not
realizable in practice. Actually, both the incident and
outgoing parts of the y-field will always take the form
of bounded packets. Moreover, as shown in Paper I,
Sec. 7, all packets corresponding to different values of
n will ultimately obtain classically describable separa-
tions. The outgoing particle must enter one of these
packets, and it will remain with that particular packet
thereafter, leaving the hydrogen atom in a definite but
correlated stationary state. Thus, Pauli’s objection is
seen to be based on the use of the excessively abstract
model of an infinite plane wave.

Although the above constitutes a complete answer to
Pauli’s specific objections to our suggested interpreta-
tion, we wish here to amplify our discussion somewhat,
in order to anticipate certain additional objections
that might be made along similar lines. For at this
point, one might argue that even though the wave
packet is bounded, it can nevertheless in principle be
made arbitrarily large in extent by means of a suitable
adjustment of initial conditions. Our interpretation
predicts that in the region in which incident and
outgoing yY-waves overlap, the momentum of each
particle will fluctuate violently, as a result of corre-
sponding fluctuations in the ‘“quantum-mechanical”
potential produced by the y-field. The question arises,
however, as to whether such fluctuations can really be
in accord with experimental fact, especially since in
principle they could occur when the particles were
separated by distances much greater than that over
which the “classical” interaction potential, V(x, y),
was appreciable.

To show that these fluctuatidns are not in disagree-
ment with any experimental facts now available, we
first point out that even in the usual interpretation the
energy of each particle cannot correctly be regarded as
definite under the conditions which are assumed here,
namely, that the incident and outgoing wave packets
overlap. For as long as interference between two sta-
tionary state wave function is possible, the system acts
as if it, in some sense, covered both states simultane-
ously.’® In such a situation, the usual interpretation
implies that a precisely defined value for the energy of
either particle is meaningless. From such a wave func-
tion, one can predict only the probability that if the
energy is measured, a definite value will be obtained.
On the other hand, the very experimental conditions
needed for measuring the energy play a key role in
making a definite value of the energy possible because
the effect of the measuring apparatus is to destroy
interference between parts of the wave function corre-
sponding to different values of the energy.!4

18 Reference 2, Chapter 16, Sec. 25.
1 Reference 2, Chapter 6, Secs. 3 to 8; Chapter 22, Secs. 8 to 10.
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In our interpretation, the overlap of incident and
outgoing wave packets signifies not that the precise
value of the energy of either particle can be given no
meaning, but rather that this value fluctuates violently
in an, in practice, unpredictable and uncontrollable way.
When the energy of either particle is measured, how-
ever, then our interpretation predicts, in agreement
with the usual interpretation, that the energy of each
particle will become definite and constant, as a result
of the effects of the energy-measuring apparatus on the
observed system. To show how this happens, let us
suppose that the energy of the hydrogen atom is
measured by means of an interaction in which the
“classical” potential, V, is a function only of the vari-
ables associated with the electron in the hydrogen atom
and with the apparatus, but is not a function of vari-
ables associated with the outgoing particle. Let z be
the coordinate of the measuring apparatus. Then as
shown in Sec. 2, interaction with an apparatus that
measures the energy of the hydrogen atom will trans-
form the ¥-function (B1), into

=20 fa(N)¥n(X)go(z— aEnt/ 7).

Now, we have seen that if the product a7 is large enough
to make a distinct measurement possible, packets
corresponding to different values of # will ultimately
obtain classically describable separations in z space.
The apparatus variable, z, must enter one of these
packets; and, thereafter, all other packets can for
practical purposes be ignored. The hydrogen atom is
then left in a state having a definite and constant
energy, while the outgoing particle has a correspond-
ingly definite but correlated constant value for its
energy. Thus, we find that as with the usual interpre-
tation, our interpretation predicts that whenever we
measure the energy of either particle by methods that
are now available, a definite and constant value will
always be obtained. Nevertheless, under conditions in
which incident and outgoing wave packets overlap, and
in which neither particle interacts with an energy-
measuring device, our interpretation states unambigu-
ously that real fluctuations in the energy of each particle
will occur. These fluctuations are moreover, at least in
principle, observable (for example, by methods dis-
cussed in Sec. 6). Meanwhile, under conditions in
which we are limited by present methods of observation,
our interpretation leads to predictions that are precisely
the same as those obtained from the usual interpreta-
tion, so that no experiments supporting the usual
interpretation can possibly contradict our interpreta-
tion.

In his book,? de Broglie raises objections to his own
suggested interpretation of the quantum theory, which
are very similar to those raised by Pauli. It is therefore
not necessary to answer de Broglie’s objections in
detail here, since the answer is essentially the same as
that which has been given to Pauli. We wish, however,

(B2)
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to add one point. De Broglie assumes that not only
electrons, but also light quanta, are associated with
particles. A consistent application of the interpretation
suggested here requires, however, as shown in Appendix
A, that light quanta be described as electromagnetic
wave packets. The only precisely definable quantities
in such a packet are the Fourier components, gy, ,, of the
vector potential and the corresponding canonically
conjugate momenta, J]x .. Such packets have many
particle-like properties, including the ability to transfer
rapidly a full quantum of energy at great distances.
Nevertheless, it would not be consistent to assume the
existence of a ‘“photon’ particle, associated with each
light quantum.

We shall now discuss Rosen’s paper briefly.?? Rosen
gave up his suggested interpretation of the quantum
theory, because of difficulties arising in connection with
the interpretation of standing waves. In the case of the
stationary states of a free particle in a box, which we
have already discussed in Sec. 8, our interpretation
leads to the conclusion that the particle is standing
still. Rosen did not wish to accept this conclusion,
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because it seemed to disagree with the statement of the
usual interpretation that in such a state the electron is
moving with equal probability that the motion is in
either direction. To answer Rosen’s objections, we need
merely point out again that the usual interpretation
can give no meaning to the motion of particles in a
stationary state; at best, it can only predict the prob-
ability that a given result will be obtained, if the
velocity is measured. As we saw in Sec. 8, however, our
interpretation leads to precisely the same predictions
as are obtained from the usual interpretation, for any
process which could actually provide us with a meas-
urement of the velocity of the electron. One must
remember, however, that the value of the momentum
“observable” as it is now “measured” is not necessarily
equal to the particle momentum existing before inter-
action with the measuring apparatus took place.

We conclude that the objections raised by Pauli,
de Broglie, and Rosen, to interpretations of the quan-
tum theory similar to that suggested here, can all be
answered by carrying every aspect of our suggested
interpretation to its logical conclusion.
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Neutrons from the Disintegration of the Separated Isotopes of Silicon by Deuterons™
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The neutron spectra from deuterons on silicon have been studied by the method of recoil protons and
photographic plates. Thick isotopic targets of the three separated isotopes of silicon were irradiated by
deuterons of energy 1.4 Mev, supplied by the Bartol Van de Graaff statitron, observations being carried
out at angles of zero and ninety degrees with the incident deuterons. Q-values, from which energy levels
in the residual nuclei of phosphorous may be calculated, are as follows:

Reaction
Si?8(d,n) P20
Si2%(d,n) P30
Si3o(d,n) P3t

Q-values (Mev)
0.29
3.27, 2.52, 1.81, 1.27
4.92, 4.59, 3.73, 2.70, 1.51

The estimated probable error in the Q-values is 40 kev.

HERE are three stable isotopes of silicon, Si%,

Si®, and Si®°, having respectively relative abun-

dances of 92.28 percent, 4.67 percent, and 3.05 percent.

When these elements are irradiated by deuterons,
neutrons are emitted in the following three reactions.

(1) SP34-d—P¥4ni4Qy,
(2) Si?4-d—P4-n4-Qs,

3) Si4-d—P4-n'4-Qs.

* Assisted by the joint program of the ONR and AEC.

t Calcutta, India. Guest physicist, Bartol Research Foundation,
1951.

1 The contribution of D. M. Van Patter to this article consists
of the preparation of the Appendix.

Naturally occurring silicon has been previously bom-
barded with deuterons to observe the neutron spectra.!
However, because of the element of ambiguity intro-
duced by the presence of the mixture of isotopes, the
data are difficult of interpretation. To reinvestigate
the above three reactions, quantities of the separated
isotopes, in the form of silicon dioxide, were obtained
from the Y-12 plant, Carbide and Carbon Chemicals
Division, Union Carbide and Carbon Corporation, Oak
Ridge, Tennessee. The mass analyses of the various
targets are shown in Table I.

1R. A. Peck, Jr., Phys. Rev. 73, 947 (1948).



