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In the conventional approach to quantum mechanics, &determinism is an axiom 
and nonlocality is a theorem. We consider inverting the logical order, mak#1g 
nonlocality an axiom and indeterminism a theorem. Nonlocal "superquantum" 
correlations, preserving relativistic causality, can violate the CHSH inequality 
more strongly than any quantum correlations. 

What is the quantum principle? J. Wheeler named it the "Merlin principle" 
after the legendary magician who, when pursued, could change his form 
again and again. The more we pursue the quantum principle, the more it 
changes: from discreteness, to indeterminism, to sums over paths, to many 
worlds, and so on. By comparison, the relativity principle is easy to grasp. 
Relativity theory and quantum theory underlie all of physics, but we do 
not always know how to reconcile them. Here, we take nonlocality as the 
quantum principle, and we ask what nonlocality and relativistic causality 
together imply. It is a pleasure to dedicate this paper to Professor Fritz 
Rohrlich, who has contributed much to the juncture of quantum theory 
and relativity theory, including its most spectacular success, quantum 
electrodynamics, and who has written both on quantum paradoxes tll and 
the logical structure of physical theory, t2~ 

Bell t31 proved that some predictions of quantum mechanics cannot be 
reproduced by any theory of local physical variables. Although Bell worked 
within nonrelativistic quantum theory, the definition of local variable is 
relativistic: a local variable can be influenced only by events in its back- 
ward light cone, not by events outside, and can influence events in its 
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forward light cone only. Quantum mechanics, which does not allow us to 
transmit signals faster than light, preserves relativistic causality. But quan- 
tum mechanics does not always allow us to consider distant systems as 
separate, as Einstein assumed. The failure of Einstein separability violates, 
not the letter, but the spirit of special relativity, and left many physicists 
(including Bell) deeply unsettled. The quantum nonlocality manifest in the 
Aharonov-Bohm effect ~4~ also took many physicists by surprise. The 
trajectory of an electron through a region free of magnetic flux depends 
upon flux outside the region--something incomprehensible to a classical 
physicist. Today, quantum nonlocality seems as fundamental as ever. All 
fundamental interactions we know are gauge interactions with the AB effect 
(or its non-Abelian analogue) at their core. In addition, the nonlocal 
quantum correlations displayed by Bell are now known to be generic: 
any entangled quantum state of any number of systems yields nonlocal 
correlations. ~SJ Only product states do not. 

Nonlocality, then, is an essential feature of quantum theory, but it 
often appears in a negative light. Here, we propose to show quantum non- 
locality in a more positive light. What new possibilities does quantum 
nonlocality offer us? In particular, if we make nonlocality an axiom, what 
becomes of the logical structure of quantum theory? The special theory of 
relativity, we know, can be deduced in its entirety from two axioms: the 
equivalence of inertial reference frames, and the constancy of the speed 
of light. Aharonov t6~ has proposed such a logical structure for quantum 
theory. Suppose we take, as axioms of quantum theory, relativistic causality 
and nonlocality. As an initial, immediate result, we deduce that quantum 
theory is not completely deterministic: otherwise these two axioms would 
be incompatible. ~6~ Then a "negative" aspect of quantum mechanics-- 
indeterminacy and limits on measurements--appears as a consequence of a 
fundamental "positive" aspect: the possibility of nonlocal action. 

Before proceeding, we must formulate our two axioms precisely. 
Relativistic causality is well defined, but quantum nonlocality appears in 
both nonlocal correlations and the AB effect. While these two effects are 
related, ~7~ they are not equivalent. In the AB effect, an isolated magnetic 
flux, inserted between two slits, shifts the interference pattern of electrons 
passing through the slits. Aharonov has shown t6~ that a physical quantity, 
the modular momentum of the flux, 181 is indeterminate by exactly the 
amount required to keep us from seeing the nonlocal force. But otherwise, 
modular momentum is measurable. The approach of Aharonov t6) starts 
from quantum mechanics itself and emphasizes nonlocal equations of  
motion, such as apply to modular variables. In the present work we take a 
different approach, which does not start from quantum mechanics, and 
does not address the nonlocality of the AB effect directly. We discuss non- 
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locality with reference to nonlocal correlations, and without considering 
equations of motion. We apply our two axioms simply by asking which 
theories give rise to nonlocal correlations, in the sense of Bell's theorem, t31 
while preserving causality. We find that quantum mechanics is only one 
of a class of theories consistent with our two axioms, and, in a certain 
sense, not even the most nonlocal theory. Thus, our result is completely 
independent of quantum mechanics or any particular model. It is more 
difficult to abstract the nonlocality considered by Aharonov, which refers 
to equations of motion of a given theory. The fact that we have chosen to 
base the axiom of nonlocality on nonlocal correlations does not imply that 
we consider them to be the essence of nonlocality. On the contrary, we 
suspect that the nonlocality of the AB effect and modular variables has 
deeper physical significance, just because it is connected to dynamics. 
However, in this paper we set ourselves an easier task. 

We begin with the Clauser, Horne, Shimony, and Holt (CHSH) 
inequality, tg) a convenient form of Bell's inequality. The CHSH inequality 
concerns systems with two parts far from one another. Let A, A', B, and 
B' be physical variables taking values 1 and - 1 ,  with A and A' referring 
to measurements on one part of the system by a local observer, and B and 
B' referring to measurements on the other part. If PAB(a, b) denotes the 
joint probability of obtaining A = a and B = b when A and B are measured, 
the correlation E(A, B) of A and B is defined as 

E(A, B)=PAn(1,  1 ) + P A a ( - 1 ,  --1)--PAB(1, --1)--  PAB(-- I, 1) (1) 

The CHSH inequality holds in any classical theory (that is, any theory 
of local hidden variables), and states that a particular combination of 
correlations lies between - 2  and 2: 

- 2  ~< E(A, B)+E(A, B')+E(A', B) -E(A ' ,  B')~<2 (2) 

For a system in a pure state I~O), quantum mechanics predicts the 
correlation of A and B as 

Eta(A, B ) =  (~kl AB I~k ) (3) 

where A and B correspond to self-adjoint operators. For certain choices of 
A, A', B, B', and I qs), quantum correlations violate the CHSH inequality. 
Besides 2, two other numbers, 2 w/2 and 4, are important bounds on the 
CHSH sum of correlations. If the four correlations in Eq. (2) were inde- 
pendent, the absolute value of the sum could be as much as 4. The sum of 
the quantum correlations, however, is less than 4: for quantum correla- 
tions.._, the CHSH sum of correlations is bounded ~~ in absolute value by 
2 x/2. Where does this bound come from? It derives from the Hilbert space 
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structure of quantum mechanics, but what does it mean? Rather than ask 
why quantum correlations violate the CHSH inequality, we might ask why 
they do not violate it more.  

If we return to the two axioms proposed above, we may say that the 
axiom of nonlocality implies that quantum correlations should violate the 
CHSH inequality at least sometimes. It is natural to guess that the other 
axiom, relativistic causality, might imply that quantum correlations do not 
violate it maximally. Could it be that relativistic causality restricts the 
violation to 2 x/~ instead of 4? If so, then the two axioms of nonlocality 
and relativistic causality determine the quantum violation of the CHSH 
inequality. To answer our question, we consider what restrictions 
relativistic causality imposes on joint probabilities. Relativistic causality 
forbids sending messages faster than light. Thus, if one observer measures 
the observable A, the probability for the outcomes A = 1 and A = - 1  must 
be independent of whether the other observer chooses to measure B or B'. 
The probability for the first observer to obtain A = 1 when the second 
observer has measured B is 

PAn(l, ? ) =  PAn(I, 1)+ PAB(1,-- 1) (4) 

PAn(l, ?) is a sum over the outcomes of the measurement of B, since the 
result for B is unknown. Relativistic causality then requires 

PAn(l, ?) = PAn,(I, ?) (5) 

where B' is completely arbitrary. Analogous equations hold for 
PAn(-1 ,  ?), PA,B(1, ?), and so forth. Note that relativistic causality does 
not imply, for example, that 

PAB(1, 1 ) = PA8"(I, 1 ) (6) 

Joint probabilities can be different and still preserve relativistic causality. 
Since an observer can learn about joint probabilities only from communi- 
cation with the other observer--by assumption, at subluminal speeds 1 
there is no conflict with relativistic causality. 

Do constraints of the form of Eq. (5) restrict the CHSH sum of 
correlations to be less than or equal to 2 x/~, as in quantum mechanics? 
Actually, they do not. Suppose we have a set of joint probabilities 

P A n ( l ,  1)=PAs(- -1 ,  -- 1)=P~e,(1,  1)= PAs,(-- 1, --1) 

= PA'B( 1, 1 ) = PA'n( -- 1, -- 1 ) = PA'B'( 1, -- 1 ) 

= PA'B'( -- 1, 1 ) = 1/2 (7) 
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with all other joint probabilities equal to zero. Then the probability for 
either result of any local measurement equals 1/2, and it clearly obeys all 
constraints of the form of Eq. (5). However, the CHSH sum of correlations 
corresponding to these joint probabilities is 4. Thus, relativistic causality 
does not by itself constrain the maximum CHSH sum of quantum 
correlations to 2 x/~. 

As a concrete illustration, consider two spinors in a "superquantum" 
singlet (rotationally symmetric) state. We define a superquantum correla- 
tion function E for measurements of their spins along given axes. The 
correlation function depends only on the relative angle 0 between axes. 
Rotational symmetry implies that the probabilities for results of a measure- 
ment on one particle are independent of a measurement on the other. Then 
for any pair of axes, the outcomes II"]') and [~J,) must be equally likely, 
and similarly for [T~) and [J,T); since these four probabilities sum to 1, 
the probabilities for ITS) and [~,~) sum to 1/2. In any direction, the 
probability of [T) or [+) is 1/2 irrespective of a measurement on the other 
particle. Since measurements on one particle yield no information about 
measurements on the other, relativistic causality holds. 

The correlation function then satisfies E(n - 0) = -E(O). Now let E(O) 
have the following form (see Fig. 1): 

E(O) 

E(0)=  1 for 0~<0~<n/6; 

E(O) decreases linearly from 1 to - 1  as 0 increases from n/6 

E(O) = - I  for n/4 <~ 0 <~ n/3; 
E(O) increases linearly from - 1  to 1 as 0 increases for n/3 

E(O) = 1 for 2n/3 ~< 0 ~< 3n/4; 

77" 4 

- I  

Fig. 1. 

(i) 

(ii) 
to n/4; 

(iii) 

(iv) 
to 2n/3; 

(v) 
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J 0 
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The "superquantum" correlation function E(O). 
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(vi) E(O) decreases linearly from 1 to - 1  as 0 increases from 3n/4 
to 5~t/6; 

(vii) E(0)= -1  for 5n/6~<0~<rt. 

Consider four measurements along axes defined by unit vectors ~', /~, 
6, and/~' separated by successive angles of n/12 and lying in a plane. If we 
now apply the CHSH inequality Eq. (2) to these directions, we find that 
the sum of correlations 

E(6,[~)+E(6',[~)+E(6,[~')-E(f',[~')=3E(rr/12)--E(n/4)=4 (8) 

violates the CHSH inequality with the maximal value 4. Of course, the 
correlation function E(O) is contrived, but it illustrates how a correlation 
function could satisfy relativistic causality and still violate the CHSH 
inequality with the maximal value 4. 

The results of tests of violations of the CHSH inequalityt11~ are consis- 
tent with quantum predictions, but stronger violations have not been ruled 
out. Our analysis shows that stronger violations would not conflict with 
relativity theory. We emphasize that an experiment could test for such 
violations, which would disprove quantum mechanics without reference to 
any model. 

What do we conclude from this analysis? We hope to find in quantum 
theory the logical simplicity that characterizes the special theory of 
relativity, which derives in its entirety from two axioms. Following 
Aharonov, we have proposed two axioms for quantum theory, nonlocality 
and relativistic causality, which together imply quantum indeterminacy. 
From our brief exercise with nonlocal correlations, however, we learn that 
our two axioms do not determine quantum theory: a theory that allows 
nonlocal correlations but preserves relativistic causality might not be quan- 
tum mechanics but a "superquantum" mechanics. Thus, we have identified 
a class of theories, to which quantum mechanics belongs, that yield nonlo- 
cal correlations while preserving causality. Perhaps quantum mechanics is 
not a correct theory. But if quantum mechanics is what we wish to derive, 
our two axioms are not enough. Still, our two axioms refer only to correla- 
tions, and not to the nonlocality of the AB effect. The conjecture of 
Aharonov c6~ states that quantum mechanics is the only causal theory with 
nonlocal equations of motion. To test this conjecture we must identify the 
class of theories that are causal and obey a different axiom of nonlocality. 
We hope then to find a logically simple quantum theory. 
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NOTE 

After this work was completed, we learned that the result for the 
maximal violation of the CHSH inequality consistent with relativity was 
found also by B. Tsirelson (Cirel'son). ~2~ 
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