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ABSTRACT

The dissociation energy, moment of inertia, and fundamental vibration frequency
are calculated for a normal hydrogen molecule by a variational method and are found
to be 4.02 v, 4.66- 1074 gm-cm?, and 4260 cm™ as compared to the experimental val-
ues 4.42, 4.67-107%, and 4380, respectively. The calculation is carried through with
the simplest possible improvements in the wave functions. In the appendix a number
of integrals are listed and two tables of functions are included that may be useful
to calculators.

I. INTRODUCTION

HE problem of calculating some of the properties of the normal hydrogen

molecule by wave-mechanical methods has been hitherto successful
qualitatively but not quantitatively. Thus Sugiural by completing the calcu-
lations of Heitler and London? based on a first-order perturbation method,
obtained 3.2 volts for the dissociation potential as compared to the experi-
mental value, 4.4 volts. Wang,? by using a variational method involving the
introduction of a shielding constant, obtained 3.7 volts for this energy, which
is a distinct improvement but still rather far from the goal. It is true that
Condon*obtained an almost exact agreement with experiment, but it is ques-
tionable as to whether one can call his method of doing this a straight-forward
calculation. Eisenschitz and London,® by carrying through a second order
perturbation method, got 9.5 volts.

Similarly in the case of the two other quantities which are generally cal-
culated at the same time as the energy, namely the equilibrium distance and
the fundamental vibration frequency, the calculated results are not in very
good agreement with the experimental values. If one surveys the available
methods of calculating the quantities mentioned, it is at once evident that
the only method for getting quantitative results is that based on the use of a
variational principle, because the wave equation for this case cannot be solved
exactly, and because solving it by the perturbation method is not to be
trusted, as is shown by the fact that the second-order perturbation calculation
gave a much worse result than the first-order calculation. In using the varia-
tional method one has the comforting assurance that one cannot go astray.
If one starts with wave functions of sufficient complexity and having a large

! Sugiura, Zeits. f. Physik 45, 484 (1927).

2 Heitler and London, Zeits. f. Physik 44, 455 (1927).

3 Wang, Phys. Rev. 31, 579 (1928).

¢ Condon, Proc. Nat. Acad. Sci. 13, 466 (1927).

¢ Eisenschitz and London, Zeits. f. Physik 60, 491 (1927).
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enough number of parameters, and if one puts in enough labor one can gen-
erally approach the right answer, at least as far as the energy is concerned.

However, rather than to do this, it seems preferable to try to get an
appreciable improvement in the calculated results with but a small increase
in the complexity of the calculation. It is therefore the purpose of the present
paper to try to improve the theoretical results for the normal hydrogen mole-
cule, at the same time keeping the wave functions and the calculation as
simple as possible.

II. THEORY

To carry out this policy of simplicity, we begin with the understanding
that we shall deal only with wave functions made up of products of in-
dividual electron wave functions. We than inquire as to what happens to the
electron charge distribution in a hydrogen atom when it is brought up to
another similar atom so as to combine with it. It is apparent that because of
the various complicated interactions that occur, the charge distribution will
be altered, this distortion becoming greater as the two atoms approach each
other. The wave functions (from which the charge distributions are calcu-
lated) also become altered. The exact nature of the changes can be investi-
gated only in a six-dimensional space, but for the purposes of the present
problem one can try to consider the approximate distortion of an individual
wave function in ordinary space. The simplest way to represent this distor-
tion is to consider the radius of the atom to change with the distance to the
other atom. This is effectively what Wang?® did in his calculations, and it led
to a definite improvement in the energy value.

However, since the perturbations involved are not spherically symmetri-
cal this cannot be a very good approximation to the true state of affairs, and
the next improvement that suggests itself is to introduce a change in the wave
function that will depend on the direction with respect to the molecular axis
and will be greatest in the direction of the latter. Since the interactions can
be thought of roughly as being along this axis, it seems likely that the electron
cloud tends to bulge out in the direction of the second atom.

Let us denote the nuclei by @ and b, the electrons by 1 and 2, the inter-
nuclear distance by R, other distances by 7 with subscripts and the angle be-
tween a radius vector and the axis (the line joining the nuclei) by 8 with sub-
scripts. In accordance with the previous considerations we take as the
simplest individual wave function

A (1

where ? is the hydrogenic wave function for the lowest state, but with a
shielding constant, ¥’ is a function symmetrical about the axis but not about
a plane through the nucleus perpendicular to it, and ¢ is a parameter the
magnitude of which is to be determined so as to minimize the variational
integral.

The conditions imposed on the choice of ¥’ are: (1) that it satisfy the
boundary conditions for a wave function, (2) that it have reasonable direc--
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tional properties, (3) that it be orthogonal to ¥°, (4) that it satisfy a simple
wave equation. Of these, (1) and (2) are necessary, but (3) and (4) are con-
venient in calculating. If we consider electron 1 on atom ¢ and write the
hydrogenic function in the form

¥o(al) = Noemora (2)

then the simplest perturbation function satisfying these conditions seems to

be
Y'(al) = Nie=@eir,; cos 04 3)

where Ny and N; are the corresponding normalizing factors which, on inte-
grating the squares of the wave functions over all space, one finds to have the
values:
Ny = (a8/m)12 (4)
Ni= (/. %)

In these expressions, we have used « to represent the quantity Z/a,,
where Z is the effective charge of the nucleus and @, the normal hydrogen
radius. Accordingly, the wave equation satisfied by ¢° (al) is

Hau%%al) = Z2Eq°(al) (6)

where
2

I:Ial0 = -

2 . 2
87r2m Vl Ze /’al (7)
and E,is the energy of a normal hydrogen atom.

Now ¢’ can be seen to be identical with the wave function corresponding
to the 2 state in a hydrogenic atom of nuclear charge 2Z. Hence the equation
which it satisfies is:

Ha'Y'(al) = Z2E'(al), ®)

where
2

IIall

V2 — 2Ze2/741. (Y]
8wm
Of course similar expressions can be written for the wave functions for
the other electron or atom. Incidentally, it may be mentioned that for the
atom b we take for the wave function

Y/(01) = — Ny cos Oy (3a)

so as to keep all quantities symmetrical about the plane midway between the
nuclei.
For the combined wave function of the normal state of the molecule we
take
¥ = Y(al)y(b2) + ¢(d1)¢(a2). (10)

The wave-mechanical Hamiltonian is given by

2

H= —8——%@12 +V ) + e [1/R — 1/ra1 — 1/ras — 1/ry1 — 1/rys + 1/r15], (11)
m
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and according to the theory of the variational method it is necessary to
minimize the quantity

I/V = f \I'H\I/dvldvz/f\lfzdvldvg, (12)

which then gives the value of the energy.
Now by making use of Egs. (6) and (8) we can write

HYO (al)y2(b2) = {222Eq + ¢2[1/R + s/ra1 + 5/702 — 1/7az
— /o + 1/r]}9°(al )9/ (82),

HY (a)y' (02) = {2722E¢ + e2[1/R + s/ra1 + (25 + 1) /res
— 1/ra2 — 1/rsn + 1/ri] }92(al)y’ (52),

HY' (al)y'(82) = {222E, + e2[1/R + (25 + 1)/ra1 + (25 + 1)/ree
— 1/ra2 — /701 + 1/”12]}‘/"(“1)‘#’(”9:

(13)
(14)

(15)

where
s=7Z-1. (15a)

By means of these relations and similar ones derived from them by re-
placing @ by b or 1 by 2, W can be evaluated. If we adopt the following nota-
tion,

In= [Vependn, (16)
e
Fo = f——r‘al d‘l)l, (17)
@]
Goo = f—‘;;‘-— dv1, (18)
Koo,01 = f[¢°(al)]2¢°(52)1[/'(b2) dv1dvs, (19)
T12

Jo1 = — - d?)1, (20)

¥°(al)y’(01) i J_lo=f¢’(al)¢°(bl)

Ya1 ¥al1

Lotao = f'//"(al)xb’(bl)x&’(ﬂ)\b”(lﬂ) dosdva, (21)

712

with corresponding changes in the numbering when ° is replaced by ¢’ or
vice versa, we can then write Win the form:

62 4 4
W = ~ >oi(Pi + sQ0) / >-oiD; + 272E,, (22)
i=0 i=0
where the quantities D;, P;, and Q; are made up of the various integrals over

wave functions and are defined as follows. In each case the “exchange” terms
are grouped in brackets.
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Do =1 + [1002],

Dy = [4Iol0],

Dy = 2 + [4I02 + 2I0In1], (23)
D; = [4101111],

Dy =1+ [I:?].

Py =14 R(Koo,00 = 2Goo) + [Too> + R(Loo,00 = 2T00T00) ],

Py = 4R(Kqo,01 — Go1) + [4T00To1 + R(4Loo,01 — 4T01T 00 — 2100] 1) ],

Py =2+ R(4Ko1,01 + 2F1 4 2Ko0,11 — 2Goo — 2G1y),

+ [4I0:% + 2I00T11 + R(2Lo1,10 + 2Lo1,01 + 2Loo, 11 (24)
— 2T Joo — 4I0J0)) ],
P3 = 4R(Ko1,11 — Gor) + [4T0iT11i + R(4Lo1,11 — 2T11T01) ],

Py =1+ RQF + K — 2Gu) + [11? + RLuul.

Qo = 2RFy + [2RIoJ o0],

01 = [R(4Ioo]m + 2IgJ 01 + 4101]00)];

Q; = RQ2Fy + 4Fy) + [R(4Ioo 11 + 2I1J 00 + 4T0:(Jo1 + 2710)) ], (25)
0s = [R(8IoT11 + 2T1(Tor + 2710)) ],

Q4 = 4RF; + [4RIWJ11].

These integrals can be evaluated without great difficulty. The discussion
of them is to be found in the appendix. It is easy to see that the various D;,
P;, and Q; are functions only of the quantity

p = aR (26)

and can be calculated for various values of p and plotted. If we let

po = R/ay, 27
then

Z = p/p, (28)

s = (p — po)/po. (29)

For a given value of R or po one can then vary p and, by reading the values
of the functions from the curves, minimize W. By repeating this for a number
of values of py one thus obtains a series of energy values which can be plotted
as a function of pg and a smooth curve drawn. However, unless the points for
which calculations are made are very close together it is not possible in gen-
eral to determine the minimum of the energy curve very accurately in this
way. If the points are fairly close together one can pass a parabola through
the points in the vicinity of the minimum. But if, as was the case in the cal-
culation carried out, the points are not sufficiently close together, one must
resort to some other method.
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What was done was to use instead of a parabola a curve of the type dis-
cussed by Morse® in connection with interatomic potentials:

AE = De2a(po—pm) — 2 De—alpo—pm)

(31)

A curve of this sort is known to fit molecular energy curves very well
especially in the neighborhood of the minimum. By fitting this curve to three
points near the minimum one can get the dissociation energy D and the
equilibrium distance pnao. (The details of the curve-fitting are given in the

appendix.)
From the latter the moment of inertia follows:

JO = %My(pmdo)Z,

where My is the mass of a hydrogen atom.
Since at the minimum

a*E
— = 2a%D
dp02

the fundamental vibration frequency is given by

a
vy = (D/Mg)t'2.
TaoC
1
0 /__——
-1
E
£
e
<
(a)
-3 \//
(b)
©)
(d)
-4 - . v L

(31)

(32)

(33)

Fig. 1. Calculated energy of normal hydrogen molecule: (a) first order perturbation,
(b) varying s, (c) varying o, (d) varying ¢ and s.

‘Morse, Phys. Rev. 34, 57 (1929).
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I1I. RESULTS

The minimization was carried out first by keeping ¢ =0 and varying s.
This is essentially what Wang? did except that his results were only for the
equilibrium distance. The energy curve obtained is shown in Fig. 1 (b) and
may be compared with the first-order perturbation energy 1 (a).

The value of s as function of the interatomic distance is shown in Fig. 2.
For R=0 of course we have a helium atom and for this the effective nuclear
charge (as given by a variational method calculation) is 1.6875 e, so that s
=0.6875. For large distances s falls off rapidly. It is interesting to note that
beyond a certain distance, s changes sign. This may be interpreted by saying
that for large distances the second electron has more of an effect upon the
atom than the second nucleus. Geometrically one may say that as the atoms

\ )
0.6 \
W\
P\
0.2) \\
O N
2 }?fao A 5 6

Fig. 2. Variation of s with interatomic distance.

approach each other, there is first an expansion of the charges and then, for
smaller distances, a contraction.

The next step in the procedure was to set s =0, and minimize W with re-
spect to ¢. The energy resulting from this calculation is shown in Fig. 1 (c).
Comparison with 1 (a) shows that the improvement in the energy near the
equilibrium distance is rather small, but that there is a distinct improvement
at somewhat larger distances. The curve of ¢ thus obtained, denoted by oy,
is shown in Fig. 3 (a).

The quantity ¢ can be taken as a rough measure of the longitudinal dis-
tortion of the wave function. As the graph shows, for small distances there
seems to be a sudden distortion of the wave function which disappears as the
atoms merge to give helium. This apparent behavior at small distances is
probably without significance, since the wave functions obtainable from a
variational calculation need not approximate the true wave functions as
closely as the calculated energy does the true value. In the present case, the
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behavior of the true wave functions for small internuclear distance is exceed-
ingly complex, and an attempt to fit this behavior into the narrow mold pro-
vided by a single parameter cannot be expected to be very successful.

To get a better approximation, the values of s obtained previously were
put into W and then ¢ was varied once more. The energy obtained this time
is given in Fig. 1 as curve (d). As is to be expected, it is below the other curves
and merges with (b) for small distances and with (c) for large distances. The
curve of the values of ¢ thus calculated, denoted by ¢}, is shown in Fig. 3 (b).
It agrees with oy down to about ay=1.5. For smaller distances the two differ
widely, and this is probably the region in which they lose any physical
significance they may have at larger distances.

L[

@)

0.2
" \\
(b)s, \
005 ] 2 3 4 ﬁ
R/a

Fig. 3. Parameter ¢ to minimize energy: (a) without shielding con-
stant, (b) with shielding constant.

The parameter was kept fixed at the set of values o1 and s was recalcu-
lated. It was found that within the accuracy available in reading graphs,
s did not change appreciably—at least in the regions of any importance.
Hence the energy curve 1 (d) represents the best result obtainable by the
present method.

For this curve the dissociation energy was found to be 4.02 volts, the
equilibrium distance between atoms 1.416 a, corresponding to a moment of
inertia of 4.66X10~% gm-cm? and a fundamental vibration frequency of
4260 cm™!. In the following table’ these results are compared with those ob-
tained in previous calculations and with the experimental values.

7 This table (except for obvious changes) is taken from the paper of Wang (reference 3).
The experimental values given these are those of Witmer, Proc. Nat. Acad. Sci. 12, 238 (1926),
and Phys. Rev. 28, 1223 (1926). Cf. Birge, Int. Crit. Table V, 409 (1929).
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E (Rh) AE(v) Jo(gm —cm?) vo(cm™)
Present paper —2.297 —4.02 4.66 X104 4260
Wang? —2.278 —3.76 4.59 4900
Condont* —2.325 —4.40 4.26 5300
Sugiura! —2.24 —-3.2 5.2 4800
Observed? —2.326 —4.42 4.67 4380

It is seen that the dissociation energy as calculated here is about 10 per-
cent too small. However, if we consider the total energy of the molecule, the
error is only about 1 percent. If we compare this to the helium problem—
it is only fair that the total molecular energy be considered in this comparison
—we note that the Hartree method?® gives for the total energy of an He atom
5.75 Rh as compared to 5.81 Rh as observed, so that the error is also about
1 per cent. Now the Hartree method gives the greatest possible accuracy ob-
tainable with wave functions made up of the products of individual wave
functions, it being equivalent to a variational method with a function of com-
plete flexibility. Since in the present case the wave function is likewise made
up of products of individual wave functions, it is questionable whether one
could hope to exceed this accuracy by very much, the situation in the hydro-
gen molecule being rather similar to that in the helium atom.

In concluding the main part of this paper, the writer wishes to acknowl-
edge the advice and encouragement received from Drs. J. C. Slater and R. M.
Langer and the assistance from Dr. S. Ikehara in checking parts of the cal-
culation and in compiling the tables.

Note added in proof (December 4, 1931)—Shortly after the present article
had been sent to the publisher, the writer learned of the paper of E. A.
Hylleraas, Zeits. f. Phys'k 71, 739 (1931) “Uber die Elektronenterme des Was-
serstoffmolekuls,” in which, among other things, he calculates the energy of
the lowest state of H, in very close agreement with the experimental value.
However, it ought to be pointed out that one should not compare the results
of the present paper with his results, since he multiplies through his calculated
value of the energy by a factor obtained by interpolating between values for
R=0, and R= =, to get his final result.

APPENDIX
1. Integrals

Many of the integrals arising in the present calculations are not new.
Thus a number are to be found in the papers of Heitler and London,? Sugiura,!
and Bartlett.® However, for the sake of completeness they will all be given
here (in perhaps a different form). All but a few of the integrals present no
great difficulties in the evaluation. The ones which do give trouble are the
exchange integrals and they can be handled in the following way:

On replacing 1/7; by its Neumann expansion in terms of Legendre func-

¢ Gaunt, Proc. Camb. Phil. Soc. 24, 328 (1928).
¢ Bartlett, Phys. Rev. 37, 507 (1931).
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tions of theelliptic coordinates any one of the exchange integrals arising here
can be broken up into a sum of terms of the form H(m, n, &) and S(m, =, «)
where

o AL
H(m, 7, OL) = f klme‘aleo()\l)d)q f )\2"6_a)‘2d)\2 (Al)
1

1

) AL
+ f A1e™ MO0 (N 1) dN f Apmem Mg\, (A2)
1

1

© A1
S(’Wb, 7, OL) = f >\1m6_a)‘1d>\1f )\2”6_0‘)‘2d>\2,
1 1

and
0o = 3in 2 (43)
= = n .
0 2 )\ _ 1
To treat these quantities, use is made of the simpler functions!®
Ana) = f Ao, (A4)
1
Fule) = f A 0g(\)dM. (AS)
1
Thesé can be shown to satisfy the following recursion formulae?:®:
1
Ap(a) = *[3*‘! =+ ”An—l(a)]r (A6)
63

1
Fu(a) = Fps(a) + —a[nFn—1(a) — (n — QF () — Aus(®)]. (A7)

These, together with the “starting” formulae:

do(@) = e/a, (A8)
Fola) = 1[(In 2 + C)e/a — Ei(— 2a)e*/a], (A9)
File) = §[(In2 + C)e(1/a + 1/a?) — Ei(— 2a)ex(— 1/a + 1/a2)] (A9a)

C = 0.577216 - - -, (A10)

are sufficient to compile tables of these functions. Such tables are included
in the present paper™ (Tables I and II).

By using these functions the integrations in (Al) and (A2) can be carried
out. Thus on inverting the order of integration it follows readily that:

S(m, 7, 0[) = f )\1"6_6')‘1(1)\1[ )\27"6_0‘)‘2(0\2 (All)
1 Al

10 Zener and Guillemin, Phys. Rev. 34, 999 (1929). See also Rosen, Phys. Rev. 38, 255
(1931).

u Table I is essentially an enlargement of a table of An(e) given in the paper by the
present writer mentioned in referenced, but corrected for several errors mainly in the 5th and
6th figures. Cf. list of errata at the end of the present paper.
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S S 0w, (A12)

'm+1 0 V

Rather than to calculate S(m, %, @) by this formula it is more convenient
when compiling a table of values to use the recursion formula which the ex-
pression in A12) satisfies. Thisis:

S(m: n, a) = ~1—[mS(m —1,na) + AM+n(2a)] (A13)

with
S0, 7, &) = 4,(2a) /. (A14)

As a check in such calculation, one may use the following relation, easily
derivable by the use of expressions of the form (A2) and (A11), namely:

S(m, n, @) + S(n, m, a) = An(a)d.(a). (A15)
By analogy with (A12) one can define the quantity

m aV
T(’Wl, #, a) = Z _IF?H—V(ZO‘); (Als)
y=0 V.
which will have an analogous recursion formula,
1
T(m,n, a) = —[mT(m — 1, n, @) + Fpin(2a)] (A17)
o
with
70, n, @) = F,(2a) /. (A18)

By means of this function, it is found that one can write
H(m,n, o) = An(@)F(a) + Au(@)Fn(a) — T(im, n, ) — T(n,m, ). (A19)

Since the functions (A12), (A18), and (A19) are characterized by three
parameters they are too bulky to be tabulated here; however, to calculate
them from the tables of 4,(a) and F,(a) is a simple matter.

By the help of these functions the “exchange” integrals can now be evalu-
ated; the remaining integrals require no special comments. The integrals are

as follows:

0 1 2

RFy = R f—['f G (A20)
7a1
! 1 2

RF, = R f—[f—w«)]— dvy = p/2 (A21)
a1
0 1 2

RGo = R f v (Qi doy =1 — e %(p + 1) (A22)

1) 1
RGo, = fo// (a Wie 'U)I =1/p— e+ 20+ 2+ 1/p) (A23)
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"(a1)]2
RGy = Rf ly(an)] dvy = 1+ 3/p% — e 2(p® + 3p2

+ 11p/2 474 6/p + 3/p?) o
REu 0 = R f [v2(a1) [2[po(82) ]

712

dvldvl =1— 6—2"(/)3/6 + 3/)2/4:

+ 11p/8 4+ 1) (A25)
¥0(al) [0 (62)¢' (52)
d?}ld

Y12

U2

[
REKwo1 = R [

= 1/p— e 2(p*/12+ 11p3/24 4 59p%/48 + 2p+ 2+ 1/p) (A26)
0 1 2 4 62 2
REn 51 = Rf[‘// (a) 2 [¥'(02)]
712
1 41p4/120 + 30103/240 -+ 25p%/8 + 895/16 (A27)
+ 74 6/p+ 3/p?)

a1y (al)y2(B2)¢' (b2

REag o1 = fol/(a W (@)Y (52)¥/( )d p

dvidv, = 1 + 3/p% — ¢72(p5/20

V1AV
712

= 2/p% — ¢ (p%/30 + p*/5 + T7p3/120 + T1p2/48 (A28)
+ 263p/96 4 4 + 4/p + 2/p?)

(a "al / 2
RKay 11 = waaw (a1) [¥'(32)] dondtn = 1/p 4 9/

Y12
— e 20(p8/60 + 7p5/60 + 113p%/240 + 697p3/480  (A29)
+ 357702/960 + 8p + 14 + 19/p + 18/p* + 9/p%)

"(al) ]2 [ (62) ]2
RKu,u = wal (a )]r[‘//( )] dvldﬂg = 1+ 6/p2+ 54//)4

2

— ¢20(p7/140 + 1418/2520 + 19p5/70 + 893p%/840

A30
+ 23809p3/6720 + 6411p2/640 + 30731p/1280 +- 49 (A30)

+ 84/p + 114/p* + 108/p® + 54/p*)

T = (V00O = (/3 + 5 + 1) (A3D)
Iy = f‘po(al)iﬁ'(bl)dvl = plo/2 = }e*(0°/3 + p* + p) (A32)

I = j V(@) (b1)doy = e#(p1/15 4 20/15 — p2/5— p— 1) (A33)

RIg = R f VWD 4y, = pesto + 1) (A34)

¥al



NORMAL STATE OF THE H MOLECULE 2113

"(a1)yO(b1
R]m = Rf¢ (d :l// (_)_ d?)l = %Pze_p(P + 1) (A35)
al
o(al)y’ (b1
7al
"(al)y’ (b1
RJ11 = R f ‘L (a%w—g“’)“ dvl = 'lz‘Pe_p(Ps/s —p — 1) (A37)
al

RLg,00 = R f‘I/O(al)wo(bl)ll{o(az)\w(w)

712

= (0%/15)[9H (2, 2, p)

— 6H(2,0,p) + H(0,0,p) — 35(1,2,0) +5(1,0,p)]  (A38)
R = R [ PO(a)p (bY@ (b2)

712

= (p/2)RLoo,00 (A39)

Yo(al)y' (01) [¥2(a2)y¥/ (b2) + ¥/ (a2)y°(2)] p

R(Lo1,01 + Lo1,10) = Rf " 21dvs
" (A40)
= (Pz/z)RLoo,oo
0(al)yO (b)Y (a2)y’ (b2
RLoy 11 = th// (al)y°(b1)¢" (a2)¢'( )d7)1d‘l)2
e (A41)

2
= R(p— Loo,oo - L')
4

RLoyu = R f Yo(al)y’ (b)Y (a2)¥' (52)

712

d‘vld‘Ug = (p/Z)RLoo,n (A42)

Rlys = Rfw’(al)i//'(bl)xlf'(GZ)xb’(bZ) J

7)1d7)2
712
p p* )
=R(—L —— L'+ L'"). A43
(16 00,00 ) + > (

The primed quantities are given by:
RL' = (p%/840)[— 21H(6, 2) + TH(6, 0) + 60H(4, 2) — 20H(4, 0)
— 27H(2,2) + 9H(2,0) + 215(5,2) — 75(5,0) — 185(3,2)  (A44)
+6.5(3,0) 4+ 215(1, 6) — 255(1, 4) + 65(1, 2) |,
RL" = (p'°/15120) [147H(6, 6) — 315H(4, 6) + 225H(4, 4) + 63H(2, 6)
— 135H(2,4) + 27H(2, 2) — 2945(5, 6) + 3155(5, 4) — 63S(5, 2) (A45)
+ 2175(3, 6) — 240S(3, 4) + 515(3, 2)].

The argument of these functions is p as before.
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2. Curve Fitting
To fit a curve of the form

AE = De2a(o—pm) — ) De—a(po—pm) (A46)

to the energy curve nears its minimum requires a knowledge of the energy at
three points in that vicinity. In the calculation discussed the fitting was very
easy because the minimum was near po=1.5, and values of AE had been cal-
culated for pg=1, 1.5, 2. Thus, if we denote these values of AE by E,, E,, Es,
and let

B = ¢¢/2 (A47)

C = ¢%m, (A48)

than the equations to be satisfied are:

E, = CD(CB* — 2B2), (A49)
E, = CD(CB° — 2B%), (A50)
E; = CD(CB® — 2B%). (A51)

The solutions are given by the appropriate root of:

E\B* — E2B* — EyB + E3 = 0, (A52)
and by the relations:
2 (E1\B — E,
C= —(——— ) (A53)
B*\EB?— E,
1 (E.B*— E,
D= — (== ) (As4)
2BC 1—-B
a=2In(1/B), (AS55)
1
pm = —InC. (A56)
a

Thus the constants required in (A46) have been evaluated.

Errata: In a recent paper by the author, Phys. Rev. 38, 255, (1931),
several errors appear which may cause inconvenience to anyone using it. The
corrected portions should read as follows:

p. 254, Eq. (45): () = 2o’ Fupu(@) /27!

v=0
p.- 266: A5 (1, 3.5) =5.06522 instead of 5.06553
A1e(1,3.0) =2.04787 - 10 instead of 2.04787 -1
Aj3(1, 8.0) =1.36747 - 1073 instead of 8.36747 -10~°
p. 267: As(—1,2.0) =9.23632 - 10~ instead of 1.84726 - 10~
p.274,line 5:ae=1.385 47!
p. 274, line 20: 0.87 instead of 1.11.



