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The usual interpretation of the quantum theory is self-con-
sistent, but it involves an assumption that cannot be tested
experimentally, v7z., that the most complete possible specification
of an individual system is in terms of a wave function that deter-
mines only probable results of actual measurement processes.
The only way of investigating the truth of this assumption is by
trying to find some other interpretation of the quantum theory in
terms of at present “hidden” variables, which in principle deter-
mine the precise behavior of an individual system, but which are
in practice averaged over in measurements of the types that can
now be carried out. In this paper and in a subsequent paper, an
interpretation of the quantum theory in terms of just such
“hidden” variables is suggested. It is shown that as long as the
mathematical theory retains its present general form, this sug-
gested interpretation léads to precisely the same results for all

physical processes as does the usual interpretation. Nevertheless,
the suggested interpretation provides a broader conceptual frame-
work than the usual interpretation, because it makes possible a
precise and continuous description of all processes, even at the
quantum level. This broader conceptual framework allows more
general mathematical formulations of the theory than those
allowed by the usual interpretation. Now, the usual mathematical
formulation seems to lead to insoluble difficulties when it is ex-
trapolated into the domain of distances of the order of 107 c¢m
or less. It is therefore entirely possible that the interpretation sug-
gested here may be needed for the resolution of these difficulties.
In any case, the mere possibility of such an interpretation proves
that it is not necessary for us to give up a precise, rational, and
objective description of individual systems at a quantum level of
accuracy.

1. INTRODUCTION

HE usual interpretation of the quantum theory is
based on an assumption having very far-reaching
implications, viz., that the physical state of an in-
dividual system is completely specified by a wave
function that determines only the probabilities of actual
results that can be obtained in a statistical ensemble of
similar experiments. This assumption has been the
object of severe criticisms, notably on the part of
Einstein, who has always believed that, even at the
quantum level, there must exist precisely definable
elements or dynamical variables determining (as in
classical physics) the actual behavior of each individual
system, and not merely its probable behavior. Since
these elements or variables are not now included in the
quantum theory and have not yet been detected experi-
mentally, Einstein has always regarded the present
form of the quantum theory as incomplete, although he
admits its internal consistency.'®

Most physicists have felt that objections such as
those raised by Einstein are not relevant, first, because
the present form of the quantum theory with its usual
probability interpretation is in excellent agreement
with an extremely wide range of experiments, at least
in the domain of distances® larger than 10~ cm, and,
secondly, because no consistent alternative interpreta-
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tions have as yet been suggested. The purpose of this
paper (and of a subsequent paper hereafter denoted by
II) is, however, to suggest just such an alternative
interpretation. In contrast to the usual interpretation,
this alternative interpretation permits us to conceive
of each individual system as being in a precisely de-
finable state, whose changes with time are determined
by definite laws, analogous to (but not identical with)
the classical equations of motion. Quantum-mechanical
probabilities are regarded (like their counterparts in
classical statistical mechanics) as only a practical
necessity and not as a manifestation of an inherent
lack of complete determination in the properties of
matter at the quantum level. As long as the present
general form of Schroedinger’s equation is retained, the
physical results obtained with our suggested alternative
interpretation are precisely the same as those obtained
with the usual interpretation. We shall see, however,
that our alternative interpretation permits modifica-
tions of the mathematical formulation which could not
even be described in terms of the usual interpretation.
Moreover, the modifications can quite easily be for-
mulated in such a way that their effects are insignificant
in the atomic domain, where the present quantum
theory is in such good agreement with experiment, but
of crucial importance in the domain of dimensions of
the order of 10 cm, where, as we have seen, the
present theory is totally inadequate. It is thus entirely
possible that some of the modifications describable in
terms of our suggested alternative interpretation, but

in a very crude sense. Thus, it is generally expected that in con-
nection with phenomena associated with this so-called “funda-
mental length,” a totally new theory will probably be needed.
It is hoped that this theory could not only deal precisely with such
processes as meson production and scattering of elementary par-
ticles, but that it would also systematically predict the masses,
charges, spins, etc., of the large number of so-called “elementary”
particles that have already been found, as well as those of new
particles which might be found in the future,
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not in terms of the usual interpretation, may be needed
for a more thorough understanding of phenomena
associated with very small distances. We shall not,
however, actually develop such modifications in any
detail in these papers.

After this article was completed, the author’s atten-
tion was called to similar proposals for an alternative
interpretation of the quantum theory made by de
Broglie” in 1926, but later given up by him partly as
a result of certain criticisms made by Pauli® and partly
because of additional objections raised by de Broglie’
himself.} As we shall show in Appendix B of Paper II,
however, all of the objections of de Broglie and Pauli
could have been met if only de Broglie had carried his
ideas to their logical conclusion. The essential new step
in doing this is to apply our interpretation in the theory
of the measurement process itself as well as in the
description of the observed system. Such a development
of the theory of measurements is given in Paper II,°
where it will be shown in detail that our interpretation
leads to precisely the same results for all experiments
as are obtained with the usual interpretation. The
foundation for doing this is laid in Paper I, where we
develop the basis of our interpretation, contrast it
with the usual interpretation, and apply it to a few
simple examples, in order to illustrate the principles
involved.

2. THE USUAL PHYSICAL INTERPRETATION
OF THE QUANTUM THEORY

The usual physical interpretation of the quantum
theory centers around the uncertainty principle. Now,
the uncertainty principle can be derived in two different
ways. First, we may start with the assumption already
criticized by Einstein,! namely, that a wave function
that determines only probabilities of actual experi-
mental results nevertheless provides the most complete
possible specification of the so-called “quantum state”
of an individual system. With the aid of this assump-
tion and with the aid of the de Broglie relation, p=1#k,
where k is the wave number associated with a par-
ticular fourier component of the wave function, the

7 L. de Broglie, An Introduction fo the Study of Wave Mechanics
(E. P. Dutton and Company, Inc., New York, 1930), see Chapters
6, 9, and 10. See also Compt. rend. 183, 447 (1926); 184, 273
(1927); 185, 380 (1927).

8 Reports on the Solvay Congress (Gauthiers-Villars et Cie.,
Paris, 1928), see p. 280.

T Note added in proof—Madelung has also proposed a similar
interpretation of the quantum theory, but like de Broglie he did
not carry this interpretation to a logical conclusion. See E. Made-
lung, Z. f. Physik 40, 332 (1926), also G. Temple, Introduction to
Quantum Theory (London, 1931).

9In Paper II, Sec. 9, we also discuss von Neumann’s proof
[see J. von Neumann, Mathematische Grundlagen der Quanten-
mechanik (Verlag, Julius Springer, Berlin, 1932)] that quantum
theory cannot be understood in terms of a statistical distribution
of “hidden” causal parameters. We shall show that his conclusions
do not apply to our interpretation, because he implicitly assumes
that the hidden parameters must be associated only with the
observed system, whereas, as will become evident in these papers,
our interpretation requires that the hidden parameters shall also
be associated with the measuring apparatus.
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uncertainty principle is readily deduced.’® From this
derivation, we are led to interpret the uncertainty
principle as an inherent and irreducible limitation on
the precision with which it is correct for us even to
conceive of momentum and position as simultaneously
defined quantities. For if, as is done in the usual inter-
pretation of the quantum theory, the wave intensity
is assumed to determine only the probability of a given
position, and if the kth Fourier component of the wave
function is assumed to determine only the probability
of a corresponding momentum, p=7#k, then it becomes
a contradiction in terms to ask for a state in which
momentum and position are simultaneously and pre-
cisely defined.

A second possible derivation of the uncertainty
principle is based on a theoretical analysis of the
processes with the aid of which physically significant
quantities such as momentum and position can be
measured. In such an analysis, one finds that because
the measuring apparatus interacts with the observed
system by means of indivisible quanta, there will always
be an irreducible disturbance of some observed prop-
erty of the system. If the precise effects of this dis-
turbance could be predicted or controlled, then one
could correct for these effects, and thus one could still
in principle obtain simultaneous measurements of
momentum and position, having unlimited precision.
But if one could do this, then the uncertainty principle
would be violated. The uncertainty principle is, as we
have seen, however, a necessary consequence of the
assumption that the wave function and its probability
interpretation provide the most complete possible
specification of the state of an individual system. In
order to avoid the possibility of a contradiction with
this assumption, Bohr®-5:1%11 and others have suggested
an additional assumption, namely, that the process of
transfer of a single quantum from observed system to
measuring apparatus is inherently unpredictable, un-
controllable, and not subject to a detailed rational
analysis or description. With the aid of this assumption,
one can show!® that the same uncertainty principle
that is deduced from the wave function and its proba-
bility interpretation is also obtained as an inherent and
unavoidable limitation on the precision of all possible
measurements. Thus, one is able to obtain a set of
assumptions, which permit a self-consistent formula-
tion of the usual interpretation of the quantum theory.

The above point of view has been given its most
consistent and systematic expression by Bohr?®10 in
terms of the “principle of complementarity.” In for-
mulating this principle, Bohr suggests that at the
atomic level we must renounce our hitherto successful
practice of conceiving of an individual system as a
unified and precisely definable whole, all of whose as-
pects are, in a manner of speaking, simultaneously and

10 See reference 2, Chapter 5.
1 N, Bohr, Atomic Theory and the Description of Nature (Cam-
bridge University Press, London, 1934).
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unambiguously accessible to our conceptual gaze. Such
a system of concepts, which is sometimes called a
“model,” need not be restricted to pictures, but may
also include, for example, mathematical concepts, as
long as these are supposed to be in a precise (i.e.,
one-to-one) correspondence with the objects that are
being described. The principle of complementarity
requires us, however, to renounce even mathematical
models. Thus, in Bohr’s point of view, the wave func-
tion is in no sense a conceptual model of an individual
system, since it is not in a precise (one-to-one) corre-
spondence with the behavior of this system, but only
in a statistical correspondence.

In place of a precisely defined conceptual model, the
principle of complementarity states that we are re-
stricted to complementarity pairs of inherently im-
precisely defined concepts, such as position and mo-
mentum, particle and wave, etc. The maximum degree
of precision of definition of either member of such a
pair is reciprocally related to that of the opposite
member. This need for an inherent lack of complete
precision can be understood in two ways. First, it can
be regarded as a consequence of the fact that the ex-
perimental apparatus needed for a precise measure-
ment of one member of a complementary pair of vari-
ables must always be such as to preclude the possibility
of a simultaneous and precise measurement of the other
member. Secondly, the assumption that an individual
system is completely specified by the wave function and
its probability interpretation implies a corresponding
unavoidable lack of precision in the very conceptual
structure, with the aid of which we can think about
and describe the behavior of the system.

It is only at the classical level that we can correctly
neglect the inherent lack of precision in all of our con-
ceptual models; for here, the incomplete determination
of physical properties implied by the uncertainty prin-
ciple produces effects that are too small to be of prac-
tical significance. Our ability to describe classical
systems in terms of precisely definable models is, how-
ever, an integral part of the usual interpretation of the
theory. For without such models, we would have no
way to describe, or even to think of, the result of an
observation, which is of course always finally carried
out at a classical level of accuracy. If the relationships
of a given set of classically describable phenomena
depend significantly on the essentially quantum-me-
chanical properties of matter, however, then the prin-
ciple of complementarity states that no single model is
possible which could provide a precise and rational
analysis of the connections between these phenomena.
In such a case, we are not supposed, for example, to
attempt to describe in detail how future phenomena
arise out of past phenomena. Instead, we should simply
accept without further analysis the fact that future
phenomena do in fact somehow manage to be produced,
in a way that is, however, necessarily beyond the possi-
bility of a detailed description. The only aim of a
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mathematical theory is then to predict the statistical
relations, if any, connecting these phenomena.

3. CRITICISM OF THE USUAL INTERPRETATION OF
THE QUANTUM THEORY

The usual interpretation of the quantum theory can
be criticized on many grounds.’ In this paper, however,
we shall stress only the fact that it requires us to give
up the possibility of even conceiving precisely what
might determine the behavior of an individual system
at the quantum level, without providing adequate
proof that such a renunciation is necessary.® The usual
interpretation is admittedly consistent; but the mere
demonstration of such consistency does not exclude the
possibility of other equally consistent interpretations,
which would involve additional elements or parameters
permitting a detailed causal and continuous description
of all processes, and not requiring us to forego the
possibility of conceiving the quantum level in precise
terms. From the point of view of the usual interpreta-
tion, these additional elements or parameters could be
called “hidden” variables. As a matter of fact, when-
ever we have previously had recourse to statistical
theories, we have always ultimately found that the
laws governing the individual members of a statistical
ensemble could be expressed in terms of just such
hidden variables. For example, from the point of view
of macroscopic physics, the coordinates and momenta
of individual atoms are hidden variables, which in a
large scale system manifest themselves only as sta-
tistical averages. Perhaps then, our present quantum-
mechanical averages are similarly a manifestation of
hidden variables, which have not, however, yet been
detected directly.

Now it may be asked why these hidden variables
should have so long remained undetected. To answer
this question, it is helpful to consider as an analogy the
early forms of the atomic theory, in which the existence
of atoms was postulated in order to explain certain
large-scale effects, such as the laws of chemical com-
bination, the gas laws, etc. On the other hand, these
same effects could also be described directly in terms
of existing macrophysical concepts (such as pressure,
volume, temperature, mass, etc.); and a correct de-
scription in these terms did not require any reference to
atoms. Ultimately, however, effects were found which
contradicted the predictions obtained by extrapolating
certain purely macrophysical theories to the domain of
the very small, and which could be understood cor-
rectly in terms of the assumption that matter is com-
posed of atoms. Similarly, we suggest that if there are
hidden wvariables underlying the present quantum
theory, it is quite likely that in the atomic domain, they
will lead to effects that can also be described adequately
in the terms of the usual quantum-mechanical concepts;
while in a domain associated with much smaller dimen-
sions, such as the level associated with the “fundamental
length” of the order of 10 cm, the hidden variables
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may lead to completely new effects not consistent with
the extrapolation of the present quantum theory down
to this level.

If, as is certainly entirely possible, these hidden vari-
ables are actually needed for a correct description at
small distances, we could easily be kept on the wrong
track for a long time by restricting ourselves to the
usual interpretation of the quantum theory, which ex-
cludes such hidden variables as a matter of principle.
It is therefore very important for us to investigate our
reasons for supposing that the usual physical inter-
pretation is likely to be the correct one. To this end, we
shall begin by repeating the two mutually consistent
assumptions on which the usual interpretation is based
(see Sec. 2):

(1) The wave function with its probability inter-
pretation determines the most complete possible speci-
fication of the state of an individual system.

(2) The process of transfer of a single quantum from
observed system to measuring apparatus is inherently
unpredictable, uncontrollable, and unanalyzable.

Let us now inquire into the question of whether there
are any experiments that could conceivably provide a
test for these assumptions. It is often stated in con-
nection with this problem that the mathematical ap-
paratus of the quantum theory and its physical in-
terpretation form a consistent whole and that this
combined system of mathematical apparatus and
physical interpretation is tested adequately by the
extremely wide range of experiments that are in agree-
ment with predictions obtained by using this system.
If assumptions (1) and (2) implied a unique mathe-
matical formulation, then such a conclusion would be
valid, because experimental predictions could then be
found which, if contradicted, would clearly indicate
that these assumptions were wrong. Although assump-
tions (1) and (2) do limit the possible forms of the
mathematical theory, they do not limit these forms
sufficiently to make possible a unique set of predictions
that could in principle permit such an experimental
test. Thus, one can contemplate practically arbitrary
changes in the Hamiltonian operator, including, for
example, the postulation of an unlimited range of new
kinds of meson fields each having almost any conceiv-
able rest mass, charge, spin, magnetic moment, etc.
And if such postulates should prove to be inadequate,
it is conceivable that we may have to introduce non-
local operators, nonlinear fields, S-matrices, etc. This
means that when the theory is found to be inadequate
(as now happens, for example, at distances of the order
of 10~ cm), it is always possible, and, in fact, usually
quite natural, to assume that the theory can be made
to agree with experiment by some as yet unknown
change in the mathematical formulation alone, not
requiring any fundamental changes in the physical in-
terpretation. This means that as long as we accept the
usual physical interpretation of the quantum theory,
we cannot be led by any conceivable experiment to
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give up this interpretation, even if it should happen to
be wrong. The usual physical interpretation therefore
presents us with a considerable danger of falling into
a trap, consisting of a self-closing chain of circular
hypotheses, which are in principle unverifiable if true.
The only way of avoiding the possibility of such a trap
is to study the consequences of postulates that con-
tradict assumptions (1) and (2) at the outset. Thus,
we could, for example, postulate that the precise out-
come of each individual measurement process is in
principle determined by some at present ‘“hidden”
elements or variables; and we could then try to find
experiments that depended in a unique and reproducible
way on the assumed state of these hidden elements or
variables. If such predictions are verified, we should
then obtain experimental evidence favoring the hy-
pothesis that hidden variables exist. If they are not
verified, however, the correctness of the usual in-
terpretation of the quantum theory is not necessarily
proved, since it may be necessary instead to alter the
specific character of the theory that is supposed to
describe the behavior of the assumed hidden variables.

We conclude then that a choice of the present in-
terpretation of the quantum theory involves a real
physical limitation on the kinds of theories that we wish
to take into consideration. From the arguments given
here, however, it would seem that there are no secure
experimental or theoretical grounds on which we can
base such a choice because this choice follows from
hypotheses that cannot conceivably be subjected to an
experimental test and because we now have an al-
ternative interpretation.

4. NEW PHYSICAL INTERPRETATION OF
SCHROEDINGER’S EQUATION

We shall now give a general description of our sug-
gested physical interpretation of the present mathe-
matical formulation of the quantum theory. We shall
carry out a more detailed description in subsequent
sections of this paper.

We begin with the one-particle Schroedinger equa-
tion, and shall later generalize to an arbitrary number
of particles. This wave equation is

thoy/dt= — (h2/2m)Vip+ V (x)y. 1
Now ¢ is a complex function, which can be expressed as
¥=R exp(iS/h), @

where R and S are real. We readily verify that the equa-
tions for R and .S are

oR 1

—=——[RV25+42VR- V5], 3)
at 2m

a5 (vS)? n? V2R

—_—=— [ +V(x ——] 4)
ot 2m 2m R
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It is convenient to write P(x)=R%(x), or R=P}
where P(x) is the probability density. We then obtain

oP Vs
— v (P——) =0, (5)
at m
as  (VS) [VP 1 (VP)

{( LV ——] 1 )]=o. ©)
ot 2m ml P 2 P

Now, in the classical limit (40) the above equations
are subject to a very simple interpretation. The func-
tion S(x) is a solution of the Hamilton-Jacobi equation.
If we consider an ensemble of particle trajectories which
are solutions of the equations of motion, then it is a
well-known theorem of mechanics that if all of these
trajectories are normal to any given surface of constant
S, then they are normal to all surfaces of constant S,
and VS(x)/m will be equal to the velocity vector, v(x),
for any particle passing the point x. Equation (5) can
therefore be re-expressed as

dP/3i+ V- (Pv)=0. (7

This equation indicates that it is consistent to regard
P(x) as the probability density for particles in our
ensemble. For in that case, we can regard Pv as the
mean current of particles in this ensemble, and Eq. (7)
then simply expresses the conservation of probability.

Let us now see to what extent this interpretation can
be given a meaning even when %520. To do this, let us
assume that each particle is acted on, not only by a
“classical” potential, V(x) but also by a “quantum-
mechanical” potential,

—R[VP 1(VP)] —IVR
- ]: _ (8)
mlp 2 P

2m R

Then Eq. (6) can still be regarded as the Hamilton-
Jacobi equation for our ensemble of particles, V.S(x)/m
can still be regarded as the particle velocity, and Eq. (5)
can still be regarded as describing conservation of
probability in our ensemble. Thus, it would seem that
we have here the nucleus of an alternative interpreta-
tion for Schroedinger’s equation.

The first step in developing this interpretation in a
more explicit way is to associate with each electron a
particle having precisely definable and continuously
varying values of position and momentum. The solu-
tion of the modified Hamilton-Jacobi equation (4)
defines an ensemble of possible trajectories for this
particle, which can be obtained from the Hamilton-
Jacobi function, S(x), by integrating the velocity,
v(x)=VS(x)/m. The equation for .S implies, however,
that the particles moves under the action of a force
which is not entirely derivable from the classical po-
tential, V(x), but which also obtains a contribution from
the “quantum-mechanical” potential, U(x)= (—42/2m)
XV2R/R. The function, R(x), is not completely arbi-
trary, but is partially determined in terms of S(x) by

U(x)=
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the differential Eq. (3). Thus R and .S can be said to
codetermine each other. The most convenient way of
obtaining R and S is, in fact, usually to solve Eq. (1)
for the Schroedinger wave function, ¢, and then to use
the relations,

Y=U+iW = R[ cos(S/h)+1 sin(S/h)],
R2=U+V?;, S=htan }(W/U).

Since the force on a particle now depends on a func-
tion of the absolute value, R(x), of the wave function,
¥(x), evaluated at the actual location of the particle,
we have effectively been led to regard the wave func-
tion of an individual electron as a mathematical repre-
sentation of an objectively real field. This field exerts
a force on the particle in a way that is analogous to,
but not identical with, the way in which an electro-
magnetic field exerts a force on a charge, and a meson
field exerts a force on a nucleon. In the last analysis,
there is, of course, no reason why a particle should not
be acted on by a y-field, as well as by an electromagnetic
field, a gravitational field, a set of meson fields, and
perhaps by still other fields that have not yet been
discovered.

The analogy with the electromagnetic (and other)
field goes quite far. For just as the electromagnetic
field obeys Maxwell’s equations, the y-field obeys
Schroedinger’s equation. In both cases, a complete
specification of the fields at a given instant over every
point in space determines the values of the fields for
all times. In both cases, once we know the field func-
tions, we can calculate force on a particle, so that,
if we also know the initial position and momentum of
the particle, we can calculate its entire trajectory.

In this connection, it is worth while to recall that the
use of the Hamilton-Jacobi equation in solving for the
motion of a particle is only a matter of convenience
and that, in principle, we can always solve directly by
using Newton’s laws of motion and the correct boundary
conditions. The equation of motion of a particle acted
on by the classical potential, V(x), and the “quantum-
mechanical” potential, Eq. (8), is

md?x/dr=—V{V(x)— (B/2m)V'R/R}.  (8a)

It is in connection with the boundary conditions
appearing in the equations of motion that we find the
only fundamental difference between the y-field and
other fields, such as the electromagnetic field. For in
order to obtain results that are equivalent to those of
the usual interpretation of the quantum theory, we are
required to restrict the value of the initial particle
momentum to p=VS(x). From the application of
Hamilton-Jacobi theory to Eq. (6), it follows that this
restriction is consistent, in the sense that if it holds
initially, it will hold for all time. Our suggested new
interpretation of the quantum theory implies, however,
that this restriction is not inherent in the conceptual
structure. We shall see in Sec. 9, for example, that it is
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quite consistent in our interpretation to contemplate
modifications in the theory, which permit an arbitrary
relation between p and V.S(x). The law of force on the
particle can, however, be so chosen that in the atomic
domain, p turns out to be very nearly equal to V.S(x)/m,
while in processes involving very small distances, these
two quantities may be very different. In this way, we
can improve the analogy between the y-field and the
electromagnetic field (as well as between quantum
mechanics and classical mechanics).

Another important difference between the y-field
and the electromagnetic field is that, whereas Schroed-
inger’s equation is homogeneous in ¢, Maxwell’s equa-
tions are inhomogeneous in the electric and magnetic
fields. Since inhomogeneities are needed to give rise to
radiation, this means that our present equations imply
that the y-field is not radiated or absorbed, but simply
changes its form while its integrated intensity remains
constant. This restriction to a homogeneous equation
is, however, like the restriction to a homogeneous equa-
tion is, however, like the restriction to p=VS(x), not
inherent in the conceptual structure of our new in-
terpretation. Thus, in Sec. 9, we shall show that one
can consistently postulate inhomogeneities in the equa-
tion governing ¥, which produce important effects only
at very small distances, and negligible effects in the
atomic domain. If such inhomogeneities are actually
present, then the y-field will be subject to being emitted
and absorbed, but only in connection with processes
associated with very small distances. Once the y-field
has been emitted, however, it will in all atomic processes
simply obey Schroedinger’s equation as a very good
approximation. Nevertheless, at very small distances,
the value of the y-field would, as in the case of the elec-
tromagnetic field, depend to some extent on the actual
location of the particle.

Let us now consider the meaning of the assumption
of a statistical ensemble of particles with a probability
density equal to P(x)=R%*(x)= |¢(x)|% From Eq. (5),
it follows that this assumption is consistent, provided
that ¢ satisfies Schroedinger’s equation, and v=VS(x)/
m. This probability density is numerically equal to the
probability density of particles obtained in the usual
interpretation. In the usual interpretation, however,
the need for a probability description is regarded as
inherent in the very structure of matter (see Sec. 2),
whereas in our interpretation, it arises, as we shall see
in Paper II, because from one measurement to the
next, we cannot in practice predict or control the pre-
cise location of a particle, as a result of corresponding
unpredictable and uncontrollable disturbances intro-
duced by the measuring apparatus. Thus, in our in-
terpretation, the use of a statistical ensemble is (as in
the case of classical statistical mechanics) only a prac-
tical necessity, and not a reflection of an inherent
limitation on the precision with which it is correct for
us to conceive of the variables defining the state of the
system. Moreover, it is clear that if in connection with
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very small distances we are ultimately required to give
up the special assumptions that ¢ satisfies Schroed-
inger’s equation and that v=VS(x)/m, then |¢|% will
cease to satisfy a conservation equation and will there-
fore also cease to be able to represent the probability
density of particles. Nevertheless, there would still be a
true probability density of particles which is conserved.
Thus, it would become possible in principle to find ex-
periments in which |¢|2 could be distinguished from
the probability density, and therefore to prove that the
usual interpretation, which gives |¢|% only a proba-
bility interpretation must be inadequate. Moreover,
we shall see in Paper II that with the aid of such
modifications in the theory, we could in principle
measure the particle positions and momenta precisely,
and thus violate the uncertainty principle. As long as
we restrict ourselves to conditions in which Schroed-
inger’s equation is satisfied, and in which v=VS(x)/m,
however, the uncertainty principle will remain an
effective practical limitation on the possible precision
of measurements. This means that at present, the
particle positions and momenta should be regarded as
‘“hidden” variables, since as we shall see in Paper II,
we are not now able to obtain experiments that localize
them to a region smaller than that in which the intensity
of the y-field is appreciable. Thus, we cannot yet find
clear-cut experimental proof that the assumption of
these variables is necessary, although it is entirely
possible that, in the domain of very small distances,
new modifications in the theory may have to be intro-
duced, which would permit a proof of the existence of
the definite particle position and momentum to be
obtained.

We conclude that our suggested interpretation of the
quantum theory provides a much broader conceptual
framework than that provided by the usual interpreta-
tion, for all of the results of the usual interpretation are
obtained from our interpretation if we make the follow-
ing three special assumptions which are mutually
consistent :

(1) That the y-field satisfies Schroedinger’s equation.

(2) That the particle momentum is restricted to p=V.S(x).

(3) That we do not predict or control the precise location of the
particle, but have, in practice, a statistical ensemble with proba-
bility density P(x)= |¢(x) |2 The use of statistics is, however,
not inherent in the conceptual structure, but merely a conse-
quence of our ignorance of the precise initial conditions of the
particle.

As we shall see in Sec. 9, it is entirely possible that a
better theory of phenomena involving distances of the
order of 10~ cm or less would require us to go beyond
the limitations of these special assumptions. Our prin-
cipal purpose in this paper (and in Paper II) is to show,
however, that if one makes these special assumptions,
our interpretation leads in all possible experiments to
the same predictions as are obtained from the usual
interpretation.®

It is now easy to understand why the adoption of the



172

usual interpretation of the quantum theory would tend
to lead us away from the direction of our suggested
alternative interpretation. For in a theory involving
hidden variables, one would normally expect that the
behavior of an individual system should not depend
on the statistical ensemble of which it is a member,
because this ensemble refers to a series of similar but
disconnected experiments carried out under equivalent
initial conditions. In our interpretation, however, the
“quantum-mechanical” potential, U(x), acting on an
individual particle depends on a wave intensity, P(x),
that is also numerically equal to a probability density
in our ensemble. In the terminology of the usual in-
terpretation of the quantum theory, in which one
tacitly assumes that the wave function has only one
interpretation; namely, in terms of a probability, our
suggested new interpretation would look like a mysteri-
ous dependence of the individual on the statistical
ensemble of which it is a member. In our interpretation,
such a dependence is perfectly rational, because the
wave function can consistently be interpreted both as
a force and as a probability density.?

It is instructive to carry our analogy between the
Schroedinger field and other kinds of fields a bit further.
To do this, we can derive the wave Egs. (5) and (6)
from a Hamiltonian functional. We begin by writing
down the expression for the mean energy as it is ex-
pressed in the usual quantum theory:

H= f xlf*( —%V“’—i—V(X))*MX
=f[%lw|2+wx>w!2}dx-

Writing ¢ = P* exp(iS/#), we obtain

B vS)? i (VP)?
= [ P(x)l( P
2m 8m P?

ldx. 9

We shall now reinterpret P(x) as a field coordinate,
defined at each point, x, and we shall tentatively assume
that S(x) is the momentum, canonically conjugate to
P(x). That such an assumption is appropriate can be
verified by finding the Hamiltonian equations of motion
for P(x) and S(x), under the assumption that the Hamil-
tonian functional is equal to H (See Eq. (9)). These
equations of motion are

oH
=—=——V-(PVS),
8S m
o (VS)? W VP 1(VP)?
o )
oP 2m 4dm\ P 2 P?

2 This consistency is guaranteed by the conservation Eq. (7).
The questions of why an arbitrary statistical ensemble tends to
decay into an ensemble with a probability density equal to ¢*y
will be discussed in Paper II, Sec. 7.
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These are, however, the same as the correct wave
Egs. (5) and (6).

We can now show that the mean particle energy
averaged over our ensemble is equal to the usual quan-
tum mechanical mean value of the Hamiltonian, H. To
do this, we note that according to Egs. (3) and (6), the
energy of a particle is

34S(x) [(VS)Z—{—V(X n? VzR].

(X)= ———=
at

m m

The mean particle energy is found by averaging E(x)
with the weighting function, P(x). We obtain

<E>ensemble= fP(X)E(X)dX

22

A little integration by parts yields

2 h?
+V(x)]dx————fRV2Rdx.
2m

VS)?
<E>ensemble=fP(x)[(2 ) +V(X)

average m

dx=H.

8m P?

B (VP)
( )] 1

5. THE STATIONARY STATE

We shall now show how the problem of stationary
states is to be treated in our interpretation of the
quantum theory.

The following seem to be reasonable requirements in
our interpretation for a stationary state:

(1) The particle energy should be a constant of the
motion.

(2) The quantum-mechanical potential should be
independent of time.

(3) The probability density in our statistical en-
semble should be independent of time.

It is easily verified that these requirements can be
satisfied with the assumption that

Y(x, §) =yo(x)exp(—iEt/ k)
= Ro(x)exp[i(®(x)—Et)/h]. (12)

From the above, we obtain S=&(x)— Et. According to
the generalized Hamilton-Jacobi Eq. (4), the particle
energy is given by

3S/dt=—E.

Thus, we verify that the particle energy is a constant
of the motion. Moreover, since P=R2= |2, it follows
that P (and R) are independent of time. This means
that both the probability density in our ensemble and
the quantum-mechanical potential are also time
independent.
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The reader will readily verify that no other form of
solution of Schroedinger’s equation will satisfy all three
of our criteria for a stationary state.

Since ¥ is now being regarded as a mathematical
representation of an objectively real force field, it
follows that (like the electromagnetic field) it should
be everywhere finite, continuous, and single valued.
These requirements will guarantee in all cases that occur
in practice that the allowed values of the energy in a
stationary state, and the corresponding eigenfunctions
are the same as are obtained from the usual interpreta-
tion of the theory.

In order to show in more detail what a stationary
state means in our interpretation, we shall now consider
three examples of stationary states.

Case 1: ¢“s” State

The first case that we shall consider is an “s” state.
In an “s” state, the wave function is

¥=f(r)expli(a—Ef)/1], (13)

where o is an arbitrary constant and 7 is the radius
taken from the center of the atom. We conclude that
the Hamilton-Jacobi function is

S=a—Et.
The particle velocity is
v=V§=0.

The particle is therefore simply standing still, wherever
it may happen to be. How can it do this? The absence
of motion is possible because the applied force, — VV (x),
is balanced by the ‘“‘quantum-mechanical” force, (42/
2m)V(V2R/R), produced by the Schroedinger y-field
acting on its own particle. There is, however, a sta-
tistical ensemble of possible positions of the particle,
with a probability density, P(x)=(f(r)).

Case 2: State with Nonzero Angular
Momentum

In a typical state of nonzero angular momentum,
we have

¥=ful(r) Pr(cosb)exp[i(8— Ei+-hme) /1],  (14)

where 6 and ¢ are the colatitude and azimuthal polar
angles, respectively, P/ is the associated Legendre
polynomial, and B is a constant. The Hamilton-Jacobi
function is S=p— Et+Am¢. From this result it follows
that the z component of the angular momentum is
equal to Am. To prove this, we write

L,=xp,—vp,=x0S/0y—y3S/dx=05/dp="hm. (15)

Thus, we obtain a statistical ensemble of trajectories
which can have different forms, but all have the same
“quantized” value of the z component of the angular
momentum.
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Case 3: A Scattering Problem

Let us now consider a scattering problem. Because
it is comparatively easy to analyze, we shall discuss a
hypothetical experiment, in which an electron is in-
cident in the z direction with an initial momentum, p,,
on a system consisting of two slits.®® After the electron
passes through the slit system, its position is measured
and recorded, for example, on a photographic plate.

Now, in the usual interpretation of the quantum
theory, the electron is described by a wave function.
The incident part of the wave function is Yo~exp(poz/
%) ; but when the wave passes through the slit system,
it is modified by interference and diffraction effects,
so that it will develop a characteristic intensity pattern
by the time it reaches the position measuring instru-
ment. The probability that the electron will be detected
between x and x+dx is |¢(x)|%dx. If the experiment is
repeated many times under equivalent initial condi-
tions, one eventually obtains a pattern of hits on the
photographic plate that is very reminiscent of the
interference patterns of optics.

In the usual interpretation of the quantum theory,
the origin of this interference pattern is very difficult
to understand. For there may be certain points where
the wave function is zero when both slits are open, but
not zero when only one slit is open. How can the
opening of a second slit prevent the electron from reach-
ing certain points that it could reach if this slit were
closed? If the electron acted completely like a classical
particle, this phenomenon could not be explained at all.
Clearly, then the wave aspects of the electron must
have something to do with the production of the inter-
ference pattern. Yet, the electron cannot be identical
with its associated wave, because the latter spreads
out over a wide region. On the other hand, when the
electron’s position is measured, it always appears at
the detector as if it were a localized particle.

The usual interpretation of the quantum theory not
only makes no attempt to provide a single precisely
defined conceptual model for the production of the
phenomena described above, but it asserts that no
such model is even conceivable. Instead of a single
precisely defined conceptual model, it provides, as
pointed out in Sec. 2, a pair of complementary models,
viz., particle and wave, each of which can be made
more precise only under conditions which necessitate
a reciprocal decrease in the degree of precision of the
other. Thus, while the electron goes through the slit
system, its position is said to be inherently ambiguous,
so that if we wish to obtain an interference pattern, it
is meaningless to ask through which slit an individual
electron actually passed. Within the domain of space
within which the position of the electron has no mean-
ing we can use the wave model and thus describe the
subsequent production of interference. If, however, we

13 This experiment is discussed in some detail in reference 2,
Chapter 6, Sec. 2.
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tried to define the position of the electron as it passed
the slit system more accurately by means of a measure-
ment, the resulting disturbance of its motion produced
by the measuring apparatus would destroy the inter-
ference pattern. Thus, conditions would be created in
which the particle model becomes more precisely de-
fined at the expense of a corresponding decrease in the
degree of definition of the wave model. When the posi-
tion of the electron is measured at the photographic
plate, a similar sharpening of the degree of definition of
the particle model occurs at the expense of that of the
wave model.

In our interpretation of the quantum theory, this
experiment is described causally and continuously in
terms of a single precisely definable conceptual model.
As we have already shown, we must use the same wave
function as is used in the usual interpretation; but
instead we regard it as a mathematical representation
of an objectively real field that determines part of the
force acting on the particle. The initial momentum of
the particle is obtained from the incident wave func-
tion, exp(ipoz/h), as p=0s/9z=po. We do not in prac-
tice, however, control the initial location of the par-
ticle, so that although it goes through a definite slit,
we cannot predict which slit this will be. The particle
is at all times acted on by the “quantum-mechanical”
potential, U= (—#4%*/2m)V?R/R. While the particle is
incident, this potential vanishes because R is then a
constant; but after it passes through the slit system,
the particle encounters a quantum-mechanical po-
tential that changes rapidly with position. The subse-
quent motion of the particle may therefore become
quite complicated. Nevertheless, the probability that
a particle shall enter a given region, dx, is as in the usual
interpretation, equal to |¥(x)|%dx. We therefore deduce
that the particle can never reach a point where the
wave function vanishes. The reason is that the “quan-
tum-mechanical” potential, U, becomes infinite when
R becomes zero. If the approach to infinity happens to
be through positive values of U, there will be an in-
finite force repelling the particle away from the origin.
If the approach is through negative values of U, the
particle will go through this point with infinite speed,
and thus spend no time there. In either case, we obtain
a simple and precisely definable conceptual model ex-
plaining why particles can never be found at points
where the wave function vanishes.

If one of the slits is closed, the “quantum-mechanical”
potential is correspondingly altered, because the y-field
is changed, and the particle may then be able to reach
certain points which it was unable to reach when both
slits were open. The slit is therefore able to affect the
motion of the particle only indirectly, through its
effect on the Schroedinger y-field. Moreover, as we shall
see in Paper II, if the position of the electron is meas-
ured while it is passing through the slit system, the
measuring apparatus will, as in the usual interpretation,
create a disturbance that destroys the interference
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pattern. In our interpretation, however, the necessity
for this destruction is not inherent in the conceptual
structure; and as we shall see, the destruction of the
interference pattern could in principle be avoided by
means of other ways of making measurements, ways
which are conceivable but not now actually possible.

6. THE MANY-BODY PROBLEM

We shall now extend our interpretation of the quan-
tum theory to the problem of many bodies. We begin
with the Schroedinger equation for two particles. (For
simplicity, we assume that they have equal masses,
but the extension of our treatment to arbitrary masses
will be obvious.)

VAR
ih—= —E—(vﬁH VAV (x1, X ).
m

Writing = R(xy, xs)exp[4S(x1, x2)/%#] and R2=P, we
obtain

P 1
—+—{V1- PV1S§+V,- PV,57]=0, (16)
at m
3S  (ViS)24(V.S)?
} +V (x4, Xs)
at 2m
n? .
—_ [V2R+V2R]=0. (17)

2mR

The above equations are simply a six-dimensional
generalization of the similar three-dimensional Egs. (5)
and (6) associated with the one-body problem. In the
two-body problem, the system is described therefore
by a six-dimensional Schroedinger wave and by a six-
dimensional trajectory, specifying the actual location
of each of the two particles. The velocity of this tra-
jectory has components, ViS/m and V.S/m, respec-
tively, in each of the three-dimensional surfaces associ-
ated with a given particle. P(xy, x;) then has a dual
interpretation. First, it defines a “‘quantum-mechanical”
potential, acting on each particle

U(Xl, Xz) = (h2/2mR)[V12R+ VQQ.R:].

This potential introduces an additional effective inter-
action between particles over and above that due to the
classically inferrable potential V(x). Secondly, the func-
tion P(xi, Xs) can consistently be regarded as the
probability density of representative points (x;, Xs) in
our six-dimensional ensemble.

The extension to an arbitrary number of particles
is straightforward, and we shall quote only the results
here. We introduce the wave function, ¥=R(x,, Xs,
-+ Xn)exp[S(X1, Xa- -+ X,)/h] and define a 3n-dimen-
sional trajectory, where » is the number of particles,
which describes the behavior of every particle in the
system. The velocity of the ith particle is v,=V,S(x,
Xz- -+ X,)/m. The function P(xy, Xo* - - X,)=R? has two
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interpretations. First, it defines a ‘“quantum-mechani-
cal” potential

B on
> VER(xXy, X2+ * +X,). (18)
2mR s=1

U(x1, X2* * * Xn) = —

Secondly, P(xi, X2*+-X,) is equal to the density of
representative points (X, Xs***X,) in our 3n-dimen-
sional ensemble.

We see here that the “effective potential,” U(x, X,
-+ +X,), acting on a particle is equivalent to that pro-
duced by a “many-body” force, since the force between
any two particles may depend significantly on the
location of every other particle in the system. An ex-
ample of the effects of such a force is given by the ex-
clusion principle. Thus, if the wave function is anti-
symmetric, we deduce that the “quantum-mechanical”
forces will be such as to prevent two particles from ever
reaching the same point in space, for in this case, we
must have P=0.

7. TRANSITIONS BETWEEN STATIONARY STATES—
THE FRANCK-HERTZ EXPERIMENT

Our interpretation of the quantum theory describes
all processes as basically causal and continuous. How
then can it lead to a correct description of processes
such as the Franck-Hertz experiment, the photoelectric
effect, and the Compton effect, which seem to call
most strikingly for an interpretation in terms of dis-
continuous and incompletely determined transfers of
energy and momentum? In this section, we shall answer
this question by applying our suggested interpretation
of the quantum theory in the analysis of the Franck-
Hertz experiment. Here, we shall see that the ap-
parently discontinuous nature of the process of transfer
of energy from the bombarding particle to the atomic
electron is brought about by the “quantum-mechanical”
potential, U= (—#%/2m)V:R/R, which does not neces-
sarily become small when the wave intensity becomes
small. Thus, even if the force of interaction between
two particles is very weak, so that a correspondingly
small disturbance of the Schroedinger wave function is
produced by the interaction of these particles, this
disturbance is capable of bringing about very large
transfers of energy and momentum between the par-
ticles in a very short time. This means that if we view
only the end results, this process presents the aspect
of being discontinuous. Moveover, we shall see that
the precise value of the energy transfer is in principle
determined by the initial position of each particle and
by the initial form of the wave function. Since we cannot
in practice predict or control the initial particle posi-
tions with complete precision, we are also unable to
predict or control the final outcome of such an experi-
ment, and can, in practice, predict only the probability
of a given outcome. Because the probability that the
particles will enter a region with coordinates, X, X, is
proportional to R*(xi, X;), we conclude that although
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a Schroedinger wave of low intensity can bring about
large transfers of energy, such a process is (as in the
usual interpretation) highly improbable.

In Appendix A of Paper II, we shall see that similar
possibilities arise in connection with the interaction of
the electromagnetic field with charged matter, so that
electromagnetic waves can very rapidly transfer a full
quantum of energy (and momentum) to an electron,
even after they have spread out and fallen to a very
low intensity. In this way, we shall explain the photo-
electric effect and the Compton effect. Thus, we are
able in our interpretation to understand by means of a
causal and continuous model just those properties of
matter and light which seem most convincingly to re-
quire the assumption of discontinuity and incomplete
determinism. '

Before we discuss the process of interaction between
two particles, we shall find it convenient to analyze the
problem of an isolated single particle that happens to
be in a nonstationary state. Because the field function
¥ is a solution of Schroedinger’s equation, we can line-
arly suppose stationary-state solutions of this equation
and in this way obtain new solutions. As an illustration,
let us consider a superposition of two solutions

\b = Culq(x)exp(—- ’I«Eﬂ‘/ﬁ) + nglxg(x)exp(— lEzt/h),

where C1, Co, ¥1, and ¢, are real. Thus we write Y1=Rj,
Y2=R,, and

Y= exp[ —i(E1+ Es)t/28]{C1Ry exp[ —i(Ey— Ea)t/20]
+C2R2 GXPE’L(E1 - Ez)t/Zh]} .

Writing =R exp(iS/%), we obtain
Ri= Cl2R12(X)+ C22R22(X)

+ 2C1C2R1(X>R2(X) COS[(El— Ez) t/Zh], (19)
S+ (Ea—Ey)t/2
wf
CzRg(X) - C1R1(X) (E1—‘ Ez)t
= tan' l (20)
Cng(X)+C1R1(X)

We see immediately that the particle experiences a
“quantum-mechanical” potential, U(x) = (—%/2m)V2R/
R, which fluctuates with angular frequency, w=(E,
— E,)/h, and that the energy of this particle, E=—4aS5/
9, and its momentum p= V.S, fluctuate with the same
angular frequency. If the particle happens to enter a
region of space where R is small, these fluctuations can
become quite violent. We see then that, in general, the
orbit of a particle in a nonstationary state is very ir-
regular and complicated, resembling Brownian motion
more closely than it resembles the smooth track of a
planet around the sun.

If the system is isolated, these fluctuations will con-
tinue forever. The result is quite reasonable, since as is
well known, a system can make a transition from one
stationary state to another only if it can exchange en-



176

ergy with some other system. In order to treat the
problem of transition between stationary states, we
must therefore introduce another system capable of
exchanging energy with the system of interest. In this
section, we shall discuss the Franck-Hertz experiment,
in which this other system consists of a bombarding
particle. For the sake of illustration, let us suppose that
we have hydrogen atoms of energy E, and wave func-
tion, ¥e(x), which are bombarded by particles that
can be scattered inelastically, leaving the atom with
energy E, and wave function, y,(x).

We begin by writing down the initial wave function,
¥,(x, v, ). The incident particle, whose coordinates are
represented by y must be associated with a wave
packet, which can be written as

Foly, )= f ¢i%-vf(k—ko)exp(— it/ 2m)dk.  (21)

The center of this packet occurs where the phase has
an extremum as a function of k, or where y=#kt/m.

Now, as in the usual interpretation, we begin by
writing the incident wave function for the combined
system as a product

Let us now see how this wave function is to be under-
stood in our interpretation of the theory. As pointed out
in Sec. 6, the wave function is to be regarded as a mathe-
matical representation of a six-dimensional but ob-
jectively real field, capable of producing forces that act
on the particles. We also assume a six-dimensional
representative point, described by the coordinates of
the two particles, x and y. We shall now see that when
the combined wave function takes the form (22) in-
volving a product of a function of x and a function of y,
the six-dimensional system can correctly be regarded
as being made up of two independent three-dimentional
subsystems. To prove this, we write

Yo(x) = Ro(x)exp[iSo(x)/%] and
foly, )=Mo(y, exp[iNo(y, 1)/h].

We then obtain for the particle velocities

dx/dt=(1/m)VSo(x); dy/di=(1/m)VN(y, 1), (23)
and for the “quantum-mechanical” potential
 B{THVARG, )
T 2mR(x,y)
3 —h2[V2Ro(x) ' VM o(y, ?)
= (24)

Zml Ry(x) l M(y, ) '

Thus, the particle velocities are independent and the
“quantum-mechanical” potential reduces to a sum of
terms, one involving only x and the other involving
only y. This means that the particles move independ-
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ently. Moreover, the probability density, P=Ry*(x)
XM(y, 1), is a product of a function of x and a func-
tion of y, indicating that the distribution in x is sta-
tistically independent of that in y. We conclude, then,
that whenever the wave function can be expressed as a
product of two factors, each involving only the coordi-
nates of a single system, then the two systems are com-
pletely independent of each other.

As soon as the wave packet in y space reaches the
neighborhood of the atom, the two systems begin to
interact. If we solve Schroedinger’s equation for the
combined system, we obtain a wave function that can
be expressed in terms of the following series:

= ‘I’i"*‘ZnKbn(x)exp(“ iEni/h)fn(Y; t): (25)

where the f,.(y, f) are the expansion coefficients of the
complete set of functions, ¥.(x). The asymptotic form
of the wave function is'*

U =T,(x, y)+2n¢n(x)exp(—-%-t)ff(k— kO).

explikn-t— (hka2/2n)t]
X

r
where
1*k.?/2m= (W*ke*/2m)+ Ey— E.,
(conservatjon of energy). (27)

The additional terms in the above equation represent
outgoing wave packets, in which the particle speed,
hka/m, is correlated with the wave function, ¥,(x),
representing the state in which the hydrogen atom is
left. The center of the nth packet occurs at

vo= (hkn/m)1. (28)

It is clear that because the speed depends on the hy-
drogen atom quantum number, #, every one of these
packets will eventually be separated by distances
which are so large that this separation is classically
describable.

When the wave function takes the form (25), the
two particles system must be described as a single six-
dimensional system and not as a sum of two independent
three-dimensional subsystems, for at this time, if we
try to express the wave function as y¥(x, y)=R(x, y)
Xexp[iS(x, y)/k], we find that the resulting expres-
sions for R and .S depend on x and y in a very compli-
cated way. The particle momenta, p;=V,S(x, y) and
p:=V,S(x, y), therefore become inextricably interde-
pendent. The “quantum-mechanical” potential,

h2
U=————(VSR+V,/R)
2mR(x, y)

ceases to be expressible as the sum of a term involving
x and a term involving y. The probability density,

4 N. F. Mott and H. S. W. Massey, The Theory of Atomic Colli-
sions (Clarendon Press, Oxford, 1933).
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R*(x, y) can no longer be written as a product of a
function of x and a function of y, from which we con-
clude that the probability distributions of the two par-
ticles are no longer statistically independent. Moreover,
the motion of the particle is exceedingly complicated,
because the expressions for R and S are somewhat
analogous to those obtained in the simpler problem of
a nonstationary state of a single particle [see Egs.
(19) and (20)7]. In the region where the scattered waves
¥au(X)fa(y, 1) have an amplitude comparable with that
of the incident wave, ¥o(x)fo(y, £), the functions R and
S, and therefore the “quantum-mechanical” potential
and the particle momenta, undergo rapid and violent
fluctuations, both as functions of position and of time.
Because the quantum-mechanical potential has R(x, y, £)
in the denominator, these fluctuations may become
very large in this region where R is small. If the particles
happen to enter such a region, they may exchange very
large quantities of energy and momentum in a very
short time, even if the classical potential, V(x, y) is
very small. A small value of V(x, y) implies, however,
a correspondingly small value of the scattered wave
amplitudes, f.(y, ). Since the fluctuations become large
only in the region where the scattered wave amplitude
is comparable with the incident wave amplitude and
since the probability that the particles shall enter a
given region of x, y space is proportional to R¥(x, y),
it is clear that a large transfer of energy is improbable
(although still always possible) when V(x, y) is small.

While interaction between the two particles takes
place then, their orbits are subject to wild fluctuations.
Eventually, however, the behavior of the system quiets
down and becomes simple again. For after the wave
function takes its asymptotic form (26), and the packets
corresponding to different values of # have obtained
classically describable separations, we can deduce that
because the probability density is |¢|2, the outgoing
particle must enter one of these packets and stay with
that packet thereafter (since it does not enter the space
between packets in which the probability density is
negligibly different from zero). In the calculation of the
particle velocities, V1=V,S/m, Vo=V,S/m, and of the
quantum-mechanical potential, U= (—#%/2mR)(V2R

+V,2R), we can therefore ignore all parts of the wave .

function other than the one actually containing the
outgoing particle. It follows that the system acts as if
it had_the wave function

\xf"=¢n<x)exp(f%—t) [0k

Xexp{i[kn~r—- (2t 2m)E]}

4

gn(0, ¢, k)dk, (29)

where »# denotes the packet actually containing the
outgoing particle. This means that for all practical
purposes the complete wave function (26) of the sys-
tem may be replaced by Eq. (29), which corresponds to
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an atomic electron in its #th quantum state, and to an
outgoing particle with a correlated energy, E,'=#%.2/
2m. Because the wave function is a product of a func-
tion of x and a function of y, each system once again
acts independently of the other. The wave function can
now be renormalized because the multiplication of ¥,
by a constant changes no physically significant quan-
tity, such as the particle velocity or the “quantum-
mechanical” potential. As shown in Sec. 5, when the
electronic wave function is Y.(X)exp(—iE.t/h), its
energy must be E,. Thus, we have obtained a descrip-
tion of how it comes about that the energy is always
transferred in quanta of size E,— E.

It should be noted that while the wave packets are
still separating, the electron energy is not quantized,
but has a continuous range of values, which fluctuate
rapidly. It is only the final value of the energy, appear-
ing after the interaction is over that must be quantized.
A similar result is obtained in the usual interpretation
if one notes that because of the uncertainty principle,
the energy of either system can become definite only
after enough time has elapsed to complete the scatter-
ing process.!®

In principle, the actual packet entered by the out-
going particle could be predicted if we knew the initial
position of both particles and, of course, the initial form
of the wave function of the combined system.!¢ In prac-
tice, however, the particle orbits are very complicated
and very sensitively dependent on the precise values of
these initial positions. Since we do not at present know
how to measure these initial positions precisely, we
cannot actually predict the outcome of such an inter-
action process. The best that we can do is to predict
the probability that an outgoing particle enters the nth
packet within a given range of solid angle, d2, leaving
the hydrogen atom in its #th quantum state. In doing
this, we use the fact that the probability density in
X, y space is [¢(X, y)|? and that as long as we are re-
stricted to the nth packet, we can replace the complete
wave function (26) by the wave function (29), corre-
sponding to the packet that actually contains the par-
ticle. Now, by definition, we have S |¢.(x)|%dx=1.
The remaining integration of

ff(k— ko)exp{i[k,ﬁ'-— (hln?/2m)t]} 00,6, Bk 2

4

over the region of space corresponding to the nth out-
going packet leads, however, to precisely the same
probability of scattering as would have been obtained
by applying the usual interpretation. We conclude,
then, that if ¢ satisfies Schroedinger’s equation, that
if v=VS/m, and that if the probability density of par-
ticles is P(x, y)=R%(x, y), we obtain in every respect

16 See reference 2, Chapter 18, Sec. 19.

16 Note that in the usual interpretation one assumes that
nothing determines the precise outcome of an individual scattering

process. Instead, one assumes that all descriptions are inherently
and unavoidably statistical (see Sec. 2).
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exactly the same physical predictions for this problem
as are obtained when we use the usual interpretation.

There remains only one more problem; namely, to
show that if the outgoing packets are subsequently
brought together by some arrangement of matter that
does not act on the atomic electron, the atomic electron
and the scattered particle will continue to act inde-
pendently.l” To show that these two particles will con-
tinue to act independently, we note that in all practical
applications, the outgoing particle soon interacts with
some classically describable system. Such a system
might consist, for example, of the host of atoms of the
gas with which it collides or of the walls of a container.
In any case, if the scattering process is ever to be ob-
served, the outgoing particle must interact with a
classically describable measuring apparatus. Now all
classically describable systems have the property that
they contain an enormous number of internal ‘“thermo-
dynamic” degrees of freedom that are inevitably excited
when the outgoing particle interacts with the system.
The wave function of the outgoing particle is then
coupled to that of these internal thermodynamic de-
grees of freedom, which we represent as y1, s, «**¥s.
To denote this coupling, we write the wave function for
the entire system as

V=3 n(X)exp(—iEut/h) fu(y, ¥1, Y2« - ¥5).  (30)
Now, when the wave function takes this form, the
overlapping of different packets in y space is not enough
to produce interference between the different y¥,(x).
To obtain such interference, it is necessary that the
packets f.(y, ¥1, ¥2, - *¥s) overlap in every one of the
S+ 3 dimensions, y, y1, ¥z * 9. The reader will readily
convince himself, by considering a typical case such as
a collision of the outgoing particle with a metal wall,
that it is overwhelmingly improbable that two of the
packets fu(y1, ¥1, ¥2- + +¥s) will overlap with regard to
every one of the internal thermodynamic coordinates,
Y1, Y2, ***¥s, even if they are successfully made to
overlap in y space. This is because each packet corre-
sponds to a different particle velocity and to a different
time of collision with the metal wall. Because the
myriads of internal thermodynamic degrees of freedom
are so chaotically complicated, it is very likely that as
each of the » packets interacts with them, it will en-
counter different conditions, which will make the com-
bined wave packet f.(y, y1, - - ¥s) enter very different
regions of ¥1,ys- -y, space. Thus, for all practical
purposes, we can ignore the possibility that if two of the
packets are made to cross in y space, the motion either
of the atomic electron or of the outgoing particle will
be affected.'®

17 See reference 2, Chapter 22, Sec. 11, for a treatment of a
similar problem.

18Tt should be noted that exactly the same problem arises in
the usual interpretation of the quantum theory for (reference 16),
for whenever two packets overlap, then even in the usual inter-
pretation, the system must be regarded as, in some sense, covering
the states corresponding to both packets simultaneously. See
reference 2, Chapter 6 and Chapter 16, Sec. 25. Once two packets
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8. PENETRATION OF A BARRIER

According to classical physics, a particle can never
penetrate a potential barrier having a height greater
than the particle kinetic energy. In the usual interpreta-
tion of the quantum theory, it is said to be able, with
a small probability, to “leak” through the barrier. In
our interpretation of the quantum theory, however, the
potential provided by the Schroedinger y-field enables
it to “ride” over the barrier, but only a few particles are
likely to have trajectories that carry them all the way
across without being turned around.

We shall merely sketch in general terms how the
above results can be obtained. Since the motion of the
particle is strongly affected by its y-field, we must first
solve for this field with the aid of ‘“‘Schroedinger’s
equation.” Initially, we have a wave packet incident
on the potential barrier; and because the probability
density is equal to |¥(x)|?, the particle is certain to be
somewhere within this wave packet. When the wave
packet strikes the repulsive barrier, the y-field under-
goes rapid changes which can be calculated? if desired,
but whose precise form does not interest us here. At this
time, the “quantum-mechanical” potential, U= (—#?/
2m)V2R/R, undergoes rapid and violent fluctuations,
analogous to those described in Sec. 7 in connection
with Egs. (19), (20), and (25). The particle orbit then
becomes very complicated and, because the potential
is time dependent, very sensitive to the precise initial
relationship between the particle position and the center
of the wave packet. Ultimately, however, the incident
wave packet disappears and is replaced by two packets,
one of them a reflected packet and the other a trans-
mitted packet having a much smaller intensity. Because
the probability density is |¢]?, the particle must end
up in one of these packets. The other packet can, as
shown in Sec. 7, subsequently be ignored. Since the
reflected packet is usually so much stronger than the
transmitted packet, we conclude that during the time
when the packet is inside the barrier, most of the
particle orbits must be turned around, as a result of the
violent fluctuations in the ‘“quantum-mechanical”
potential.

9. POSSIBLE MODIFICATIONS IN MATHEMATICAL
FORMULATION LEADING TO EXPERIMENTAL
PROOF THAT NEW INTERPRETATION
IS NEEDED

We have already seen in a number of cases and in
Paper II we shall prove in general, that as long as we

have obtained classically describable separations, then, both in
the usual interpretation and in our interpretation the probability
that there will be significant interference between them is so over-
whelmingly small that it may be compared to the probability
that a tea kettle placed on a fire will happen to freeze instead of
boil. Thus, we may for all practical purposes neglect the possi-
bility of interference between packets corresponding to the dif-
fefrent possible energy states in which the hydrogen atom may be
eft.

19 See, for example, reference 2, Chapter 11, Sec. 17, and Chapter
12, Sec. 18.
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assume that ¢ satisfies Schroedinger’s equation, that
v=VS(x)/m, and that we have a statistical ensemble
with a probability density equal to |¢(x)|% our in-
terpretation of the quantum theory leads to physical
results that are identical with those obtained from the
usual interpretation. Evidence indicating the need for
adopting our interpretation instead of the usual one
could therefore come only from experiments, such as
those involving phenomena associated with distances of
the order of 107 cm or less, which are not now ade-
quately understood in terms of the existing theory. In
this paper we shall not, however, actually suggest any
specific experimental methods of distinguishing between
our interpretation and the usual one, but shall confine
ourselves to demonstrating that such experiments are
conceivable.

Now, there are an infinite number of ways of modify-
ing the mathematical form of the theory that are con-
sistent with our interpretation and not with the usual
interpretation. We shall confine ourselves here, however,
to suggesting two such modifications, which have al-
ready been indicated in Sec. 4, namely, to give up the
assumption that v is necessarily equal to V.S(x)/m, and
to give up the assumption that y must necessarily
satisfy a homogeneous linear equation of the general
type suggested by Schroedinger. As we shall see, giving
up either of those first two assumptions will in general
also require us to give up the assumption of a statistical
ensemble of particles, with a probability density equal
to [¢(x)[%

We begin by noting that it is consistent with our
interpretation to modify the equations of motion of a
particle (8a) by adding any conceivable force term to
the right-hand side. Let us, for the sake of illustration,
consider a force that tends to make the difference,
p— VS(x), decay rapidly with time, with a mean decay
time of the order of 7=10"1/¢ seconds, where ¢ is the
velocity of light. To achieve this result, we write

d2x W ViR
m——=—V{V(x)—--——"}-i‘f(l)—vs(x)), 31)
s 2m R

where f(p—VS(x)) is assumed to be a function which
vanishes when p=VS(x) and more generally takes
such a form that it implies a force tending to make
p—VS(x) decrease rapidly with the passage of time.
It is clear, moreover, that f can be so chosen that it is
large only in processes involving very short distances
(where V.S(x) should be large).

If the correct equations of motion resembled Eq. (31),
then the usual interpretation would be applicable only
over times much longer than 7, for only after such times
have elapsed will the relation p=VS(x) be a good ap-
proximation. Moreover, it is clear that such modifica-
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tions of the theory cannot even be described in the
usual interpretation, because they involve the precisely
definable particle variables which are not postulated
in the usual interpretation.

Let us now consider a modification that makes the
equation governing y inhomogeneous. Such a modifica-
tion is

ilp/0t= Hy+E(p— VS(xy).

Here, H is the usual Hamiltonian operator, x;, represents
the actual location of the particle, and £ is a function
that vanishes when p=VS(x;). Now, if the particle
equations are chosen, as in Eq. (31), to make p— VS(x,)
decay rapidly with time, it follows that in atomic
processes, the inhomogeneous term in Eq. (32) will
become negligibly small, so that Schroedinger’s equation
is a good approximation. Nevertheless, in processes
involving very short distances and very short times, the
inhomogeneities would be important, and the y-field
would, as in the case of the electromagnetic field, de-
pend to some extent on the actual location of the
particle.

It is clear that Eq. (32) is inconsistent with the usual
interpretation of the theory. Moreover, we can con-
template further generalizations of Eq. (32), in the
direction of introducing nonlinear terms that are large
only for processes involving small distances. Since the
usual interpretation is based on the hypothesis of
linear superposition of “state vectors” in a Hilbert
space, it follows that the usual interpretation could not
be made consistent with such a nonlinear equation for a
one-particle theory. In a many-particle theory, opera-
tors can be introduced, satisfying a nonlinear generaliza-
tion of Schroedinger’s equation; but these must ulti-
mately operate on wave functions that satisfy a linear
homogeneous Schroedinger equation. ’

Finally, we repeat a point already made in Sec. 4,
namely, that if the theory is generalized in any of the
ways indicated here, the probability density of particles
will cease to equal |¢(x)|% Thus, experiments would
become conceivable that distinguish between |[¢(x)|2
and this probability; and in this way we could obtain
an experimental proof that the usual interpretation,
which gives |¢(x)|? only a probability interpretation,
must be inadequate. Moreover, we shall show in
Paper II that modifications like those suggested here
would permit the particle position and momentum to
be measured simultaneously, so that the uncertainty
principle could be violated.

(32)
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