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PROBABILITY RELATIONS BETWEEN
SEPARATED SYSTEMS

B Y E. SCHRODINGER

[Communicated by PKOF. P. A. M. DIRAC]

[Received 21 April, read 26 October 1936]

1. An earlier paperf dealt with the following fact. If for a system which
consists of two entirely separated systems the representative (or wave function)
is known, then current interpretation of quantum mechanics obliges us to admit
not only that by suitable measurements, taken on one of the two parts only, the
state (or representative or wave function) of the other part can be determined
without interfering with it, but also that, in spite of this non-interference, the
state arrived at depends quite decidedly on what measurements one chooses to
take—not only on the results they yield. So the experimenter, even with this
indirect method, which avoids touching the system itself, controls its future state
in very much the same way as is well known in the case of a direct measurement.
In this paper it will be shown that the control, with the indirect measurement, is
in general not only as complete but even more complete. For it will be shown that
in general a sophisticated experimenter can, by a suitable device which does not
involve measuring non-commuting variables, produce a non-vanishing probability
of driving the system into any state he chooses; whereas with the ordinary direct
method at least the states orthogonal to the original one are excluded.

The statement is hardly more than a corollary to a theorem about " mix-
tures "% for which I claim no priority but the permission of deducing it in the
following section, for it is certainly not well known.

2. Supposing we knew that a system at a given moment were in either one or
other of the sequence of states corresponding to the following sequence of wave
functions <f>i, finite or infinite in number, normalized but in general not orthogonal;
supposing further we knew the probabilities of the system being in any one of
these states—they must, of course, sum up to unity and shall be the real positive
numbers wt, written in the second line below the symbol of the function or state:

<£i ^2 ^ 3

w± w2 w3 M>4 ...\. (1)

(c[k) (cik) (c'3k) J
| Proc. Camb. Phil. Soc. 31 (1935), 555-63.
t The valuable conception of a mixture and the appropriate way of handling a mixture

by the Statistical Operator is due to Johann von Neumann; see his Mathematische Grund-
lagen der Quantenmechanik, Berlin, Springer, 1932; especially pp. 225 ff.
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In the third line I have written 'the kth development coefficient of the function
above, with respect to an arbitrary complete orthogonal system, chosen as a
frame of reference to start with. The brackets are to indicate that the kth is meant
as a representative of all of them; (c'3k), for instance, means all the development
coefficients of <£3.

The mean value (or expectation value) of a physical variable A, represented
in our frame of reference by the matrix Alk, is

A = w1I,c'1f Alkc'lk + w2I,c£A,kc'2k+...
lk lk

Let us call U the object, represented by the matrix whose (k, l)ih element is

'ikcZ, (2)

then A = Trace (A U). (3)

This trace (i.e. sum of diagonal terms) is obviously independent of the frame of
reference, since the wt are, by their meaning, invariants and U therefore trans-
forms like a matrix representing a physical variable, e.g. like A.

Since mean values are all that quantum mechanics predicts at all, the know-
ledge of U in a definite frame of reference exhausts our real knowledge of the situa-
tion, just as in the case of a "state" the wave function exhausts it. The detailed
times (1) from which Ukl is composed may refer to the origin of our knowledge.
But if another set of similar times leads to the same U, then it would be entirely
meaningless to distinguish between the two physical situations. U is von
Neumann's Statistical Operator. Its matrix is hermitian. I t has the formal
character of a real physical variable, but the physical meaning of a wave func-
tion, that is to say it describes the instantaneous physical situation of the system.

We propose to find all the different ways (or detailed data like (1)) which lead
to the same U. Mark first, that the hermitian Ukl is composed linearly, with
positive coefficients wi, whose sum total is unity, from matrices each of which
obviously has the eigenvalues 1, 0, 0, 0, ..., and therefore the trace 1. It follows
that Ufd has itself the trace 1 and non-negative eigenvalues. Now let us change
the frame of reference by a canonical transformation, which makes U diagonal.
L e t Pi, Pi, Pa, Pt,—, (4)

be this diagonal, the eigenvalues of U; according to what has just been said, they
are non-negative and their sum is 1. This shows that the same mixture is
obtained by mixing the orthogonal functions (or states) which form the basis of
the new frame of reference, in the proportions (or with the probabilities) pk.

Now let cik {without a dash) be the kth development coefficient of fa in the
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new frame. That the statistical matrix in the new frame actually is the diagonal
(4) is expressed by E^c^S^M)- (5)

Taking first k = l, then since the wi are positive, we see that cik = 0 whenever
pk — 0. So the basic states corresponding to zero eigenvalues of U are not needed
for the expansion of any function which can appear as a constituent of our
mixture. It is convenient to drop them altogether, confining oneself to that
subspace of Hilbert space which is spanned by the basic functions with non-
vanishing eigenvalue with respect to U. It then follows that the quantities

form columns (labelled by k) of a unitary matrix or, let us say, "unitary columns ",
meaning just only that each of them is normalized in itself and orthogonal to all
the others. (More cannot be asserted, because we did not oblige the <f>t to be
linearly independent.) Since the cik are normalized we must have

or w ^ L ^ l o t t t l " (7)

k

and r
a n d C *

A | I |

Obviously any sequence of functions which produce the same mixture must
be given by (8) (and their mixing fractions by (7)), with aifc certain unitary
columns. On the other hand (8) and (7) with any unitary columns inserted will
produce as their statistical matrix the diagonal (4) (expurgated from zeros).
Therefore the answer to our question is:

The most general way of obtaining the same mixture as indicated by the diagonal
(4) is given by (8) and (7) with <xifc any unitary columns. Note: There have to be as
many columns (k) as there are basic states in the subspace retained, thus one for
every non-vanishing pk. The range of the line subscript (i) is arbitrary except that
it must suffice to form that many normalized and mutually orthogonal columns;
but the range of i is allowed to be larger than that.

Can (with a given U) an arbitrary state be made to enter the circle of com-
posing states?

Well, as we have seen, certainly only a state which belongs to our subspace.
In order to show that there is no further restriction, let us now take for <x.ik a
true unitary matrix. This, by the way, has the effect of leading to linearly inde-
pendent constituents. Indeed if there were a relation

2AiCifc = 0 (4 = 1,2,3,...)
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that would, from (6), imply a similar relation
0 (fc=l, 2, 3, ...)

i

which cannot hold for a unitary matrix.

Now from (6) 1=S I aifc \^
k
k k Pk

and therefore wt = (s i r f f , (9)
\i Pi I

tK V{pk)\l Pi
If you take here one function, say the i =^'th, entirely arbitrary, you get a line
xjk (k= 1, 2, 3, 4; ...), which is evidently fit to be taken as a line of a unitary
matrix, leaving the other lines still widely indeterminate. It is interesting to
observe that nevertheless the probability fraction with which a function con-
tributes to a given mixture, when regarded as one of a possible set of linearly
independent constituents, depends only on the mixture (i.e. on U) and on the
function itself. One is allowed to speak in a very general way of the fraction by
which an arbitrary state contributes to a given mixture—but of course the sum
total of all these fractions is by no means unity.

It will be remembered that in the formulae (10), vanishing pt have been
excluded. But the formula for wt allows us to follow the vanishing of Wj, if we let
one of the p, tend to zero and the corresponding basic state does not happen to be
absent in that particular function (cit^0). Moreover, the expression of wt must
have an invariant form, independent of the frame of reference. And so it has. In a
familiar symbolism w = (U~1<f> A ) ' 1 . (11)
(U must refer to the swftspace, in order that U~x shall exist.) Formally the reci-
procal probability for an arbitrary function is calculated as if it were the mean
value of a physical variable under that function, the physical variable being
represented by the reciprocal of the Statistical Operator.

We sum up the main result: any state which belongs to the subspace spanned
by the really contributing orthogonal constituents can be regarded as a con-
stituent, with a probability (or mixing fraction) that only depends on that state
itself provided the constituents are chosen linearly independent.

3. It is just the multitude of non-orthogonal compositions of one and the
same mixture, which gives rise to the strange situation described in the beginning
of section 1. As in eq. 1, p. 556, loc. cit., let x stand for all the coordinates of
the first, y for those of the second system. It was shown that the wave function
of the combined system can be given the form

W {x,y) = "Lakgk(x)fk(y) (12)
k

with both sets, the gk {x) and the fk (y) normalized and orthogonal. They need not
PSP xxxn, 3 30
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form complete sets, unless we admit dummy terms with ak = 0. This we will not.
We prefer to confine all the following considerations to the two subspaces of
Hilbert space which are spanned by the gk (x) for the first system, by the fk (y)
for the second system.

Consider the possibility of measuring in the second system a physical variable
of which the/fc (y) are eigenfunctions belonging to different eigenvalues. The prob-
ability of finding the one that belongs to fk (y) is

P*=|o*l2, (13)
and if we find it, we have to assign to the first system the wave function gk (x).
In view of the possibility of following that particular measuring device, with all
its possible outcomes, the first system is in the situation of a mixture characterized
by the orthogonal functions gk (x) and the probabilities pk. From the preceding
section we know that such a mixture can be regarded as the result of extremely
various compositions. If we restrict this variety to those compositions which
consist of linearly independent constituents, then it corresponds exactly to the
variety of different measuring programmes (of commuting variables) which can
be carried out on the second system. Envisage the unitary transformation

/*(y) = S«ItAi(y), (14)

and a physical variable of which the ̂  (y) are eigenstates belonging to different
eigenvalues. From (12) and (14)

(x, y) = 22 akgk (x) o^A* (y)
k i

(
i k

The functions of a; described by the 2 lack normalization. Besides from (13)
tt

and we can put a.'ike
it^k = a.ik

with aifc another unitary matrix, which is arbitrary because a!ik was arbitrary.
So we can write / - -/(m,\ \

Y ) SVK)(2^i^JA(2/) (15)
with wi = Y,pl\a.il |

2.

Then the function in the bracket is normalized. It is precisely the wave function
which we have to assign to the first system, if we find in the second one the eigen-
value belonging to A{ (y), and the probability of finding it is wt.

Comparing with (7) and (8) of the preceding section we find complete coin-
cidence; from which we infer that an arbitrary state within the subspace in
question can be given a non-vanishing probability of its turning up in the first



Probability relations between separated systems 451

system by a suitable treatment of the second one. Since it has a finite chance of
turning up, it will certainly turn up, if precisely the same experiments are re-
peated sufficiently often. Moreover, quite apart from special applications, the
case that in the expansion (12) no coefficients vanish deserves to be called the
general one. Then there is no reduction to a subspace and what has just been said
holds for an altogether arbitrary state. That was the meaning of the announce-
ment made in section 1.

4. Indubitably the situation described here is, in present quantum mechanics,
a necessary and indispensable feature. The question arises, whether it is so in
Nature too. I am not satisfied about there being sufficient experimental evidence
for that. Years ago I pointed outf that when two systems separate far enough
to make it possible to experiment on one of them without interfering with the
other, they are bound to pass, during the process of separation, through stages
which were beyond the range of quantum mechanics as it stood then. For it
seems hard to-imagine a complete separation, whilst the systems are still so
close to each other, that, from the classical point of view, their interaction could
still be described as an unretarded actio in distans. And ordinary quantum
mechanics, on account of its thoroughly unrelativistic character, really only deals
with the actio in distans case. The whole system (comprising in our case both
systems) has to be small enough to be able to neglect the time that light takes
to travel across the system, compared with such periods of the system as are
essentially involved in the changes that take place.

Though in the mean time some progress seemed to have been made in the
way of coping with this condition (quantum electrodynamics), there now appears
to be a strong probability (as P. A. M. Dirac% has recently pointed out on a special
occasion) that this progress is futile.

It seems worth noticing that the paradox could be avoided by a very simple
assumption, namely if the situation after separating were described by the
expansion (12), but with the additional statement that the knowledge of the
phase relations between the complex constants ak has been entirely lost in con-
sequence of the process of separation. This would mean that not only the parts,
but the whole system, would be in the situation of a mixture, not of a pure state.
It would not preclude the possibility of determining the state of the first system
by suitable measurements in the second one or vice versa. But it would utterly
eliminate the experimenters influence on the state of that system which he does
not touch.

This is a very incomplete description and I would not stand for its adequate-
ness. But I would call it a possible one, until I am told, either why it is devoid of

t E. Schrodinger, Annalen der Physik (4), 83 (1927), 961. Collected Papers (Blackie
and Son, 1928), p. 141.

% P. A. M. Dirac, Nature. 137 (1936), 298.
3O-2
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meaning or with which experiments it disagrees. My point is, that in a domain
which the present theory does not cover, there is room for new assumptions without
necessarily contradicting the theory in that region where it is backed by experi-
ment.

SUMMARY

The paper first scrutinizes thoroughly the variety of compositions which lead
to the same quantum-mechanical mixture (as opposed to state or pure state).
With respect to a given mixture every state has a definite probability (or mixing
fraction) between 0 and 1 (including the limits), which is calculated from the
mixtures Statistical Operator and the wave function of the state in question.

A well-known example of mixtures occurs when a system consists of two
separated parts. If the wave function of the whole system is known, either part is
in the situation of a mixture, which is decomposed into definite constituents by a
definite measuring programme to be carried out on the other part. All the conceiv-
able decompositions (into linearly independent constituents) of the first system
are just realized by all the possible measuring programmes that can be carried
out on the .second one. In general every state of the first system can be given a
finite chance by a suitable choice of the programme.

It is suggested that these conclusions, unavoidable within the present theory
but repugnant to some physicists including the author, are caused by applying
non-relativistic quantum mechanics beyond its legitimate range. An alternative
possibility is indicated.

I wish to acknowledge with gratitude the support of my studies by Imperial
Chemical Industries, Limited.


