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For my undergraduate and graduate students, 
from whom, over many decades, 

I learnt more than they learned from me
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Preface

David Layzer was an astrophysicist and cosmologist at Harvard 
who from the 1960s onward generated key insights into the evolu-
tion and structure of the universe, many of which arguably remain 
under-appreciated.  He was among the first to carefully and incisively 
analyze the arrow of time in cosmology, he formulated a subtle, dis-
tinct, and fascinating version of the “cosmological principle,” and 
he provided key insights into the growth of both entropy and order 
through cosmic evolution. In his later career he focused on the con-
nection between cosmic foundations of randomness, the growth of 
order, and the creativity and freedom inherent in biological evolu-
tion and mental processes. Why We are Free ties all of these threads 
together.  The work speaks for itself, but readers may find some his-
torical and scientific contextualization of each of them useful.

Layzer’s cosmological work began at a time when our view of 
cosmic history was far less settled.  In the early 1960’s he was invited 
to a conference on the nature of time at Cornell University organized 
by the founders of the steady-state theory of the universe,  Hermann 
Bondi, Tommy Gold, and Fred Hoyle. 

The steady-state founders went beyond Newton’s “cosmological 
principle” that space is homogeneous and isotropic, the same in all 
places and in all directions. They added their “perfect cosmological 
principle,” claiming the universe is eternal and appears the same at 
all times. This appeared to eliminate what Arthur Stanley Eddington 
in 1928 called “Time’s Arrow,” which Eddington had associated with 
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the apparently irreversible increase in entropy demanded by the 
second law of thermodynamics.  

At the Cornell conference Layzer proposed his “strong cosmologi-
cal principle,” that the homogeneity and isotropy of matter and space 
applies both statistically and exactly.  The subtle but foundational 
implication of this assumption is that the cosmological principle 
is not just a convenient approximation to a more precisely know-
able cosmic state, but that the statistical description is complete and 
cannot be improved upon.  This enormously reduces, for example, 
the information required to specify the initial cosmic state.

Subsequently, Layzer argued that the strong cosmological princi-
ple implies a fundamental uncertainty inherent in any finite physical 
system: because the statistical description of the universe is complete, 
the precision with which any subsystem can be described is limited.  
He called this implication “primordial randomness.” He later came 
to believe that this very uncertainty is at the root of quantum uncer-
tainty.  Sketched in his book Cosmogenesis, this idea was revisited 
by Layzer1, and by Max Tegmark and one of us2, eventually split-
ting into two versions of a “Cosmological interpretation of quantum 
mechanics, ” similar in spirit but different in details and context. 

Layzer also showed in detail (particularly in the Journal article) the 
different types of arrows of time, and some of their relations: along-
side Eddington’s identification of increasing entropy as the funda-
mental time’s arrow, Layzer now added another arrow he called the 
“historical arrow of time; this was in addition to the so-called “radi-
ation arrow” or “electromagnetic arrow” (the asymmetry between 
emission and absorption processes) and the so-called “cosmological 
arrow” (the expansion of the universe).

The strand of Layzer’s work addressing the “arrow of time” also 
began early in the origins of modern cosmology. The two most 
important publications were in Scientific American in 1975 and the 
Astrophysical Journal in 1976.  In the former article, Layzer intro-
duced his famous example of the perfume bottle being opened and 
the perfume dispersing into the room. 

1	 See https://arxiv.org/abs/1008.1229 for Layzer’s elegant and detailed exposition.
2	 Aguirre, Anthony, and Max Tegmark. “Born in an infinite universe: a cosmological 

interpretation of quantum mechanics.” Physical Review D 84.10 (2011): 105002.
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Layzer likened the time-reversed process to a movie played back-
wards. If the “initial” state contained “hidden” microscopic informa-
tion corresponding to a reversal of the momentum of each perfume 

molecule at a certain 
time, classical dynam-
ics says that the per-
fume will make its way 
back into the bottle. 
This is a powerful 
visual image illustrat-
ing Josef Loschmidt’s 
reversibility objection 
to Ludwig Boltzmann’s 
H-Theorem.

In Layzer’s view, pri-
mordial randomness 
precludes just the sort 
of “hidden information” 
that would allow such a 
reversal.

Beyond its clarity, 
what most distinguished 
Layzer’s thinking about  

time’s arrow in cosmology was his resolution of a very basic para-
dox: the universe appears to start in a dense, high-energy, equilib-
rium state.  Yet the second thermodynamic law implies that entropy 
increases.  So how does the universe ever leave equilibrium and so 
generate all of the ordered and highly non-equilibrium structures 
it clearly contains? Layzer’s resolution, in his words from the 1975 
article:

Suppose that at some early moment local thermodynamic equilib-
rium prevailed in the universe. The entropy of any region would 
then be as large as possible for the prevailing values of the mean 
temperature and density. As the universe expanded from that hypo-
thetical state the local values of the mean density and temperature 
would change, and so would the entropy of the region. For the 
entropy to remain at its maximum value (and thus for equilibrium 
to be maintained) the distribution of energies allotted to matter 
and to radiation must change, and so must the concentrations of 
the various kinds of particles. The physical processes that mediate 

Source: “The Arrow of Time” Scientific 
American, December, p.57 (1975) 
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these changes proceed at finite rates; if these “equilibration” rates 
are all much greater than the rate of cosmic expansion, approxi-
mate local thermodynamic equilibrium will be maintained; if they 
are not, the expansion will give rise to significant local departures 
from equilibrium. These departures represent macroscopic infor-
mation; the quantity of macroscopic information generated by the 
expansion is the difference between the actual value of the entropy 
and the theoretical maximum entropy at the mean temperature 
and density.3

This core and clear insight — that information is the gap between 
realized and possible entropy, and that the latter increases in an 
expanding universe — has even now not fully penetrated the think-
ing of many working in the field.  Going further, Layzer persua-
sively argues that this dynamic, in which would-be equilibrating 
interactions fail to maintain equilibrium, pervades and underlies 
the growth of order in the universe. For Layzer, this along with the 

strong cosmological principle provided a clear explanation of the 
arrows of time, with the cosmological principle ensuring statistical 
equilibrium at the earliest time, and the time-varying rates of vari-
ous processes during cosmic evolution doing the rest.  Again in his 
words:

As a result the big bang is an exceedingly gentle process; local 
equilibration processes easily keep pace with the changing mac-
roscopic conditions of temperature and density during the first 
fraction of a microsecond. It is only for this brief initial phase in 

3	 “The Arrow of Time” Scientific American, December, p.68 (1975).
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the evolution of the universe that local thermodynamic equilib-
rium can be assumed, but from that assumption it follows that the 
expansion of the universe has generated both macroscopic infor-
mation and entropy. Thus the cosmological arrow, the historical 
arrow and the thermodynamic arrow all emerge as consequences 
of the strong cosmological principle and the assumption that local 
thermodynamic equilibrium prevailed at or near the initial singu-
larity. Remarkably, neither of these assumptions refers directly to 
time or temporal processes.4

For Layzer, these cosmological considerations tied directly to 
basic issues about the nature of complex systems including biolog-
ical ones. He explored these ties in detail in his 1990 book, Cosmo-
genesis, which lays out a full vision for how the enormous amount 
and quality of structure comes into being, first through cosmic pro-
cesses and then via life and evolution that can “utilize” cosmic and 
astrophysical order.  That book also began Layzer’s study of free will, 
which through his arguments he connected to randomness in the 
earliest time. 

In his later years, Layzer developed through a series of talks and 
unpublished papers a compelling view of how the freedom and cre-
ativity of living and mental systems can coexist with the (seemingly) 
rigid determinism of natural law.  It has been argued in many places 
that randomness — quantum or otherwise — does not bear upon 
free will.  Layzer forcefully disputes this, arguing that the same ran-
domness and growth of order that pervades the universe underlies 
living phenomena, with the randomness providing the fuel (but not 
in itself an explanation) for genuine novelty and choice.

In Why We Are Free, his last work (especially chapter VII and the 
following four sections), we see Layzer ’s concise telling of this entire 
story.

Anthony Aguirre, UC Santa Cruz 
Bob Doyle, Harvard University

January, 2021

4	 “The Arrow of Time” Scientific American, December 1975, p.57.
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What This Book Is About
No biological capacity is more distinctively human than our ability 

to shape future events in ways that accord with our needs, wants, and 
desires. Yet many mainstream scientists and philosophers deny the 
existence of such a capacity. They subscribe to a scientific worldview 
called physicalism, or materialism, according to which reality com-
prises just those objects and relations that figure in our strongly 
confirmed physical laws. Francis Crick, co-discoverer with James 
Watson of DNA’s double helix, summarized this idea in the open-
ing paragraph of his book The Astonishing Hypothesis, the Scientific 
Search for the Soul:. It is the alien idea that each person is no more 
than a vast assembly of nerve cells and their molecules, that we are 
“nothing but a pack of neurons. 

This book describes an alternative to physicalism in which our 
joys and our sorrows, our memories and our ambitions, our sense of 
personal identity and free will, are just as real as the objects and rela-
tions of the world physics describes. Like physicalism, the proposed 
worldview rests on our strongly confirmed physical laws. I argue 
that these laws don’t need to be supplemented by additional laws 
that expand the domain of natural science to include consciousness 
and subjectivity. Physicalism, I argue, rests on Newton’s assumption 
in The Principia that place is absolute. This assumption implies, for 
instance, that the present value of the mass per unit volume at the 
Sun’s position has a definite value (though one we can’t know with 
infinite precision). 

This book proposes to replace the assumption that place is abso-
lute by a pair of less obvious cosmological assumptions: The first 
of these, the strong cosmological principle, says that a complete 
description of the Universe doesn’t privilege any position or direc-
tion in space. It implies that a complete description of the Uni-
verse wouldn’t tell us the values of macroscopic quantities. Instead 
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it would specify probability distributions of the possible values of 
macroscopic quantities. It would interpret the probability of any 
given range of possible values of a macroscopic quantity as the rel-
ative frequency of that range in an infinitely extended sample of the 
Universe. The second assumption, the assumption of primordial 
randomness, says that the probability distributions that character-
ize the Universe’s initial state were maximally random. Randomness 
in this context is synonymous with statistical entropy, a property of 
probability distributions introduced in 1872 by Ludwig Boltzmann 
as the counterpart in the atomic theory of gases to Rudolf Clausius’s 
thermodynamic entropy. The assumption of primordial randomness 
implies that the Universe has evolved from a state of complete disor-
der, so it contradicts the widely believed claim that the entropy of the 
Universe never decreases. This book argue that this generalization of 
the strongly confirmed law of entropy non-decrease for undisturbed 
macroscopic systems is untenable.

Chance and the openness of the future are pervasive features of 
prescientific views of the natural world. Physicalism tells us that they 
are illusory. In a scientific worldview that incorporates the strong 
cosmological principle and the assumption of primordial random-
ness chance is indeed pervasive and the future is indeed largely open. 
But how do physics and biology themselves fare under the new sci-
entific dispensation?

I will argue that the two cosmological hypotheses allow a more 
unified view of macrophysics, microphysics, and statistical physics 
(which links macrophysics to microphysics). The implications of the 
two cosmological hypotheses for biology are more striking. Physical-
ism purports to reduce biology to physics. But physicalism attributes 
macroscopic chance to human ignorance. By contrast, macroscopic 
chance plays a central role in evolution, both in genetic variation 
(for example in genetic recombination) and natural selection (think 
of extinction events). Consequently, although biological processes 
are governed by physical laws, biology doesn’t reduce to physics. I 
will argue that the strong cosmological principle and the assumption 
of primordial randomness together with our strongly confirmed 
physical laws provide a framework for modern evolutionary theory. 
They also provide a framework for understanding consciousness, 
creativity, and free will as biological phenomena.



3

 

       

I 
Physics, Biology, and Physicalism

A physical theory needn’t be intuitively plausible, but it must make 
testable predictions that agree with experiment or observation. For 
example, quantum mechanics describes electrons as mathematical 
points endowed with mass and electric charge. It assigns these points 
spatial coordinates and asserts that when an electron is in a defi-
nite physical state its coordinates don’t have definite values. None 
of this makes intuitive sense. How could a mathematical point have 
a finite mass? How could a point’s coordinates not have definite 
values? Nevertheless, unambiguous rules link quantum mechanics’ 
abstract mathematical laws to the outcomes of a wide range of exper-
iments, and the close agreement between the observed and pre-
dicted outcomes of these experiments leaves no room for doubt that 
the laws are, at least, very nearly correct.  Experience isn’t just the 
arbiter of scientific theories, though. It is itself a subject of scientific 
investigation. Neuroscientists investigate how perception, memory, 
cognition, and other mental states and processes are linked to physi-
cal structures and processes in the brain. Such studies have produced 
convincing evidence that the mathematical laws that govern physi-
cal phenomena also govern the biological processes that accompany 
mental processes.  

But mental processes seem to be more than the physical processes 
that accompany them. All experience is someone’s experience. My 
experience of seeing a red ball is distinct from your experience of 
seeing what we both believe to be the same ball. It may seem obvious 
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that this aspect of experience – consciousness – is as much a part of 
the natural world as matter and energy. Yet there is no scientific or 
philosophical consensus about how – or even whether – conscious-
ness fits into a scientific picture of the world.  

Some scientists and philosophers argue that the subjective aspect 
of consciousness – the aspect that makes your consciousness differ-
ent from mine – isn’t part of a scientific picture of the world. Fran-
cis Crick, co-discoverer with James Watson of DNA’s double helix, 
summarized this position in the opening paragraph of his book The 
Astonishing Hypothesis, the Scientific Search for the Soul: 

The Astonishing Hypothesis is that “You,” your joys and your sor-
rows, your memories and your ambitions, your sense of personal 
identity and free will, are in fact no more than the behavior of a 
vast assembly of nerve cells and their associated molecules. As 
Lewis Carroll’s Alice might have phrased it: “You’re nothing but a 
pack of neurons.” This hypothesis is so alien to the ideas of most 
people alive today that it can truly be called astonishing.1 

 Crick’s astonishing hypothesis implies that biology not only rests 
on physics – something few if any contemporary biologists would 
dispute – but also reduces to physics: the natural world contains just 
those entities mentioned in our strongly confirmed physical theories, 
nothing more. I’ll refer to this scientific worldview as physicalism.  

Among the features of conscious life that physicalism reduces to 
the behavior of assemblies of brain cells is free will: our felt abil-
ity to alter the course of events through our deliberate acts. Though 
habits and deep-seated preferences dictate many of the choices we 
make in our daily lives, we take it for granted that the actions that 
flow from decisions we have thought about long and hard help shape 
the future. We think the world would have been different in ways 
that matter to us if we had decided and acted differently. Law, ethics, 
and widely held opinions about the aims of education all presup-
pose that our deliberate actions spring from a kind of freedom other 
animals don’t enjoy. Our laws punish theft, but we don’t regard a 
dog that steals another dog’s bone as a lawbreaker. We think tor-
ture is wrong, but we don’t think a cat is acting unethically when it 
tortures a mouse. We train our pets, but we believe children should 

1	 Crick, Francis. The Astonishing Hypothesis (New York: Simon and Schuster 1994) 
p. 3.  
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be brought up not just to behave in certain ways but also to make 
good decisions. None of these beliefs and attitudes would be tenable 
if we weren’t capable of making choices and decisions that affect the 
future course of events.  Yet decision-making is a biological process, 
and biological processes are also physical processes, governed by the 
physical laws that prevail in physics and chemistry laboratories and 
in stars and galaxies. These laws are deterministic in the following 
sense: They connect a complete description of the present physical 
state of an isolated, or undisturbed, physical system to a complete 
description of any of the system’s past and future states. The laws of 
quantum physics are just as deterministic in this sense as those of 
classical, or pre-quantum, physical theories – theories that deal with 
macroscopic and astronomical phenomena. Quantum mechanics’ 
law of change, like its classical counterparts, links the present state of 
an undisturbed physical system to each of the system’s future states.  

 Unlike classical states, quantum states of undisturbed systems 
aren’t directly observable. The standard formulation of quantum 
mechanics links them to measurement outcomes by a rule that Paul 
Dirac in The Principles of Quantum Mechanics called a “general 
assumption.” Given a system’s quantum state, this rule (discussed 
in more detail below) enables one to calculate not only the possible 
outcomes of a measurement of any of the system’s physical proper-
ties, such as position or momentum or energy, but also the relative 
frequency of each possible outcome in a long series (or large collec-
tion) of identical measurements. This feature of quantum mechanics 
– the unpredictability of individual measurement outcomes, along 
with the predictability of possible measurement outcomes and their 
relative frequencies in long series of identical measurements – is 
what physicists mean by “quantum indeterminism.” 

 The philosopher John Searle assumes, as do many or perhaps 
most physicists, that “all indeterminism in nature is quantum inde-
terminism.”2 He then argues that “consciousness is a feature of nature 
that manifests indeterminism” and concludes that quantum indeter-
minism must underpin free will. While I agree with Searle that free 
will requires “indeterminism in nature,” I think the conclusion that 
quantum indeterminism underpins free will is untenable, for two 
reasons. First, as far as I know, nothing in neuroscience suggests that 

2	  Searle, John R. Freedom and Neurobiology (New York, Columbia University 
Press, 2004) p. 74.	
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the neural processes accompanying decision-making are, or resem-
ble, quantum measurements. Second, quantum measurements, 
unlike free acts, never have novel and unpredictable outcomes; their 
possible outcomes are entirely predictable. Yet if we have the abil-
ity to help shape future events through our deliberate actions, as I 
believe we do, the future must in some ways be open. Either free will 
is an illusion or determinism is false.  

Like Crick, the evolutionary biologist Edward O. Wilson has 
embraced the first alternative: 

 

The self, an actor in a perpetually changing drama, lacks full 
command of its own actions.  It does not make decisions solely 
by conscious, purely rational choice.  Much of the computation 
in decision-making is unconscious – strings dancing the puppet 
ego.  Circuits and determining molecular processes exist outside 
conscious thought.  They consolidate certain memories and delete 
others, bias connections and analogies, and reinforce the neu-
rohormonal loops that regulate subsequent emotional response.  
Before the curtain is drawn and the play unfolds, the stage has 
already been partly set and much of the script written. 
The hidden preparation of mental activity gives the illusion of 
will.  We make decisions for reasons we often sense only vaguely, 
and seldom if ever understand fully.  Ignorance of this kind is 
conceived by the conscious mind as uncertainty to be resolved; 
hence freedom of choice is ensured.  An omniscient mind with 
total commitment to reason and fixed goals would lack free will. 

But if free will is illusory, why is the illusion so strong? Wilson 
explains: 

…Confidence in free will is biologically adaptive.  Without it the 
mind, imprisoned by fatalism, would slow and deteriorate.  Thus in 
organismic time and space, in every operational sense that applies 
to the knowable self, the mind does have free will.3 

Psychologist Daniel Wegner agrees with Wilson that free will is an 
illusion. He argues that the neural processes underlying voluntary 
actions have two distinct outcomes: the action itself and awareness 
of willing the action. Is this awareness the cause of the action? From 
a thorough examination of the evidence bearing on this question, 
Wegner concludes the answer is no:  

3	 Wilson,  E.O. Consilience, (New York, Knopf: 1998) p. 130.
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It usually seems that we consciously will our voluntary actions, 
but this is an illusion. ... Conscious will arises from processes that 
are psychologically and anatomically distinct from the processes 
whereby mind creates action. (pages1-2) … If a team of scientific 
psychologists … somehow had access to all the information they 
could ever want, … they could uncover the mechanisms that give 
rise to all your behaviors …. 4 

Behind this thought is the image of a complex physical system, 
such as the solar system, whose physical states are completely deter-
mined by physical laws and antecedent conditions. Indeed Wegner 
ends his book with a quotation from Einstein: 

If the moon, in the act of completing its eternal way around the 
earth were gifted with self-consciousness, it would feel thoroughly 
convinced that it was traveling its way of its own accord. ...So 
would a Being, endowed with higher insight and more perfect 
intelligence, watching man and his doings, smile about man’s illu-
sion that he was acting according to his own free will.5

 

The philosopher Thomas Nagel has argued that physicalism can’t 
be reconciled with the existence of consciousness: 

The existence of consciousness seems to imply that the physical 
description of the universe, in spite of its richness and explanatory 
power, is only part of the truth, and that the natural order is far 
less austere than it would be if physics and chemistry accounted 
for everything. If we take this problem seriously, and follow out its 
implications, it threatens to unravel the entire naturalistic world 
picture. Yet it is very difficult to imagine viable alternatives.”6 

The subtitle of Mind and Cosmos states that “the materialist 
neo-Darwinian conception of nature is almost certainly false.”  

If evolutionary theory is a purely physical theory, then it might 
in principle provide the framework for a physical explanation of the 
appearance of behaviorally complex animal organisms with central 
nervous system. But subjective consciousness, if it is not reducible to 
something physical, would not be part of this story; it would be left 
completely unexplained by physical evolution – even if the physical 

4	 Wegner, D.M.  The Illusion of Conscious Will. (Cambridge: MIT Press 2002) p. 29.
5	 Einstein, A. 1995. Quoted in Home, D. and A. Robinson, “Einstein and Tagore: 

Man, nature and mysticism”, Journal of Consciousness Studies 2, pp.167-169.
6	 Nagel, Thomas, Mind and Cosmos: Why the Materialist Neo-Darwinian Conception 

of Nature Is Almost Certainly False (Cambridge, Belknap Press of Harvard University) p. 35
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evolution of such organisms is in fact a causally necessary and suffi-
cient reason for consciousness.  

Yet Nagel doesn’t argue that consciousness lies outside the scope 
of natural science. Rather, he suggests, “[i]t makes sense to seek an 
expanded form of understanding that includes the mental but that is 
still scientific – i.e. still a theory of the immanent order of nature.”7 

Ernst Mayr, an architect of contemporary evolutionary theory, 
would have agreed. He wrote that “living systems ... have numerous 
properties that are simply not found in the inanimate world.”8 

...I believe that a unification of science is indeed possible if we 
are willing to expand the concept of science to include the basic 
principle and concepts of not only the physical but also the 
biological sciences. Such a new philosophy of science will need 
to adopt a greatly enlarged vocabulary – one that includes such 
words as biopopulation, teleonomy, and progress. It will have to 
abandon its loyalty to a rigid essentialism and determinism in 
favor of a broader recognition of stochastic processes, a plural-
ism of causes and effect, the hierarchical organization of much 
of nature, the emergence of unanticipated properties at higher 
hierarchical levels, the internal cohesion of complex systems, and 
many other concepts absent from – or at least neglected by – the 
classical philosophy of science.9  

Mayr emphasized the role of chance in evolution: 
Evolutionary change in every generation is a two-step process: 
the production of genetically new individuals and the selection 
of the progenitors of the next generation. The important role of 
chance at the first step, the production of variability is universally 
acknowledged, but the second step, natural selection, is on the 
whole viewed rather deterministically: Selection is a non-chance 
process. What is usually forgotten is the important role chance 
plays even during the process of selection. In a group of sibs it 
is by no means necessarily only those with the most superior 
genotypes that will reproduce. Predators mostly take weak or 
sick prey individuals, but not exclusively, nor do localized nat-
ural catastrophes (storms, avalanches, floods) kill only inferior 
individuals. Every founder population [the parent population of 

7	 Nagel, Thomas, “The Core of ‘Mind and Cosmos,” New York Times, August 18, 
2013

8	 Mayr, E., Toward a New Philosophy of Biology. (Cambridge: Harvard University 
Press, 1988) p. 1.

9	 ibid, p. 21.
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a new species] is largely a chance aggregate of individuals, and the 
outcome of genetic revolutions, initiating new evolutionary depar-
tures, may depend on chance constellations of genetic factors. 
There is a large element of chance in every successful colonization. 
When multiple pathways toward the acquisition of a new adaptive 
trait are possible, it is often a matter of a momentary constellation 
of chance factors as to which one will be taken.10 

Physicalism’s picture of the natural order has no room for the 
kinds of pervasive and objective randomness that evolution requires, 
according to Mayr and other evolutionary biologists. 

Physicalist views of evolution characterize it as a mechanical pro-
cess – a process whose outcomes are predictable, at least in principle. 
Some evolutionary biologists argue that evolution is a creative pro-
cess – one that brings into being novel and unpredictable forms of 
organized complexity. This was the central theme of the philosopher 
Henri Bergson’s masterwork, L’Évolution créatrice (Creative Evolu-
tion, 1907). Bergson’s books combined philosophical and scientific 
erudition with an engaging and persuasive literary style. They won 
him a wide and enthusiastic readership. In 1927 he was awarded the 
Nobel Prize for Literature. But Bergson didn’t believe that creative 
biological processes are consistent with well-established physical 
laws. He argued that physical laws couldn’t govern either evolution 
or consciousness because they rest on an oversimplified character-
ization of time. Physics represents time by a line and moments in 
time by points on the line. In his doctoral dissertation Time and Free 
Will Bergson argued that this static representation deprives time of 
its essential dynamic character. As time manifests itself in creative 
biological contexts, including evolution and free human acts, it is 
a dynamic process, “pure becoming.” Evolution, Bergson argued, 
transcends scientific description. It is driven by an élan vital or vital 
impulse. Because that impulse informs all living organisms, Bergson 
argued, in Introduction to Metaphysics, that we can grasp it through 
an effort of intuition even if we can’t describe it in the language of 
science.   

The élan vital didn’t survive twentieth-century advances in our 
understanding of biology. Experimental and observational evidence 
leaves little room, if any, for doubting that physical laws apply across 
the board – to living organisms and physical systems alike. Biology’s 

10	 Mayr, E. 1983. The American Naturalist 121: 324-33; reprinted in Toward a New 
Philosophy of Biology. pp. 148-159.
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current picture of the living world also dispenses with “biotonic” 
laws – laws that apply only to living organisms. 

But while Bergson’s interpretation of evolution is no longer 
tenable, his description of it as a creative process remains compelling. 
Embracing that description while rejecting Bergson’s metaphysics, 
Theodosius Dobzhansky, like Mayr a principal architect of current 
evolutionary theory, argued that evolution is indeed “a creative pro-
cess, in exactly the same sense in which composing a poem or a sym-
phony, carving a statue, or painting a picture are creative acts”: 

 

Can the word ‘creative’ be validly applied to a process that has no 
foresight and no ability to devise means to a chosen goal? …Evolu-
tion [like artistic creation] not only brings novelties into being, but 
these novelties present embodximents of new ways of life. …Every 
new form of life that appears in evolution can, with only moderate 
semantic license, be regarded as an artistic embodiment of a new 
conception of living.11 

Like artistic creativity, evolutionary creativity requires randomness, 
or indeterminism, to be an objective feature of the natural world. 
Quantum indeterminism isn’t enough.  If Mayr’s and Dobzhansky’s 
views of evolution are correct, macroscopic indeterminism – the 
prevalence of chance at macroscopic levels of description – must be a 
pervasive and objective feature of the macroscopic world, as it seems 
to be of the world of experience. But it has no place in physical-
ism’s deterministic picture of physical reality, as described by Pierre 
Simon Laplace in 1814: 

We may regard the present state of the universe as the effect of 
its past and the cause of its future. An intellect which at a certain 
moment would know all forces that set nature in motion, and all 
positions of all items of which nature is composed, if this intellect 
were also vast enough to submit these data to analysis, it would 
embrace in a single formula the movements of the greatest bodies 
of the universe and those of the tiniest atom; for such an intellect 
nothing would be uncertain and the future just like the past would 
be present before its eyes.12

11	 Dobzhansky, Theodosius..  “Chance and Creativity in Evolution” in Studies in 
the Philosophy of Biology, edited by F.J. Ayala and T. Dobzhansky. (Berkeley: University of 
California Press 1974) p. 329. 

12	 Laplace, Pierre Simon, A Philosophical Essay on Probabilities, translated into 
English from the original French 6th ed. by Truscott, F.W. and Emory, F.L., (New York, 
Dover Publications 1951) p.4.
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In his essay “Chance” (1908) the mathematician, physicist, and 
philosopher Henri Poincaré reaffirmed this worldview: 

Every phenomenon, however trifling it be, has a cause, and a mind 
infinitely powerful and informed concerning the laws of nature 
could have foreseen it from the beginning of the ages. If a being 
with such a mind existed, we could play no game of chance with 
him; we should always lose.

 

Yet in Mayr’s and Dobzhansky’s views of evolution, all living 
organisms are winners in games of chance whose outcomes not even 
“a mind infinitely powerful and informed concerning the laws of 
nature” could have foreseen.” Physicalism equates chance to imper-
fect human knowledge of laws or initial conditions. By contrast, 
Mayr’s and Dobzhansky’s views of evolution require chance events to 
be unpredictable in principle. Physical laws allow us to predict future 
states of complex systems if we know enough about their present 
state. By contrast, evolution gives rise to forms of complex order that 
aren’t prefigured or implicit in earlier states of the universe.  

Randomness is synonymous with disorder. Its antithesis, in bio-
logical contexts, is organized complexity. Because physicalism’s 
account of physical reality doesn’t accommodate macroscopic ran-
domness, neither does it accommodate organized complexity and 
the processes that give rise to it (creative processes). A scientific 
worldview that accommodated consciousness and evolution, as con-
ceived by Mayr, Dobzhansky, and other contemporary evolutionary 
biologists, would also allow us to characterize randomness and orga-
nized complexity in an expanded language of physics.  

This book describes such a worldview and its underpinnings. 
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II
 Cosmological Assumptions

Natural science’s account of the world combines a small set of 
strongly confirmed physical laws with supplementary conditions 
that characterize more or less idealized models of physical systems 
to which the laws apply. Supplementary conditions are of two kinds: 
initial conditions characterize a system at a particular moment; 
boundary conditions describe the system’s interaction or absence of 
interaction with its environment. Each of our strongly confirmed 
laws applies to many possible systems and processes. For exam-
ple, astronomers apply Newton’s law of gravitation and his laws of 
motion to idealized models of astronomical systems ranging from 
the Earth-Moon system to clusters of galaxies. A handful of deep, 
abstract, and strongly confirmed physical laws govern an unlimited 
variety of models of system and processes characterized by freely 
chosen initial and boundary conditions. A theory’s testable predic-
tions serve to test both its laws and its initial conditions.  

The most fundamental supplementary conditions are cosmological 
assumptions – assumptions about both the physical universe and the 
laws. Physicalism assumes that our strongly confirmed physical laws 
are correct – or at least excellent approximations to still deeper and 
more highly unified laws. But physicalism isn’t a consequence of this 
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assumption alone. It depends also on the assumption that at each 
moment the physical universe is in a definite physical state:  

Physicalism’s underlying assumption.  A complete description of 
the physical universe assigns definite values to the physical quan-
tities that characterize macroscopic systems. Thus it fully describes 
and individuates every macroscopic physical system.  

Together with the fact that our strongly confirmed physical laws 
link a description of any given state of an undisturbed system to 
which the laws apply to descriptions of the system’s earlier and later 
states, this assumption, implies that the outcomes of nearly all phys-
ical processes – indeed all processes other than quantum measure-
ments – are predictable in principle. In other words, the assump-
tion allows us to pass from the (uncontested) proposition that our 
strongly confirmed physical laws are deterministic – that they link 
the present state of any undisturbed system to which the laws apply to 
any of the system’s past or future states – to the proposition that these 
laws plus initial and boundary conditions that conform to physical-
ism’s underlying assumption determine future states of undisturbed 
systems, including the universe itself. It allows us to pass from the 
determinism of physical laws to cosmic determinism. 

Of course, experiments and observations don’t provide the exact 
values of physical quantities that have continuous ranges of possi-
ble values, like position, mass, and temperature.  Random measure-
ment errors – a consequence of human ignorance – locate the values 
of such quantities within small subranges. Improved experiments 
and observations reduce these subranges. And since measurement 
errors can’t be eliminated entirely, the measured values of physical 
quantities can’t distinguish the Sun from other suns or the Galaxy 
from other galaxies. Which is why both Laplace’s and Poincaré’s defi-
nitions of determinism, quoted above, refer to an imaginary being 
that knows the precise values of all relevant physical quantities.  

The universe envisaged by Newton, Laplace, and Poincaré is made 
up of particles of various sizes and shapes, moving and interacting 
in ways governed by Newton’s laws of motion. In such a universe 
every particle (or its center of mass) has a definite position at each 
moment, defined by a set of three real numbers – the particle’s rect-
angular coordinates in a fixed but arbitrary coordinate system. But 
cosmologists now agree that the early universe wasn’t a sea of classi-
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cal particles. It was a sea of particles governed by quantum laws. One 
strongly confirmed prediction of these laws is that two particles of 
the same kind, such as a pair of electrons or neutrinos or photons, 
are indistinguishable in a way that has no classical counterpart. Two 
classical particles may have identical intrinsic properties, such as 
mass, electric charge, and spin. Yet they are nevertheless distinguish-
able: one is here, the other is there. By contrast, the laws of quantum 
physics don’t assign each member of an assembly of elementary par-
ticles of the same kind its own position or, more generally, its own 
single-particle state. The assembly has distinct quantum states, but 
the individual particles that compose it do not. As a result, states of 
the early universe could be fully described in ways that don’t privi-
lege any spatial position or direction. For example, a state of the early 
universe could be a state fully characterized by its temperature and 
the relative concentrations of elementary particles. 

If the initial conditions that characterize the early universe don’t 
privilege any point or direction in space, the same will be true of 
the conditions that characterize the universe at later times, because 
the laws that link earlier to later states don’t introduce a privileged 
position or direction. So a complete description of the physical uni-
verse can’t contain descriptions of this star or that galaxy. Instead it 
describes what I’ll call cosmological ensembles – infinite collections of 
near-replicas uniformly and isotropically distributed in space. Thus 
geophysics isn’t just about Earth; it is about an infinitely dispersed 
collection of planets whose observable properties are indistinguish-
able from those of Earth. 

I’ll refer to the assumption that a complete description of the uni-
verse doesn’t privilege any spatial position or direction as the strong 
cosmological principle. It is a strengthened version of an assumption 
that underlies most contemporary theories (and observations) of the 
astronomical universe:

The cosmological principle. There are coordinate systems 
relative to which a statistical description of the distribu-
tion of matter and motion in the universe at any given 
moment doesn’t privilege any spatial position or direc-
tion.
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The strong version of this assumption replaces the word statistical 
by the word complete:  

The strong cosmological principle. There are coordinate 
systems relative to which a complete description of the 
distribution of matter and motion in the universe at any 
given moment doesn’t privilege any spatial position or 
direction. 

The strong cosmological principle implies that, contrary to the 
assumption underlying physicalism, a complete description of the 
physical universe doesn’t describe individual physical systems such 
as the Sun and Earth. Instead it describes infinite collections of repli-
cas – cosmological ensembles. The systems that make up an ensemble 
are uniformly and isotropically distributed in space. The ensemble 
itself is fully characterized by a set of probabilities, or probability dis-
tribution, of its members’ physical attributes. The probability that an 
attribute has a given value or a value that lies in a given range of 
values has an objective interpretation: it is the fraction of replicas in 
a cosmological ensemble in which the attribute has that value or a 
value in the given range. 

The strong cosmological principle relies on quantum physics. It 
couldn’t hold in a universe made up of particles governed by the laws 
of classical physics. Consider the simplest model of such a universe: 
a random, statistically uniform distribution of identical particles. In 
such a universe the distance between any given particle and (say) its 
nearest neighbor, measured in a fixed unit of length, is a real number 
– a number represented by a point on the number line. This number 
characterizes the particle uniquely, because the probability that a 
second particle has the same distance from its nearest neighbor is 
zero. (As the mathematician Georg Cantor showed in 1891, there 
are infinitely more real numbers in any real-number interval than 
there are particles in the universe.) The picture of the natural world 
described in this book rests on a pair of related cosmological assump-
tions. The first is the strong cosmological principle. The second is the 
assumption of primordial randomness:

 

Primordial randomness. The probability distributions that 
characterize the earliest state of the astronomical universe 
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to which our present physical laws apply are maximally 
random.  

 

 What does randomness mean in this context? As discussed in 
more detail below, every probability distribution has two comple-
mentary attributes: randomness and information. 

Randomness is closely related to – but not identical with – entropy. 
Between 1850 and 1865 Rudolf Clausius discovered a previously 
unnoticed property of effectively isolated macroscopic systems that 
have relaxed into a macroscopically uniform, unchanging state called 
thermal equilibrium. He named this property entropy and proved 
that the second law of thermodynamics (the science of heat and its 
transformations) is equivalent to the statement that the entropy of a 
closed, or isolated, system never decreases.  

Although randomness is a property of any probability distribution, 
Ludwig Boltzmann introduced it, in 1872, in a particular physical 
context. He showed that it is the counterpart of Clausius’s entropy in 
the molecular theory of gases – a theory that seeks to found thermo-
dynamics on what was then the speculative assumption that a gas is a 
collection of particles whose motions and interactions are governed 
by Newton’s laws of motion. Boltzmann’s H theorem states that the 
randomness of an isolated sample of an ideal gas never decreases. 

In wider contexts randomness is a measure of disorder. Its com-
plementary property, information, is the amount by which a prob-
ability distribution’s information falls short of its largest possible 
value. It is a measure of order.  	  

The assumption of primordial randomness contradicts a proposi-
tion advanced by Rudolf Clausius in 1865: “The entropy of the world 
tends toward a maximum.” This statement has been widely accepted. 
As astrophysicist Arthur S. Eddington explained in an influential 
book, The Nature of the Physical World,

The practical measure of the random element which can increase 
in the universe but never decrease is called entropy. …Entropy 
continually increases. …The law that entropy always increases – 
the second law of thermodynamics – holds, I think, the supreme 
position among the laws of Nature. If someone points out to you that 
your pet theory of the universe is in disagreement with Maxwell’s 
equations – then so much for Maxwell’s equations. If it is found to 
be contradicted by observation – well, these experimentalists do 
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bungle things sometimes. But if your theory is found to be against 
the second law of thermodynamics I can give you no hope; there is 
nothing for it but to collapse in the deepest humiliation.1

 

More recently the mathematician Roger Penrose likewise endorsed 
Clausius’ formulation of the law, arguing that the universe began to 
expand from a highly organized state of exceedingly low entropy 
and has been becoming progressively more disorganized.2 But let’s 
take a closer look. The first of thermodynamics’ two main laws says 
that heat and mechanical energy, or work, are interconvertible at a 
fixed rate of exchange. The second law imposes restrictions on the 
conversion of heat into work. In one of its forms it states that no 
cyclic heat engine can convert heat drawn from a heat reservoir at a 
fixed temperature entirely into work. Clausius defined the entropy 
of a macroscopic system in terms of its changes when a macroscopic 
system accepts heat from or delivers heat to an external heat reser-
voir. He showed that the Second Law is equivalent to the statement 
that the entropy of a closed (or undisturbed or isolated) system never 
decreases. The two laws underpin predictions about all macroscopic 
processes involving heat flow, including the life-sustaining energy 
transactions between living organisms and their environments. 

Both have been strongly confirmed.  
At first sight it may seem easy to generalize the definition of 

entropy and the law of entropy change from macroscopic systems 
to the universe. Seemingly, we can represent the universe as a col-
lection of weakly interacting macroscopic systems for each of which 
entropy is a well-defined quantity that never decreases. To calculate 
the entropy of the universe we simply add up these contributions. 
The resulting quantity, the “entropy of the universe”, never decreases. 
But, as Enrico Fermi emphasized in his Lectures on Thermodynamics 
and as we’ll discuss in more detail below, this recipe works “only if 
the energy of the system is the sum of the energies of all the parts and 
if the work performed by the system during a transformation is equal 
to the sum of the amounts of work performed by all the parts.”3 The 
systems experimental physical scientists and biologists study usually 

1	 Eddington, Arthur S. The Nature of the Physical World, (Ann Arbor: University of 
Michigan Press 1958) p. 74

2	 Penrose, Roger. The Emperor’s New Mind. (Oxford: Oxford University Press 1989) 
Chapters 7, 8

3	 Fermi, Enrico. Thermodynamics, (New York: Prentice-Hall 1937) p. 53
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satisfy these conditions. But astronomical systems don’t satisfy the 
first condition because the gravitational potential energy of a system 
held together by the mutual gravitational attraction of its parts isn’t 
equal to the sum of the parts’ gravitational potential energies. For 
example, the gravitational potential energy of a uniform gas sphere 
of given mass density is proportional not to its mass but to the square 
of its mass.  

 That Clausius’s generalization of his law doesn’t apply to self-grav-
itating systems shows up in the fact that self-gravitating systems have 
negative heat capacity: the mean temperature of a self-gravitating 
gas cloud increases when heat, in the form of radiation, leaves the 
cloud. The law of entropy growth implies, however, that any system 
to which the law applies has positive heat capacity: its mean tem-
perature increases when heat flows into it. 

Since the universe is made up of self-gravitating systems, it doesn’t 
satisfy the additivity condition. So we can’t extend the law of entropy 
non-decrease to the universe as a whole.

 By contrast, any probability distribution that characterizes the 
state of the universe has a well-defined randomness. So it does make 
sense to postulate that the randomness of a statistical description of 
the universe tends toward a maximum. I think this assumption is 
implicit in the physicalist picture of the natural world, which con-
tains only the entities mentioned in physical theories, and I think 
that may be how Eddington and Penrose interpreted Clausius’s 
dictum about the entropy of the universe.  	

This book argues that a picture of the natural world based (in 
part) on the alternative assumption that the universe has expanded 
from a primordial state of zero information or maximum random-
ness is more inclusive than physicalism’s world picture. I’ll argue that 
it accommodates not only consciousness but also creative processes, 
including free will and biological evolution itself. 

 The case for the two cosmological assumptions rests in part on 
the claim that they characterize the physical universe as simply as 
possible. I argue below that these assumptions throw light on three 
longstanding problems in physics: the problem of time’s arrow – the 
apparent conflict between the irreversibility of macroscopic pro-
cesses involving heat flow and the fact that the underlying micro-
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scopic laws do not distinguish between the direction of the past and 
the direction of the future; the measurement problem of quantum 
mechanics – the apparent conflict between the indeterminacy of 
quantum measurement outcomes and the determinacy of the phys-
ical laws that govern the physical processes involved in measure-
ments; and the interpretation of probabilities in the statistical theo-
ries that link macrophysics and microphysics. 
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III
The Universe’s Large-Scale Structure 
Isaac Newton envisioned the universe as an infinitely extended 

assembly of particles, each of which is in a definite place at each 
moment. Replying to a question from the theologian Nicholas Bent-
ley, who was preparing a set of lectures intended to defend religion 
from atheism, Newton, a devout theist, wrote, in 1692: 

As to your first query, it seems to me that if the matter of our sun 
and planets and all the matter in the universe were evenly scat-
tered throughout all the heavens, and every particle had an innate 
gravity toward all the rest, and the whole space throughout which 
this matter was scattered was but finite, the matter on the outside 
of the space would, by its gravity, tend toward all the matter on 
the inside, and by consequence, fall down into the middle of the 
whole space and there compose one great spherical mass. But if the 
matter was evenly disposed throughout an infinite space, it could 
never convene into one mass; but some of it would convene into 
one mass and some into another, so as to make an infinite number 
of great masses, scattered at great distances from one to another 
throughout all that infinite space. And thus might the sun and 
fixed stars be formed, supposing the matter were of a lucid nature. 
But how the matter should divide itself into two sorts, and that 
part of it which is fit to compose a shining body should fall down 
into one mass and make a sun and the rest which is fit to compose 
an opaque body should coalesce, not into one great body, like the 
shining matter, but into many little ones; or if the sun at first were 
an opaque body like the planets, or the planets lucid bodies like the 
sun, how he alone would be changed into a shining body whilst 
all they continue opaque, or all they be changed into opaque ones 
whilst he remains unchanged, I do not think explicable by mere 
natural causes, but am forced to ascribe it to the counsel and con-
trivance of a voluntary Agent. 
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Newton doesn’t mention this cosmogonic hypothesis in his 
masterwork, The Mathematical Principles of Natural Philosophy (the 
Principia), which had appeared five years earlier. In Relativity, the 
Special and the General Theory, a popular exposition of relativity, 
Einstein points out that Newton’s model of the astronomical uni-
verse, in which matter is distributed more or less uniformly through-
out infinite Euclidean space, is inconsistent with his (Newton’s) law 
of gravitation: 

[Newton’s theory] requires that the universe should have a kind of 
center in which the density of stars is a maximum, and that as we 
proceed outwards from this center the group density of the stars 
should diminish, until finally, at great distances, it is succeeded by 
an infinite region of emptiness. The stellar universe ought to be a 
finite island in the infinite ocean of space.1

 

Einstein appends a proof of this claim:  
The proof rests on the fact that Newton’s law of gravitation can 

be expressed as a picture of “lines of gravitational force.” Every par-
ticle is the terminus of such lines. Their number is a fixed multiple 
of the particle’s mass. If mass were uniformly distributed in infinite 
Euclidean space, the number of lines of force passing through unit 
area of any given sphere – and hence the magnitude of the gravita-
tional force at any point on the sphere – would be proportional to 
the sphere’s radius and would therefore increase without limit as the 
radius increased, “which [Einstein writes] is impossible.”  

Einstein hoped that his own theory of spacetime structure and 
gravitation would apply to Newton’s simplified model of the physi-
cal universe – an infinitely extended, uniform distribution of mass/
energy. In 1917, two years after his account of the general theory of 
relativity appeared in print, he summarized his efforts to construct 
a description of the universe based on that model. He concluded 
that the equations that link the structure of spacetime to its con-
tents – the theory’s “field equations” – do not have a solution that 
describes a motionless, infinitely extended, uniform distribution of 
mass/energy.  

Einstein searched for a way to reconcile general relativity with 
his preferred model of the astronomical universe. General relativity 

1	 Einstein, A., Relativity, the Special and the General Theory, 15th edition, (Crown, 
New York, 1952) p. 106.
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incorporates Bernhard Riemann’s mathematical theory of curved 
n-dimensional continuums. That theory allows a three-dimensional 
space to be curved both globally and locally, like a model of Earth’s 
surface. If physical space had constant positive curvature it would 
be the three-dimensional “surface” of a four-dimensional ball. Like 
a sphere (the two-dimensional surface of a three-dimensional ball), 
such a space is unbounded – it has no edge – yet finite. Disappoint-
ingly, the field equations seemed to have no solution that describes 
a finite quantity of matter spread evenly throughout a finite space 
of constant positive curvature.  Convinced that a plausible model of 
the universe must be uniform and isotropic apart from local irregu-
larities, Einstein now took a step he later regretted. He modified the 
field equations of his 1915 theory in a way that would allow them to 
have such solutions. The 1915 theory links the structure of space-
time to the distribution of mass/energy in a way that involves only a 
single physical constant – the constant that appears in Newton’s law 
of gravitation. The field equations of the modified theory contain an 
additional term, whose coefficient is a second constant, the cosmo-
logical constant.  

Five years later, in 1922, the mathematician Alexander Friedmann 
wrote a paper claiming that Einstein’s original field equations do in 
fact have solutions that describe uniform, unbounded distributions 
of mass – solutions Einstein had overlooked. Einstein’s mistake, 
Friedmann claimed, had been to assume that such a distribution 
must be static. True, there was as yet no observational evidence that 
the distribution of matter was not static on large scales, though there 
soon would be. But Friedmann was a mathematician, not a physi-
cist or astronomer. So he asked himself: Do Einstein’s original field 
equations have solutions that describe a uniform, unbounded, but 
non-static distribution of mass? He found that they do. The mass 
distribution may be infinitely extended or, if space has positive cur-
vature, it may occupy a finite volume. If the medium is infinitely 
extended, a solution of the field equations describes a universe that 
expands forever from a state of nominally infinite density in the 
finite past. If the distribution of mass/energy and the space it occu-
pies are finite, a solution (of the same field equations) cycles end-
lessly through alternate periods of expansion and contraction. These 
solutions of Einstein’s 1915 field equations describe models of the 
physical universe that, so far as I know, no astronomer, philosopher, 
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or writer of science fiction had previously described.  At first Einstein 
rejected Friedmann’s reasoning, but on reflection he admitted he had 
been mistaken. He wholeheartedly embraced Friedmann’s solution 
of the cosmological problem and urged the editors of the journal 
to which Friedmann had submitted his paper to accept it (which, 
of course, they did). Einstein also decided that it had been a mis-
take to add an extra term to his original field equations. Ironically, 
most contemporary cosmologists believe the extra term is needed to 
account for astronomical evidence. 

	  	 “The Realm of the Nebulae” 
Using a telescope he himself had designed and built, Galileo 

discovered in 1610 that the Milky Way, a diffuse band of light that 
encloses a great circle on the dome of the sky, is made up of myriad 
“suns” too faint for the naked eye to resolve.  

In 1750 Thomas Wright, an instrument maker, suggested that just 
as the Earth’s orbit lies near the central plane of a flattened system of 
planets circling the Sun, the stars that make up the Milky Way belong 
to a flattened system of Sun-like objects whose members, including 
the Sun, circle a distant center.  

Immanuel Kant embraced Wright’s hypothesis and, in his 1755 
book Universal Natural History and Theory of the Heaven, greatly 
extended it. Kant suggested that the stars are suns, many of them 
surrounded by flattened systems of planets, which, like Jupiter and 
Saturn, are themselves surrounded by flattened systems of satellites; 
that not only the Milky Way but also the “nebulae” – elliptical cloud-
like objects scattered among the stars – are very distant stellar sys-
tems with the same structure as planetary systems – a massive cen-
tral object surrounded by a disc-like family of satellites, all revolving 
about the central object in the same sense; and that these stellar sys-
tems themselves belong to still larger unbounded system with the 
same structure.  

Kant argued that all these systems could have formed by a single 
process: a cloud of dispersed matter collapses under the combined 
action of Newton’s gravitational attraction and a hypothetical repul-
sive force. (Curiously, because he was an admirer and expounder 
of Newtonian physics, Kant didn’t recognize that Newton’s theory 
makes a repulsive force superfluous. As the mathematician Pierre 
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Simon Laplace (1749 – 1827) later showed, unless a cloud has zero 
angular momentum, or spin, it collapses into a flattened system in 
which the centrifugal, or radially outward, acceleration of a particle 
circling the central mass balances the radially inward gravitational 
acceleration of the particle produced by matter inside the particle’s 
orbit.)  Astronomers disagreed about whether the “nebulae” are rel-
atively nearby gas clouds or distant stellar systems.  In 1920 astron-
omers Harlow Shapley and Heber Curtis held a famous debate on 
this question. Curtis defended Kant’s view that the nebulae are stel-
lar systems comparable in all respects to our own system, the Milky 
Way. Shapley argued that they are gas clouds in the Milky Way.  

In the 1920s the astronomer Edwin Hubble and his colleagues, 
using what was then the world’s most powerful telescope, the recently 
completed 100-inch reflecting telescope at the Mount Wilson 
Observatory in southern California, made systematic observations 
of the nebulae that resolved the debate. Longexposure photographs 
resolved bright stars in the largest and brightest of the nebulae, the 
Andromeda Nebula, and analyses of photographic and spectro-
scopic data confirmed that it was a stellar system comparable in size 
and stellar composition with our own stellar system, thus confirm-
ing Kant’s hypothesis. The nebulae were indeed galaxies (a term sug-
gested by Shapley). In The Realm of the Nebulae Hubble wrote: 

 

Investigations of the observable region as a whole have led to two 
results of major importance. One is the homogeneity of the region 
– the uniformity of the large-scale distribution of the nebulae. The 
other is the velocity-distance relation. 2  

The first result depended on a discovery by the astronomer 
Henrietta Swan Leavitt (1868-1921). Some stars are close enough to 
have measurably different directions when the Earth is on opposite 
sides of the Sun. From measurements of this difference, the star’s 
parallax, one can deduce its distance, much as Thales deduced the 
distance of a ship at sea from measurements of its parallax and the 
measured distance between the two points of observation. Astron-
omers then deduce the star’s true brightness, or luminosity, from its 
apparent brightness and the fact that an object’s apparent brightness 
diminishes like the reciprocal of the square of its distance. Conversely, 
if an astronomer knew a celestial object’s luminosity she could infer 

2	 Hubble, Edwin, The Realm of the Nebulae, (Yale University Press, 1936).
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its distance from a measurement of its (apparent) brightness. Leavitt 
studied 1777 variable stars in the Magellanic Clouds, a pair of dwarf 
galaxies that orbit our own galaxy. Among these variable stars were 
Cepheids, pulsating stars whose brightness varies periodically. She 
found that the mean brightnesses of the Cepheids she studied were 
tightly correlated with their periods. Since stars in the Magellanic 
Clouds are all at nearly the same distance from Earth, Leavitt’s dis-
covery meant that the luminosities of the Cepheids she studied were 
tightly correlated with their periods.  

To calibrate Leavitt’s period-luminosity relation astronomers use 
Cepheids that are close enough to have measurable parallaxes. They 
then use the calibrated relation between distance and luminosity 
to infer the distances of more distant Cepheids from their (appar-
ent) brightnesses. In 1923, two years after Leavitt’s death, Hubble 
discovered the first of several Cepheids in the Andromeda Nebula, 
the brightest of the external galaxies. Its measured brightness and 
Leavitt’s period-luminosity relation played the decisive role in estab-
lishing that the Andromeda Nebula is a stellar system comparable in 
size and stellar composition with our own galaxy.  

Hubble’s assumption that Cepheid-like variables in external gal-
axies satisfy the same relation between true brightnesses and period 
of variation as Cepheids in our own galaxy exemplifies an assump-
tion he called “the principle of uniformity.” Using that assumption 
to interpret measurements of the brightnesses of galaxy images on 
photographs made with the 100-inch reflector, Hubble concluded: 

There is no evidence of a thinning-out, no trace of a physical 
boundary. There is not the slightest suggestion of a supersystem of 
nebulae isolated in a larger world. Thus, for the purposes of spec-
ulation, we may apply the principle of uniformity, and suppose 
that any other equal portion of the universe, selected at random, 
is much the same as the observable region. We may assume that 
the realm of the nebulae is the universe and that the observable 
universe is a fair sample. (emphasis added) 

 In Hubble’s hands the assumption that “any other equal portion of 
the universe, selected at random, is much the same as the observable 
region” proved to be an invaluable research tool. As he understood, 
“much the same” doesn’t mean “exactly the same.” Hubble’s succes-
sors have devoted much time, effort, and ingenuity to refining and 
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extending the principle of uniformity. For example, they have dis-
covered that there are different kinds of Cepheids, with slightly but 
significantly different period-luminosity relations, and that some of 
the differences depend on systematic differences in chemical com-
position between different stellar populations. Such differences, 
however, are consistent with a more general cosmological assump-
tion, mentioned earlier: the cosmological principle: 

Relative to a suitably defined system of spacetime 
coordinates, the average properties of galaxies and their 
distribution in space at any given moment are the same 
everywhere and in all directions. 

 

Or more briefly:  
 The astronomical universe is statistically homogeneous 
and isotropic. 

The second of Hubble’s “two results of major importance” was the 
velocity-distance relation. Whereas the first result (that the “exter-
nal nebulae”, or galaxies, are stellar systems comparable to our own) 
depended on brightness measurements, the second depended on 
measurements of the displacements of absorption lines in the spec-
tra of distant galaxies.  

	  	        Astronomical Spectroscopy 
By passing a beam of sunlight through a glass prism, Newton 

separated it into what he called “colored rays.” He found that dif-
ferently colored rays were deflected through different angles when 
they passed through the prism. Newton’s successors established that 
the colored rays are electromagnetic waves with definite frequencies, 
ranging from 430×1012 cycles per second at the red end of the spec-
trum to 770×1012 cycles per second at the violet end.  

The spectrum of sunlight is crossed by thousands of dark lines, 
each of which results from the absorption and subsequent isotropic 
reemission of light by a specific kind of atom or molecule. The lines 
produced by a single atom or molecule are very narrow, but those 
produced by a macroscopic gas sample – a portion of the solar atmo-
sphere, for example – are broadened in wavelength by the Doppler 
effect associated with the relative line-of-sight motions of the atoms 
or molecules in the sample. (The Doppler effect increases the fre-
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quency of monochromatic light emitted by an approaching source 
and decreases the frequency of light emitted by a receding source. 
The fractional change in frequency is proportional to the velocity of 
approach or recession.) 

The spectrum of a distant galaxy superimposes contributions 
from the galaxy’s stars (and other emitters of light). The breadth of an 
absorption line measures the dispersion of the relative line-of-sight 
velocities of the stars. The displacement of the line’s center from its 
rest-value measures the line-of-sight velocity of the galaxy’s center of 
mass (or, more accurately, “center of light”), relative to the telescope.   

Extending pioneering measurements of galaxy redshifts by Vesto 
Slipher, Hubble and his colleague Milton Humason found that the 
absorption lines in the spectra of very distant galaxies were always 
displaced toward the red end of the spectrum. Moreover, this dis-
placement, or red shift, had a systematic component, proportional 
to the galaxy’s distance: the points on a graph of measured redshift 
against estimated distance hugged a straight line. And because the 
amount of scatter didn’t increase systematically with estimated dis-
tance, Hubble could attribute deviations from the straight-line rela-
tion to gravitational accelerations arising from local non-uniformi-
ties in the spatial distribution of galaxies – nonuniformities whose 
average properties didn’t depend on distance from the observer. 

The cosmological principle implies that there’s nothing special 
about our galaxy’s place in the universe of galaxies. It also implies 
that the population of galaxies extends indefinitely in all direction. 
The proportionality between the average line-of-sight velocity of a 
galaxy and its distance from the observer then has a straightforward 
interpretation:

The unbounded distribution of galaxies is undergoing a 
uniform expansion – an expansion that looks the same 
from every vantage point.

 Hubble announced the velocity-distance relation in 1929. At 
the time, he didn’t know that his discovery confirmed Alexander 
Friedmann’s seven-year-old prediction, based on the general theory 
of relativity and the assumption that matter is more or less evenly 
distributed in an unbounded universe.   
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	  	                 The Early Universe 
In an expanding universe the mass density, averaged over scales 

greater than the largest scales on which the mass distribution is 
non-uniform, decreases steadily with time. So as we look back in 
time, we see the average mass density steadily increasing. Eventually 
it becomes equal to, and then surpasses, the average mass density of 
galaxy clusters. At these and earlier times galaxy clusters couldn’t yet 
have existed. As we look back still further in time, we reach epochs 
in which galaxies themselves couldn’t have existed. Still earlier, the 
average cosmic mass density exceeded stellar densities. Even earlier, 
the average mass density would have been so high that atoms and 
molecules couldn’t have existed. Finally, at the earliest times at which 
our current physical theories apply, the universe would have been a 
more or less uniform distribution of elementary particles and pho-
tons. This conclusion seems inescapable if we assume that the aver-
age properties of the astronomical universe are the same everywhere 
and that quantum theory and Einstein’s theory of gravitation apply 
in their respective domains.  

In 1964 physicists Arno Penzias and Robert Wilson at the Craw-
ford Hill location of Bell Telephone Laboratories discovered what 
came to be called the cosmic microwave background. With a radio 
telescope they had built to observe electromagnetic radiation emit-
ted by astronomical objects with wavelengths ranging from tenths of 
a centimeter to a few centimeters, they detected a diffuse radiation 
field whose intensity never varied and was the same in all directions. 
The spectrum of the radiation was indistinguishable from that of 
radiation in a cavity whose walls are maintained at a temperature 
around three degrees above absolute zero (on the Kelvin scale). Later 
more accurate measurements confirmed this conclusion and placed 
the temperature at 2.725 K.  

In the most widely accepted model for the origin of the cosmic 
microwave background, the temperature of the background radia-
tion has steadily decreased from very high values near the beginning 
of the cosmic expansion: 

At the time when [the temperature] T ≈1012, the universe con-
tained photons, muons, antimuons, electrons, positrons, neutrinos 
and antineutrinos. In addition, there was a very small nucleonic 
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contamination, with neutrons and protons in equal numbers. All 
of these particles were in thermal equilibrium.3 

In other models the primordial universe was cold, and the cosmic 
microwave background came into being later.4   

 	  	       Quantum Indistinguishability 
Elementary particles and photons come under the jurisdiction of 

quantum mechanics. A statistically uniform distribution of elemen-
tary particles and photons in thermal equilibrium differs profoundly 
from a statistically uniform and random distribution of particles 
governed by the laws of classical, or non-quantum, physics. A sta-
tistically uniform and random distribution of classical particles with 
given mass density and temperature has infinitely many microscop-
ically distinct realizations, or microstates. But a statistically uniform 
distribution of identical particles governed by quantum mechanics 
is fully characterized by the distribution’s mass density and its tem-
perature. It has a single microstate. This conclusion follows from 
a deep, consequential, and non-intuitive feature of the quantum 
world: quantum indistinguishability. I’ll argue shortly that quantum 
indistinguishability underpins this essay’s main argument – that ran-
domness is an objective and pervasive feature of the physical universe.  

 What is quantum indistinguishability? Two classical particles may 
have identical properties, such as mass, electric charge, and spin. Yet 
they are nevertheless distinguishable: one is here, the other is there. 
Now consider a statistically uniform assembly of identical classical 
particles. At any given moment the distance between a given particle 
(or its center of mass) and the particle’s nearest neighbor, expressed 
as a multiple of a fixed unit of distance, is a real number – a number 
represented by a point on the number line or by a non-terminat-
ing decimal. The probability that any other particle in the assem-
bly has the same distance from its nearest neighbor is zero. For the 
probability that the first n digits in the decimal expansions of two 
randomly selected real numbers coincide is 1/10n , which approaches 
zero as n increases without limit. So each member of an infinitely 
extended, statistically uniform and random distribution of identical 
particles is distinguishable in principle from all other members by 
the relative positions of its neighboring particles (or even of one of 

3	 Weinberg, S. 1972. Gravitation and Cosmology. New York: Wiley, p. 528.
4	 Aguirre, A. 1999. Astrophysical Journal, 521, pp. 17-29. 
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them). Such an assembly is in a definite microstate at each moment; 
and the number of possible microstates is infinite in the same way 
that the number of real numbers in an interval of the number line is 
infinite.  

Like classical particles of the same kind, quantum particles of the 
same kind have identical intrinsic properties – mass, electric charge, 
spin, and magnetic moment. But they are also indistinguishable in 
a more radical way that depends on a feature of the mathematical 
description of quantum states that has no counterpart in experience 
or in pre-quantum physics. This new kind of indistinguishability – 
quantum indistinguishability – strongly influences observable, mac-
roscopic properties of matter and light. For example, it is behind the 
fact that atoms in the same column of the periodic table of chemical 
elements (such as hydrogen, lithium, sodium, and potassium) have 
similar chemical properties (for example, the named elements are all 
monovalent). It is also behind the fact that the distribution of photon 
energies in a box whose walls are maintained at a fixed temperature 
differs from the distribution of the kinetic energies of gas particles 
in the same box. 

To understand quantum indistinguishability you need to know 
two things about the grammar of state vectors, the mathematical 
objects that represent quantum states. (1) Two state vectors that 
differ only in sign represent the same quantum state. (2) Exchanging 
the labels of two particles in a state vector that represents the state of 
an assembly of identical particles must either leave the state vector 
unaltered or change its sign (that is, multiply it by –1). These are the 
only possibilities the rules of quantum mechanics allow. They define 
two classes of elementary particles, called fermions (after Enrico 
Fermi) and bosons (after Satyendra Nath Bose). Electrons, protons, 
and neutrinos are fermions – the joint state vector of an assembly of 
fermions changes sign when you exchange the labels of two particles 
in the assembly. Helium atoms in their states of lowest energy and 
photons are bosons. The joint state vector of an assembly of bosons 
doesn’t change when you exchange the labels of two particles in the 
assembly. Which of the two classes an elementary particle belongs 
to depends on its spin. Particles of spin 1/2, 3/2, ...  in units of h/2π 
are fermions, particles of spin 0, 1, 2, ... in the same unit are bosons.  
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An assembly of fermions has different observable properties from 
an assembly of bosons, and both collections have different observ-
able properties from an assembly of identical classical particles. 
Some examples: 

— From plausible but then-controversial statistical 
assumptions James Clerk Maxwell, in 1860, deduced the 
distribution of molecular kinetic energies in a gas sam-
ple in thermal equilibrium. He found that each molec-
ular-velocity component has a “normal distribution,” 
represented by the bell-shaped curve that represents the 
distribution of random measurement errors, and that the 
width of the distribution is proportional to the tempera-
ture of the gas sample. Much later, experiments con-
firmed his prediction.  
— In 1900 Max Planck devised a formula that closely 
fitted recently improved measurements of the spectrum 
(frequency distribution) of thermal radiation (light in a 
box whose walls are maintained at a fixed temperature). 
In view of Einstein’s photon hypothesis (now a firmly 
entrenched feature of quantum physics) we can think of 
Planck’s law as describing the equilibrium distribution of 
photon energies. It differs markedly from Maxwell’s law 
for the distribution of the energies of classical particles in 
thermal equilibrium.  
— Two fermions can’t occupy the same single-particle 
state.  Wolfgang Pauli discovered an instance of this rule 
in 1925. To explain the periodic structure of the periodic 
table of chemical elements he made two proposals. He 
suggested that four, rather than three, quantum numbers 
characterize the state of an electron in an atom. (The first 
three quantum numbers correspond to the fact that we 
need three numbers to specify a classical particle’s orbit. 
The fourth quantum number, which had two possible 
values, turned out to characterize the component of the 
electron’s spin along a fixed direction.) Pauli’s second pro-
posal was the rule, known as Pauli’s exclusion principle: 
two electrons can’t occupy the same quantum state.  
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— Because several bosons can occupy the same 
single-particle states, the members of a collection of 
bosons in thermal equilibrium (a dilute gas of helium 
atoms, for example) crowd into the single-particle state of 
lowest energy at temperatures close to absolute zero.

 

 	              The Strong Cosmological Principle 
The cosmological principle is an assumption about the large-scale 

structure of the physical universe. It says that there are spacetime 
coordinate systems in which a description of the universe phrased 
entirely in terms of probability distributions and average values 
doesn’t discriminate between positions in space or between direc-
tions in space. For example, at each moment the mass density, aver-
aged over a sufficiently large region, has the same value everywhere. 
So too does the average value of the squared difference between the 
mass density at a point and its (position-independent) average value. 

All coordinate systems in which a statistical description of the 
universe doesn’t discriminate between spatial positions or directions 
have a common time coordinate. In this respect the cosmological 
principle may seem to reinstate Newton’s universal time. In Newton’s 
physics time, and with it the notion of rest, are “absolute” because his 
laws of motion hold in, and only in, particular spacetime coordinate 
systems all of which are at rest relative to one another. Einstein’s spe-
cial theory of relativity (1905) abolished absolute time and absolute 
rest. It demanded that physical laws in no way discriminate between 
a spacetime coordinate system in which Newton’s laws hold and 
any other coordinate system whose motion is unvarying in speed 
and direction relative to the first system. Coordinate systems in 
which Newton’s laws hold are called inertial systems. The principle 
of special relativity requires physical laws to take the same form in 
all inertial coordinate systems if they are written in a mathematical 
language devised by Einstein’s former teacher, Hermann Minkow-
ski. Minkowski spacetime replaces the Euclidean space plus absolute 
time of Newton’s theory. Newtonian physics becomes a limiting case 
of special-relativity physics, approximately valid for particle speeds 
much smaller than the speed of light in empty space. Beginning in 



34      Why We are Free

1928 with P.A.M. Dirac’s relativistic generalization of Schrödinger’s 
equation, discussed in more detail below, special relativity became a 
pillar of quantum theory.  

 The general principle of relativity revokes the privileged status 
of inertial spacetime coordinate systems. It requires physical laws 
to take the same form in all coordinate systems that assign the 
same squared spacetime interval (the squared time interval minus 
the squared distance interval) to every pair of neighboring point 
events. As Einstein explains in his popular exposition Relativity, the 
Special and the General Theory,5in his more technical lectures The 
Meaning of Relativity,6 and in his comprehensive journal article The 
Foundations of the General Theory of Relativity,7a consistent work-
ing-out of the general principle of relativity leads to a unique theory 
of gravitation and spacetime structure. (The path wasn’t easy, though, 
even for Einstein. One wrong turn, known as the “hole problem” put 
him off course for two years.8) 

The existence of a preferred family of spacetime coordinate sys-
tems for the universe as a whole doesn’t clash with the general prin-
ciple of relativity. The latter constrains the laws governing spacetime 
structure and gravitation; the cosmological principle characterizes a 
particular system to which the laws apply: the astronomical universe. 

The assumption that there exists a system of spacetime coordinates 
relative to which no statistical property of the physical universe 
defines a preferred position or direction in space is often viewed as 
defining an idealized model of the universe, like the assumptions 
that define idealized models of stars and galaxies. Unlike those 
assumptions, however, it could hold exactly. If the early universe 
is statistically uniform and isotropic, quantum indistinguishability 
implies that its complete description – and hence a complete descrip-
tion of all subsequent states – doesn’t privilege any spatial position 

5	 Einstein, Albert, Relativity, the Special and the General Theory, 15th edition, , 
(Crown Publishers, New York, 1952).

6	 Einstein, Albert, The Meaning of Relativity, 5th edition, (Princeton, NJ, Princeton 
University Press, 1953).

7	 Einstein, Albert, The Foundations of the General Theory of Relativity, in The Prin-
ciple of Relativity, (Methuen and Company 1923, reprinted by Dover Publications 1952). 

8	 Norton, John D., “The Hole Argument”, The Stanford Encyclopedia of Philosophy 
(Fall 2015 Edition), Edward N. Zalta (ed.), URL = <https://plato.stanford.edu/archives/
fall2015/entries/spacetime-holearg/>
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or direction. I will refer to the hypothesis that it does hold exactly as 
the strong cosmological principle. This book argues that it is the miss-
ing element in a picture of the natural world that incorporates our 
strongly confirmed physical laws. It draws support from (at least) 
three arguments. 

First, precise and extensive observations of the cosmic microwave 
background and of the spatial distribution and line-of-sight veloc-
ities of galaxies have so far produced no compelling evidence of 
deviations from statistical homogeneity and isotropy, now or in the 
past.  Astronomical observations provide little support if any for the 
view that the cosmological principle is merely an approximation or 
an idealization, like the initial conditions that define models of stars 
and galaxies. 

Second, the initial conditions that define the universe don’t have 
the same function as those that define models of astronomical sys-
tems.  A theory of stellar structure must apply to a range of stellar 
models because stars have a wide range of masses, chemical com-
positions, spins, and ages.  But there’s only one universe. The strong 
cosmological principle defines its simplest models. In that respect it 
is more like a law than an initial condition.   

 Finally, the strong cosmological principle accounts for what is 
sometimes called “Mach’s principle”: local inertial reference frames 
– frames in which Newton’s and Maxwell’s laws as well as their spe-
cial-relativistic generalizations hold – are unaccelerated relative to 
a frame defined by the cosmic microwave background and the dis-
tribution and motions of distant galaxies.  Einstein’s theory of grav-
itation predicts this coincidence provided the cosmological principle 
holds exactly. Astronomical evidence supports this prediction.  It 
indicates that local inertial reference frames are indeed unaccelerated 
relative to a coordinate system in which the cosmic microwave back-
ground is equally bright, on average, in all directions and the spatial 
distribution of galaxies is statistically homogeneous and isotropic.  
If the distribution of energy and momentum on cosmological scales 
were not statistically homogeneous and isotropic, there would be no 
preferred cosmological frame and hence no obvious explanation for 
the observed relation between local inertial frames and the frame 
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defined by the cosmic microwave background and the spatial distri-
bution and line-of-sight velocities of galaxies.  If the cosmic medium 
was in thermal equilibrium at very early times, it lacked structure on 
all macroscopic scales. Its state was maximally random. (As discussed 
below, thermal equilibrium is a state of maximum randomness.) But 
as the universe expanded, structure emerged. I have discussed one 
possible scenario for this process elsewhere.9 The cosmic distribution 
of mass/energy became progressively less random, more orderly.  

9	 Layzer, David, Cosmogenesis: The Growth of Order in the Universe, (Oxford  
University Press, 1990).   
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IV
 Entropy and Its Law

                                      

 Heat as a Form of Energy 
From the middle of the eighteenth century to the middle of the 

nineteenth century scientists who invented and used devices for 
measuring the heat released or absorbed in chemical reactions and 
in the compression and expansion of gas samples disagreed about the 
nature of what they were measuring. Some held that heat is a con-
served substance, “caloric,” analogous to mass. When a body gains 
caloric its temperature rises; when it gives up caloric its temperature 
falls. And in a heat engine, such as James Watt’s steam engine, caloric 
does work on a movable piston – for example, by raising a weight – 
when the engine’s working substance expands and heat “falls” from a 
higher to a lower temperature.   	 Newton, late in the seven-
teenth century, had championed a different view. It rested on what 
many scientists, then and until the opening years of the twentieth 
century, regarded as a speculative hypothesis: that the universe is 
made up of invisible, indivisible particles moving and interacting in 
otherwise empty space. Put forward by Leucippus in the fifth century 
BCE and elaborated by his pupil Democritus, the atomic hypothesis 
was made the basis of a comprehensive naturalistic philosophy by 
Epicurus (341 – 270 BCE). In the first century BCE it became the 
subject of a long poem, On the Nature of Things, by the Roman poet 
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and philosopher Lucretius. Stephen Greenblatt, in The Swerve,1 has 
argued that this widely read poem played an important role in the 
emergence of the modern world.  

 The atomic hypothesis suggested that a flow of heat into an other-
wise undisturbed system, measured in an appropriate unit, produces 
an equal change in the sum of the kinetic energy associated with 
the motions of the system’s hypothetical atoms and the potential 
energy associated with the forces the atoms exert on one another. 
Newton’s laws of motion imply that the sum of these two kinds of 
energy is constant in time; an increase of one of them is accompa-
nied by an equal decrease in the other. Inflows of heat increase an 
otherwise undisturbed system’s internal energy; outflows diminish 
it. In the early 1840s Robert von Mayer (in Germany), James Joule 
(in England), and Ludwig Colding (in Denmark) independently 
advocated this hypothesis. In 1843 James Joule described experi-
ments that lent it strong support. Using a calorimeter, he measured 
the quantity of heat generated by the viscous (internal frictional) 
dissipation of internal motions created by a paddle wheel immersed 
in water and driven by a descending weight. He found that the heat 
generated in this process, measured by a rise in temperature of the 
water, was consistently and accurately proportional to the quantity 
of mechanical energy that disappeared, measured by the decrease in 
the height of a weight whose descent drove the paddle wheel. And 
the constant of proportionality between the heat generated and the 
mechanical energy (in this case, gravitational potential energy) that 
disappeared always had the same value up to experimental error. In 
short, Joule concluded, heat has a fixed “mechanical equivalent.” It is 
a kind of energy. 	  

 This proposition became the first of the two most basic laws of 
the new science of thermodynamics. It allowed scientists to extend 
the definition of energy from its original domain, mechanics, to 
include the domain of thermodynamics. They could now attribute 
a new property – internal energy –to an undisturbed macroscopic 
system that has relaxed into a macroscopically unchanging equilib-
rium state, and extend the scope of Newtonian mechanics’ principle 
of conservation of energy, which up until then had applied only to 
systems whose internal motions don’t generate heat, to any undis-
turbed system.  

1	 Greenblatt, Stephen , The Swerve, (New York: Norton and Company 2009).
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The Second Law 
The second of thermodynamics’ two mains laws imposes a lim-

itation on devices that, like the steam engine and the internal com-
bustion engine, convert heat into mechanical energy. Its first version 
was a theorem stated and proved by the engineer and physicist Sadi 
Carnot (1796 - 1832) in an essay entitled “Reflections on the Motive 
Power of Heat” published in 1824. The essay opens:

Everyone knows that heat can produce motion. That 
it possesses vast motive-power no one can doubt, in 
these days when the steam engine is everywhere so well 
known. 

 

But despite its ubiquity in nature and its importance in industry,
 

[t]he phenomenon of the production of motion by heat 
has not been considered from a sufficiently general point 
of view. We have considered it only in machines the na-
ture and mode of action of which have not allowed us to 
take in the whole extent of application of which it is sus-
ceptible. In such machines the phenomenon is, in a way, 
incomplete. It becomes difficult to recognize its princi-
ples and study its laws. In order to consider in the most 
general way the principle of the production of motion by 
heat, it must be considered independently of any mech-
anism or any particular agent. It is necessary to establish 
principles applicable not only to steam engines but to all 
imaginable heat engines, whatever the working substance 
and whatever the method by which it is operated.  

 

To understand “the production of motion by heat,” Carnot argues, 
it isn’t enough to study heat engines experimentally. The principle 
underlying heat engines isn’t an empirical generalization; it’s an 
exact mathematical law. Carnot’s essay lays bare this principle. It is 
known as Carnot’s theorem.  

 A quarter of a century later, William Thomson (who became Lord 
Kelvin) and Rudolf Clausius independently deduced the second of 
thermodynamics’ two main laws from a slightly but significantly 
emended version of Carnot’s theorem. Thomson based his ther-
mometer-independent definition of temperature (thermodynamic 
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temperature) on Carnot’s theorem, and Clausius based his definition 
of entropy and his derivation of the law of entropy change on Car-
not’s theorem and Thomson’s definition.

In the following paragraphs I argue that the argument that led 
Clausius from Carnot’s theorem to the conclusion that the entropy of 
the universe tends toward a maximum over-generalizes and over-ex-
tends a series of correct inferences. I conclude that his law of entropy 
change applies in an important but limited domain but doesn’t apply 
to systems held together by the mutual gravitational attraction of 
their particles (self-gravitating systems). In particular, it doesn’t 
apply to stars, galaxies, and the physical universe.

Neither Clausius’s deduction of his law nor the argument that it 
doesn’t apply to the physical universe involves mathematics beyond 
elementary algebra. Since that argument plays a pivotal role in the 
following discussion, I’ll try to describe both Clausius’s route to 
entropy and its law and my critique of the law’s most general form 
in enough detail to allow readers with a modest mathematical back-
ground to make an informed judgment about the critique’s validity.  

 

Carnot’s Theorem 
 Carnot’s derivation of the theorem from which William Thomson 

and Rudolf Clausius deduced the second law of thermodynamics 
rests on two solid empirical notions – temperature and heat-gain (or 
heat-loss), both of which are unambiguously measurable (though in 
arbitrary units).2 It also rests on two mistaken theoretical assump-
tions – that heat is a conserved substance and that it does work by 
“falling” from a higher to a lower temperature, just as water in a 
watermill does work when it falls from a higher to a lower elevation.  

 Carnot imagined an ideal cyclic heat engine, an engine that con-
verts heat into work and whose working substance – the analogue 
of the steam in a steam engine – returns to its initial state at the end 
of each cycle. The engine’s working substance is a gas enclosed in 

2	 Carnot’s contemporaries measured a body’s temperature by the volume of a 
sample of air or mercury in thermal contact with the body at a given pressure. Experi-
menters discovered that different “thermometric substances” yielded different but inter-
convertible  temperature measures. Heat gain. When heat flows into (or out of) a body, its 
temperature rises (or falls) – or else it undergoes a change of state, as when ice melts or 
water turns into steam. Experimenters discovered that different “calorimetric substances” 
yielded different but interconvertible measures of heat gain.
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a cylindrical cavity bounded at one end by a movable piston. The 
working substance is intermittently in contact with two heat reser-
voirs: a source of heat, analogous to the boiler in a steam engine, 
and a sink of heat, analogous to the condenser in a heat engine. As 
the piston moves back and forth, the gas in the cylinder alternately 
expands and contracts. When it expands it does work on the out-
side world – for example, by raising a weight. When it contracts, the 
descending weight does work on the gas. 

	 Figure 1	 The Carnot Cycle	  

A point whose vertical coordinate is the working sub-
stance’s temperature and whose horizontal coordinate is 
its volume represents the state of the working substance. 
At the beginning of a cycle the working substance is in 
the state represented by point A. Its temperature is equal 
to that of the hot reservoir (H), with which it remains in 
contact as its volume increases to the value represented 
by the horizontal coordinate of point B. As the working 
substance expands from state A to state B it does work 
on the piston and draws heat from the hot reservoir. 
Between states B and C the working substance neither 
gains nor loses heat but continues to expand and do work 
on the piston. Between states C and D it is in contact 
with and delivers heat to the cold reservoir (C) while the 
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piston does work on it. In the final phase of the cycle, 
DA, the working substance neither gains nor loses heat as 
the piston does work on it. State D is chosen so that the 
fourth phase returns the working substance to its initial 
state. In the reverse cycle, ADCBA, the working sub-
stance expands, doing work on the piston while thermally 
isolated (AD), continues to expand while accepting heat 
from the cold reservoir (DC), contracts, having work 
done on it by the piston while thermally isolated (CB), 
and contracts further to its initial state while delivering 
heat to the hot reservoir (BA). 

Carnot made his imaginary engine as efficient as possible by pos-
tulating not only that no mechanical energy is wasted by friction 
between the engine’s moving parts but also that when heat flows 
between a heat reservoir and the working substance the two are at 
exactly the same temperature, thus ensuring that all of the heat with-
drawn from the hot reservoir is transferred to the cold reservoir. He 
also assumed that when the working substance is thermally isolated 
it expands so slowly that at each moment it is in an equilibrium state 
characterized by definite values of its temperature and volume.  

These idealizations not only make Carnot’s ideal engine as effi-
cient as possible. Crucially, they also make it reversible. Operating 
in its reverse mode, a Carnot engine acts as a refrigerator: it absorbs 
mechanical energy from the alternately falling and rising weight, 
extracts heat from the cold reservoir, and delivers heat to the hot 
reservoir. 

 Because he accepted the caloric hypothesis Carnot assumed that 
in the course of a cycle his ideal engine transfers all the heat it with-
draws from the hot reservoir to the cold reservoir. Operating in its 
reverse mode, it transfers all the heat it withdraws from the cold res-
ervoir to the hot reservoir. 

Carnot defined the engine’s efficiency as its mechanical-energy 
output during a cycle divided by the quantity of caloric transferred 
from the hot reservoir to the working substance (and eventually to 
the cold reservoir). He then asked and answered the question on 
which his fame rests:  Can two ideal heat engines operating between 
the same pair of heat reservoirs have different values of this ratio?  
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Suppose this were possible. Let the more efficient engine trans-
fer a quantity Q of caloric from the hot to the cold reservoir while 
doing a quantity of work W on its surroundings. We can then use the 
less efficient engine, operating in its reverse, or refrigerator, mode, to 
transfer the same amount of caloric Q from the cold reservoir back to 
the hot reservoir while doing a smaller quantity of work, W´. At the 
end of a cycle the composite engine is back in its initial state. Neither 
reservoir has gained or lost heat. But a quantity W – W´ of mechan-
ical energy has appeared; the weight that rises during the expansion 
phase and falls during the compression phase is higher at the end 
of a cycle of the composite engine than it was at the beginning of 
the cycle. So if we could find two Carnot engines with different effi-
ciencies we could build a perpetual-motion machine, a machine that 
creates mechanical energy out of nothing.  

Carnot assumed that a perpetual-motion machine can’t exist and 
concluded that all ideal heat engines operating between two heat res-
ervoirs have the same efficiency. This conclusion is called Carnot’s 
theorem.  

Of course, the idealizations that define an ideal Carnot engine 
can’t be realized in practice. Friction can’t be entirely eliminated, heat 
doesn’t flow between bodies at precisely the same temperature, and 
while a thermally insulated gas sample is expanding or contracting 
it is never in a state of equilibrium; it doesn’t literally pass through 
a sequence of equilibrium states. Yet, as Carnot argued, actual heat 
engines can be made to resemble an ideal Carnot engine so closely 
that they would indeed create mechanical energy out of nothing if 
that were possible. So while Carnot’s theorem rests on assumptions 
that can’t be realized in practice, it is experimentally testable. And 
those assumptions allowed Carnot to discover the principle behind 
the motive power of heat – that all Carnot cycles operating between 
two heat reservoirs at given temperatures have the same efficiency. 

From Carnot’s Theorem to the Second Law 
Carnot’s theorem rests on the false assumption that heat is a con-

served substance, like mass or energy in Newtonian physics. Having 
been convinced by Joule’s experiments that heat and mechani-
cal energy are interconvertible at a fixed rate of exchange, William 
Thomson and Rudolf Clausius independently set out to discover 
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what became of Carnot’s argument when they replaced the false 
caloric assumption with the newly established interpretation of heat 
as a form of energy and the assumption that energy, in its new inclu-
sive form, is conserved.  

Carnot’s conclusion that ideal Carnot engines working between 
a given pair of heat reservoirs all have the same efficiency survived 
this replacement. So did the idea behind Carnot’s proof – hooking 
up ideal engines with different efficiencies, one operating in its direct 
mode, the other in its reverse mode. But Thomson and Clausius 
could not now deduce from Carnot’s argument that if two Carnot 
engines had different efficiencies they could be coupled to make an 
engine that created mechanical energy, for the First Law implies that 
if in the course of a cycle the gas in the cylinder withdraws a quantity 
of heat Q2 from the hot reservoir and delivers a quantity of mechani-
cal energy, or work, W to its environment, it must transfer a quantity 
of heat Q1 = Q2 – W to the cold reservoir; in the course of a cycle 
the engine does an amount of work on its environment equal to the 
difference between the heat it extracts from the hot reservoir and the 
heat it delivers to the cold reservoir: 

 	  	 W = Q2 – Q1  

We can continue to define an engine’s efficiency as the ratio W/ Q2, 
but that ratio now becomes 

 	  	 W/ Q2 = 1 –  Q1/ Q2 , 

Suppose now that two ideal Carnot engines working between a 
given pair of heat reservoirs had different efficiencies. As in Carnot’s 
argument, we could then build a composite engine in which the first, 
more efficient, engine operates in its direct mode and the second, 
less efficient, engine in its reverse mode. The second engine accepts 
a quantity of heat Q1* from the cold reservoir, delivers a quantity of 
heat Q2* to the hot reservoir, and absorbs a quantity of mechanical 
energy Q2* – Q1*.  

Suppose we make Q1* equal to Q1. Then, because the second 
engine is less efficient than the first engine, the preceding displayed 
formula shows that Q2* must be less than Q2, so that Q2 – Q2* > 0; 
and the difference Q2* – Q1*, the work absorbed by the second, less 
efficient engine during a cycle, is less than W = Q2 –  Q1 , the work 
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done by the first, more efficient engine. At the end of a cycle the 
composite engine has withdrawn a positive quantity of heat Q2 – Q2* 
from the hot reservoir and done an equal quantity of work on its 
surroundings. It has converted heat drawn from a single reservoir into 
mechanical energy, leaving the world otherwise unchanged. Alterna-
tively, we can arrange matters so that the second engine absorbs all 
the mechanical energy the first engine delivers. Then the composite 
engine extracts heat from the cold reservoir and delivers an equal 
quantity of heat to the hot reservoir. 

Thomson and Clausius independently surmised that both of these 
italicized statements describe impossible engines. This surmise 
quickly earned the status of a physical law, the second main law of 
the new science of thermodynamics. It has two equivalent forms: 

—No cyclic engine can withdraw heat from a single source 
and convert it into mechanical energy, leaving the world 
otherwise unchanged. In other words, a cyclic engine 
can’t be perfectly efficient. It can’t transform all the heat it 
withdraws from a heat source into mechanical energy; it 
needs a heat sink, to which it conveys some of the energy 
extracted from the hot reservoir.  
—No cyclic engine can transfer heat from a cooler reser-
voir to a warmer reservoir, leaving the world otherwise 
unchanged. In other words, a cyclic engine that transfers 
heat from a cooler reservoir to a warmer reservoir needs 
to be supplied with mechanical energy. Even if it is as 
efficient as possible, it must extract less heat from the 
cold reservoir than it deliver to the hot reservoir, the dif-
ference being equal to the mechanical energy that disap-
pears in the course of a cycle.   

 

Thomson and Clausius drew two remarkable inferences from the 
Second Law. Thomson used it to define temperature in a way that 
made it independent of thermometers. Clausius used the Second 
Law and Thomson’s definition of temperature to define entropy and 
formulate the law of entropy change.  
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Thermodynamic Temperature  
Before Thomson used Carnot’s theorem to redefine temperature, 

scientists had defined a body’s temperature as the reading of a 
thermometer that has been in thermal contact with the body long 
enough for both to reach equilibrium. They had formulated empir-
ical laws that relate the volume and pressure of a gas sample to the 
temperature that would be measured by an ideal-gas thermometer 
– a thermometer that uses an ideal gas as the substance that expands 
or contracts when it absorbs or releases heat.  

Since the work W done by a Carnot engine during a cycle is the 
difference Q2 – Q1 between the quantities of heat extracted from the 
hot reservoir and delivered to the cold reservoir, Carnot’s theorem 
tells us that the engine’s efficiency W/Q2 depends only on the ratio 
Q2/ Q1. This ratio takes an especially simple form if the working sub-
stance of a Carnot engine is an ideal gas. (The internal energy of 
an ideal gas sample depends only on the sample’s temperature, and 
the sample’s pressure, volume, and temperature are related by the 
“equation of state” PV = nRT, where R is a constant that has the same 
value for ideal gas samples of any chemical composition, and n is the 
number of gram-molecules (moles) in the sample.) From this defini-
tion of an ideal gas one can deduce that 

 	  	 Q1/Q2 = T1/T2 . 

But Carnot’s theorem shows that the efficiency of an ideal Carnot 
engine – and hence the ratio Q1/Q2 – doesn’t depend on any property 
of the working substance. Thomson accordingly proposed, in 1848, 
that physicists define the ratio T1/T2 between the temperatures of two 
bodies as the ratio Q1/Q2 between the quantities of heat extracted 
from and delivered to the bodies when they act as (or are in thermal 
equilibrium with) the heat reservoirs in an ideal Carnot engine. The 
preceding displayed equation then shows that temperature ratios 
defined in this way coincide with temperature ratios measured by an 
ideal-gas thermometer. As Thomson explained, 

In the present state of physical science, therefore, a question of 
extreme interest arises: Is there any principle on which an absolute 
thermometric scale can be founded? It appears to me that Carnot’s 
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theory of the motive power of heat enables us to give an affirmative 
answer. 
The relation between motive power and heat, as established by 
Carnot, is such that quantities of heat, and intervals of tempera-
ture, are involved as the sole elements in the expression for the 
amount of mechanical effect to be obtained through the agency of 
heat; and since we have, independently, a definite system for the 
measurement of quantities of heat, we are thus furnished with a 
measure for intervals according to which absolute differences of 
temperature may be estimated.3 

While the first law of thermodynamics makes heat independent of 
calorimeters, Thomson’s definition, based on Carnot’s theorem and 
the first law of thermodynamics, makes temperature ratios indepen-
dent of thermometers.  

Thomson’s definition fixes the zero-point of the temperature scale 
but leaves the unit of temperature undefined. Thomson suggested 
that the unit of temperature be chosen to make the freezing and boil-
ing temperatures of water at standard pressure be separated by one 
hundred units. The resulting unit of temperature, denoted by ºK or 
just K, is called the Kelvin in his honor.  

Entropy and the Law of Entropy Change 
Thomson’s definition of temperature paved the way for Rudolf 

Clausius’s discovery, in 1854, of a previously unnoticed property of 
isolated macroscopic systems in thermal equilibrium. In 1865 he 
named this property entropy. Clausius deduced from the second 
law of thermodynamics that the entropy of an undisturbed system, 
unlike its energy and its mass, may change with time, and he proved 
that it never decreases. Later he extrapolated this law to the largest 
macroscopic system, the physical universe:  

The entropy of the world tends toward a maximum. 
After discussing Clausius’s definition of entropy and his derivation 

of its law from the second law of thermodynamics, I’ll argue that this 
extrapolation is invalid. 

We can rewrite the equation that Thomson used to define 
temperature, 

3	 Thomson, William (Lord Kelvin), Philosophical Magazine October 1848.
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		  Q1/Q2 = T1/T2,

as  
		  Q2/T2 – Q1/T1 = 0 . 

This equation is suggestive. Suppose that the working substance in 
Carnot’s imaginary engine absorbs a small quantity of heat, denoted 
by dQ, as it transitions between two neighboring equilibrium states. 
While the working substance is in contact with the hot reservoir at 
temperature T2, these small heat transfers add up to Q2; while it is 
in contact with the cold reservoir at temperature T1, they add up to 
–Q1. The preceding displayed equation tells us that in the course of a 
complete cycle the changes dQ/T add up to zero.  

This conclusion suggests the question: Do the changes dQ/T 
add up to zero around any cyclic sequence of reversible transitions 
between equilibrium states of any macroscopic system? If the answer 
is yes, we can further infer that the sum of the small quantities dQ/T 
along any reversible path connecting any two equilibrium states, A 
and B, of the system, is the difference SB – SA between the values of a 
property S of the system in these states.  

To see why, suppose that S does indeed return to its initial value 
when the state of the system it refers to undergoes any reversible 
cyclic process. Suppose that one series of reversible changes, ABC, 
passes through an arbitrary state B and another series of reversible 
changes, CDA, brings the system back to its initial state A via another 
arbitrary state D. Since we are assuming that the quantities dQ/T 
sum to zero around any reversible path, they sum to zero along the 
path ABCDA. So the sum along the path CDA is the negative of the 
sum along the path ABC. But the sum along the path CDA is the neg-
ative of the sum along the reverse path ADC, because each summand 
in the sum of incremental changes dQ/T along ADC is the negative 
of the corresponding summand in the sum along CDA –when you 
reverse a heat inflow it becomes a heat outflow and vice versa. So 
the sum of the quantities dQ/T has the same value along the paths 
ABC and ADC – two arbitrarily selected paths connecting two given 
states, A and C. Which is what we set out to prove. 

So if the quantity dQ/T sums to zero around any closed sequence 
of reversible changes, it represents a small change in a property of 
the system – a quantity that, like temperature, pressure, and internal 
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energy, has the same value whenever the system is in an equilibrium 
state. Clausius named this property entropy. But does the quantity 
dQ/T sum to zero around any closed sequence of reversible changes?  

 To show that it does, Clausius invented a simple but ingenious 
argument. 

Clausius’s Argument 
Recall that Carnot’s proof of his theorem (that all ideal Carnot 

engines working between two heat reservoirs at given temperatures 
have the same efficiency) deploys two Carnot engines. One operates 
in its direct mode, withdrawing heat from the hot reservoir, deposit-
ing heat in the cold reservoir, and doing work on the piston. The other 
operates in its reverse mode, withdrawing heat from the cold reser-
voir, depositing heat in the hot reservoir, and having work done on it 
by the piston. Thomson’s and Clausius’s revised versions of Carnot’s 
proof also use coupled pairs of Carnot engines, one member of each 
pair operating in its reverse mode. Clausius’s proof that the quantity 
S returns to its initial value when the state of the macroscopic system 
it refers to undergoes any reversible cyclic process uses a generalized 
version of this idea.  

Suppose a macroscopic system undergoes a sequence of n small, 
not necessarily reversible changes. At the kth change the system 
accepts a small quantity of heat dQk from a reservoir Rk at tem-
perature Tk. dQk can be positive, negative, or zero. (So the word 
“accepts” doesn’t have its everyday meaning in this context; but the 
new meaning will help us keep the signs straight.) The nth and final 
change brings the system back to its initial state, so the sequence of n 
changes constitutes a cycle. We can make n large enough so that the 
discrete sequence of changes approximates a continuous sequence as 
closely as we wish.   

Clausius now imagines a collection of n ideal Carnot engines.
The kth engine works between reservoir Rk at temperature Tk – the 
temperature of the system during the kth change – and a reservoir 
R0 used by all n Carnot engines. The kth engine replaces the heat 
drawn by the system from the reservoir Rk by delivering an equal 
amount of heat dQk to Rk and it withdraws a quantity of heat dQk0 
from the common reservoir R0. Thomson and Clausius showed in 
their revised version of Carnot’s proof that  
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	  	 dQk/Tk = dQk0/T0  (k = 1, 2, …,n) 
Summing these n equations, we get: 

	  	 Σk dQk/Tk = (ΣkdQk0)/ T0 , 
where the symbol Σk indicates that the quantity on its right is to be 
summed over all values of the index k between 1 and n. The sum Σk 
dQk0 represents the total quantity of heat that has been withdrawn 
from the reservoir R0 in the course of a cycle. Call this quantity Q0.  

At the end of a cycle the reservoirs with labels from 1 to n are 
back in their initial states, and so is the system. But a quantity of 
heat Q0 has been withdrawn from the reservoir R0. Suppose Q0 is 
positive. Since energy is conserved, the cyclic process just described 
must produce an equal quantity of mechanical energy. But the 
Second Law says this can’t happen; heat drawn from a single source 
can’t be transformed entirely into mechanical energy. So Q0 must be 
non-positive. 

The last displayed equation then tells us that the sum Σk dQk/Tk is 
also non-positive: 

	  Σk dQk/Tk ≤ 0 for any cyclic process 	  (1) 

If the cycle is reversible, the preceding equation still holds if we 
reverse the sign of each of the quantities dQk. But this is impossible 
unless the sum Σk dQk/Tk equals zero: 

	 Σk dQk/Tk= 0 for a reversible cyclic process         (2)

 Earlier we saw that if S is a quantity that changes by an amount 
dQ/T when the system it refers to reversibly absorbs a quantity of 
heat dQ, and if S returns to its initial value when the system under-
goes any reversible cyclic process, then the difference SC – SA doesn’t 
depend on the path that connects A to C. Equation (2) says that S 
does indeed returns to its initial value when the system undergoes 
any reversible cyclic process. So S is indeed a physical property of the 
system, the property Clausius named entropy. 

 The preceding argument defines the entropy S of a system in ther-
mal equilibrium through the amount by which S changes when the 
system passes from one equilibrium state to another via a series of 
reversible changes. Consequently, S is defined only up to an additive 



51IV. Entropy and Its Law

constant, which we may identify with the entropy of the system in an 
arbitrary reference state. 

Next suppose that an isolated, or undisturbed, macroscopic 
system evolves from equilibrium state A to equilibrium state C via an 
irreversible process. Because the system is isolated, it doesn’t interact 
with the outside world; no heat flows into or out of it and no work is 
done on or by it.  

For example, imagine a box divided into two compartments by a 
removable partition. Suppose that initially, one compartment is filled 
with air at temperature T2, the other with air at a lower temperature 
T1, and assume (as can always be arranged) there’s no pressure dif-
ference between the compartments. After the partition is removed, 
the sample settles into an equilibrium state at a single uniform tem-
perature between T1 and T2. If during this process a quantity of heat 
Q flows from the set of molecules that make up the subsample that 
was initially at temperature T2 to the set that make up the subsample 
that was initially at temperature T1, the entropy of the whole sample 
changes by an amount (Q/T2 – Q/T1). In this example the entropy 
of the system increases (because T2 > T1). We want to show that the 
entropy of any isolated, or undisturbed, system either increases or 
doesn’t change when it passes from one state of thermal equilibrium 
(in which all its macroscopic properties have definite, unchanging 
values) to another. 

Call the initial equilibrium state A and the final equilibrium state 
C. Now construct a cycle by adding a reversible sequence of changes 
CDA, in which heat can flow into or out of the system and work 
can be done on or by it. (Any two equilibrium states can be joined 
by infinitely many reversible sequences of reversible changes, repre-
sented by smooth curves joining the points that represent the two 
states.) Applying equation (1) to the cycle ACDA gives:  
	  	 ΣAC dQk/Tk  + ΣCDA dQk/Tk ≤  0  

Because no heat flows into or out of the system during the irre-
versible leg AC, the first sum vanishes. The second sum is SA – SC, the 
entropy change between C and A. So  
 	  	 SC ≥ SA  	  	  	        (3) 

When a closed, or isolated, system evolves between two 
equilibrium states, its entropy cannot decrease; it must 
either increase or stay the same.   	 
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This is the law of entropy change. Clausius deduced it, in the 
way I’ve described, from the Second Law of thermodynamics. His 
argument shows that if the entropy of an isolated system were to 
decrease, we could build a device – the device described in Clausius’s 
proof – that converts all the heat drawn from a single source into 
mechanical energy.  

 The law doesn’t say that the entropy of an isolated system must 
increase during an irreversible change in the system’s state; it merely 
says that it cannot decrease. For example, if an isolated system con-
sists of two subsystems with initially different temperatures, the law 
tells us that heat can flow only from the warmer to the cooler sub-
system, because heat flow in the opposite direction would decrease 
the system’s entropy. But the law doesn’t tell us that heat must flow 
between the subsystems. As in our earlier example, the two subsys-
tems might be separated by a membrane that doesn’t conduct heat. 

 A separate physical law governs heat flow. It contains a parameter 
that characterizes the thermal conductivity of a medium at each point 
and in every direction. If you change the sign of the time coordinate 
in this law, and hence the direction in which time increases, you get 
a different law – one that predicts that heat flows up a temperature 
gradient and thus violates the law of entropy change.  

 More generally, separate macroscopic laws govern the processes 
through which an isolated system evolves from one equilibrium state 
to another through a sequence of irreversible processes. The law of 
entropy change constrains the laws that govern these processes, but 
doesn’t, on its own, require that irreversible processes cause the 
entropy of an isolated system not initially in thermal equilibrium to 
increase.  

   Defining Entropy for Systems Not in Thermal Equilibrium  
What is the scope of Clausius’s definition of entropy? So far we’ve 

defined entropy for homogeneous systems, such as uniform gas 
samples, in thermal equilibrium. The preceding proof of the law 
of entropy non-decreases applies to two states, A and C, of such a 
system connected by an irreversible path. Now consider an undis-
turbed nonuniform gas sample. Can we assign entropies to its states 
between A and C and apply  the law of entropy non-decrease to 
them? For example, can we assign entropy to an isolated gas sample 
whose temperature varies smoothly from point to point? 
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 Clausius defined the entropy S of a system in thermal equilibrium 
through its changes between neighboring equilibrium states. The 
First Law of thermodynamics tells us that if the volume V of a gas 
sample enclosed in a cylinder fitted with a movable piston changes 
by an amount dV and a positive or negative quantity of heat dQ 
flows into the sample, its internal energy U changes by an amount 
dU given by: 
  	  	 dQ = dU + P dV. 

Here P is the pressure the sample exerts on the piston. If the piston 
has area A and travels a short distance dx, it does work PAdx or PdV. 
So the preceding equation says that the work done by the sample 
when its volume changes must come from either the sample’s inter-
nal energy or from heat that flows into the sample or from a com-
bination of the two. The preceding equation shows that unlike dU 
and dV, dQ isn’t the change in a quantity that characterizes the state 
of the gas sample; although heat is a form of energy and energy is 
conserved, a gas sample doesn’t hold heat in a separate account. It 
does, though, hold entropy in a separate account. Clausius’s theo-
rem enables us to replace dQ by TdS, where dS, like dU, dV, and dT, 
denotes a small change in a quantity that characterizes the state of 
the gas sample. The preceding equation then takes the form 
 	  	 TdS = dU + PdV   	  	  or 
 	  	 dS = (dU/T) + (P/T)dV         	  	  

Suppose now that we can draw imaginary surfaces separating the 
region occupied by an inhomogeneous gas sample into cells in each 
of which the temperature and pressure are (nearly) uniform. We will 
be able to do this if the gas sample isn’t too chaotic. But if the entropy 
of the sample is to equal the sum of the entropies of our imaginary 
cells, two more conditions must be satisfied: The sample’s energy U 
must be additive: it must equal the sum of the energies of the parts. 
And work performed by the system must be equal to the sum of the 
amounts of work PdV performed by the parts. Then, and only then, 
can we equate the change dU in the sample’s energy to the sum of the 
energy changes of the parts. Enrico Fermi emphasized this condition 
in his lectures on thermodynamics: 

The entropy of a system composed of several parts is very often 
equal to the sum of the entropies of all the parts. This is true if 
the energy of the system is the sum of the energies of all the parts 
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and if the work performed by the system is equal to the sum of the 
amounts of work performed by all the parts. Notice that these con-
ditions are not quite obvious and that in some cases they may not 
be fulfilled. Thus, for example, in the case of a system composed 
of two homogeneous substance, it will be possible to express the 
energy as the sum of the energies of the two substances only if we 
can neglect the surface energy of the two substances where they 
are in contact. The surface energy can generally be neglected only 
if the two substances are not very finely divided; otherwise it can 
play a considerable role. 4 

Energy is usually additive under laboratory conditions. Parcels 
of air in the atmosphere, whose energies include a height-depen-
dent gravitational potential energy, also satisfy the additivity condi-
tion, as do parcels of gas in the interiors of stars. But the Earth as a 
whole and the Sun as a whole don’t satisfy the condition, because the 
gravitational potential energy of a system held together by the mutual 
gravitational attraction of its parts isn’t a sum of contributions each 
of which depends only on local conditions. This is a consequence of 
what physicists call the “long-range” character of Newtonian gravi-
tational force – the fact that it decreases only with the inverse square 
of the separation between mutually attracting particle. This makes 
gravitational potential energy a nonlocal property, in contrast to the 
energies associated with the short-range forces that come into play 
when two gas atoms or molecules collide, or the binding energies 
of atoms in gas molecules or of atoms and molecules in crystals. So 
Clausius’s definition of entropy doesn’t apply to planets, stars, galax-
ies, or other self-gravitating systems. Consequently, it doesn’t apply 
to the universe. 

An isolated macroscopic gas sample settles into thermal equilib-
rium – a macroscopically quiescent state of uniform temperature.
Could a self-gravitating system be in such a state? It could be in a 
state of mechanical equilibrium, in which the weight of every small 
parcel of gas balances the pressure force the surrounding gas exerts 
on the parcel’s boundary. But a calculation based on Archimedes’s 
law of hydrostatic equilibrium shows that if the system also had 
uniform temperature – if it were in thermal as well as mechanical 
equilibrium – it would extend to infinity and have infinite mass. A 
finite self-gravitating system can’t evolve toward a state of uniform 
temperature – a state without internal heat flow.  

4	 Fermi, Enrico, Thermodynamics, Prentice-Hall, New York, 1937, p. 53. 
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 In a star, energy is liberated by thermonuclear reactions in the 
deep interior and escapes from the surface layers in the form of light 
and neutrinos. As a result, the star’s structure and its energy slowly 
change. In a protostar whose central temperature is not yet high 
enough for thermonuclear reactions to liberate energy, the loss of 
energy by radiation from the surface layers is uncompensated, so the 
protostar’s energy decreases. This has a surprising consequence. The 
virial theorem (like entropy and its law, discovered and named by 
Rudolf Clausius) implies that when a self-gravitating system of parti-
cles is in mechanical equilibrium, its gravitational energy, a negative 
quantity, is equal in magnitude to twice the system’s thermal energy 
(the combined kinetic energy of its particles). The sum of the sys-
tem’s gravitational energy and its thermal energy is consequently a 
negative quantity equal in magnitude to its thermal energy (or half 
its gravitational energy). So when the system loses energy, its thermal 
energy, and hence its mean temperature, increase. Thus a self-gravi-
tating system in mechanical equilibrium has negative heat capacity 
(the ratio between a small inflow of heat – in the present example 
a negative inflow – and the consequent small increase in tempera-
ture).    In contrast, the second law of thermodynamics predicts 
(and experiments confirm) that when a system (to which the law 
applies) loses energy, its temperature drops. Of course, as we’ve just 
seen, the domain of the Second Law doesn’t include self-gravitating 
systems – and for basically the same reason that a self-gravitating gas 
mass grows hotter as it radiates away energy: gravitational potential 
energy is non-local and hence non-additive. 

Rudolf Clausius’s discovery of entropy and his reformulation of 
the Second Law as the law of entropy change enabled him to recast 
thermodynamics as a deductive mathematical science, an adjunct 
to Newtonian particle physics and Newtonian fluid mechanics. That 
science has proved to be enormously useful, and its predictions have 
been uniformly successful in a very wide domain. But, as we’ve seen, 
that domain is limited to macroscopic systems whose structure is 
sufficiently smooth and whose energy can be expressed as a sum of 
the energies of nearly uniform subregions. As long as “the entropy 
of the universe” remains undefined, we can assign no meaning to 
Clausius’s statement that the entropy of the universe tends toward a 
maximum.  
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V
Atomism

Thermodynamics’ two main laws are generalizations about the 
outcomes of possible experiments. The first law says that in any 
experiment in which heat appears in a closed (or isolated or undis-
turbed) system a strictly proportional quantity of mechanical energy, 
such as gravitational potential energy, disappears. The second law 
states that it is impossible to build a device whose only effect is to 
transfer heat from a cooler to a warmer body; or, equivalently, to 
build a device whose only effect is to transform heat drawn from a 
single heat reservoir into mechanical energy. Some of Clausius’s con-
temporaries succeeded in constructing a theory based not on these 
empirical generalizations but on Newton’s laws of motion together 
with an assumption that, in the mid-nineteenth century, seemed far 
less secure than thermodynamics’ two empirical laws: that matter 
consists of invisible and indivisible particles in motion. Not until the 
early 1900s did that assumption, the atomic hypothesis, become the 
atomic fact (as the physicist Richard Feynman put it in his Lectures 
on Physics).  

Atomic theories of macroscopic systems and processes have 
a statistical character; they are formulated in the mathematical 
language of probability theory. Ludwig Boltzmann showed that 
the statistical description of an isolated sample of an ideal gas has a 
counterpart to entropy. As we’ll discuss, this counterpart, sometimes 
called statistical entropy, is well defined in a much broader domain 
than Clausius’s entropy. It is a measure of the randomness inherent 
in a statistical description. So for the sake of clarity, I’ll usually call it 
randomness rather than statistical entropy. 
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While probability theory itself is uncontroversial, its interpreta-
tion in statistical theories based on the atomic hypothesis raises a 
question that goes to the heart of the problem of free will versus 
determinism: Do the probabilities that figure in these theories repre-
sent incomplete knowledge? Or do they represent a kind of objective 
indeterminacy distinct from quantum indeterminacy? To answer this 
question we’ll need to take a closer look at atomism and statistical 
physics. 

	   	               The Roots of Atomism 
In the fifth century BCE Leucippus and his pupil Democritus (460 

– 370 BCE) conjectured that the world consists of indivisible parti-
cles, or atoms, moving about in otherwise empty space. Atoms came 
in a variety of sizes and shapes. Some had hooks or barbs on their 
surfaces, allowing them to form molecules; others, such as water 
atoms, were smooth. Atoms of fire and soul were small and round 
and moved at great speeds.  

Epicurus (341–270 BCE) based his philosophy on this thoroughly 
materialistic picture of the world. But he amended it in one import-
ant way. In his ethical philosophy Epicurus assumes that we are free 
to shape our conduct. But how does freedom fit into a world in which 
our thoughts and actions are determined by invisible atoms and 
their motions? Epicurus suggested that there is an element of ran-
domness in atomic motions. Atoms occasionally swerve from their 
paths, and these swerves have an irreducibly random character. This 
assumption allowed Epicurus to reconcile his materialistic picture 
of the world with an ethical philosophy based on human freedom.  

 How did the atomists come up with their picture of the world? In 
his History of Western Philosophy Bertrand Russell suggested that the 
atomic hypothesis was a lucky guess: 

By good luck, the atomists hit on a hypothesis for which, more 
than two thousand years later, some evidence was found, but 
their belief, in their day, was nonetheless destitute of any solid 
foundation.1 

This judgment rests on a widely accepted view of the “scientific 
method” in the physical sciences: 

1	 Russell, Bertrand, History of Western Philosophy, (New York, Simon & Schuster, 
1967) p. 68. 
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Scientists do experiments and make observations. These 
may suggest hypotheses that have testable implications. 
Further experiment or observations then confirm or 
disconfirm these hypotheses. Those that survive become 
physical laws.  

The same view of the scientific method underlies the definition of 
physical laws in the Oxford English Dictionary, 3d edition: Physical 
laws are statements “inferred from particular facts, applicable to a 
defined group or class of phenomena, and expressible by the state-
ment that a particular phenomenon always occurs if certain con-
ditions be present.” Definitions like these reflect a view of physical 
laws that was popular (though not uncontroversial) among physical 
scientists in the late nineteenth century. Its most famous and influ-
ential advocate was the physicist and philosopher of physics Ernst 
Mach. Mach held that physicists should abjure metaphysical notions, 
such as Newton’s “absolute” space and “absolute” time; they should 
rely entirely on objective experimental and observational facts. 
Einstein tells us that Mach’s elaboration of this view in The Science of 
Mechanics helped motivate his own search for a theory that would 
relate the structure of spacetime to its contents.  

 But Mach went further. He held that physical laws are nothing 
more than economical summaries of experimental and observa-
tional data. So he rejected theoretical constructs that went beyond 
the data. These constructs included atoms and Einstein’s princi-
ple of special relativity. During the opening years of the twentieth 
century, Mach’s view of physical laws fell out of favor. One group 
of experiments, which included experiments designed to test Ein-
stein’s predictions about the random motions of microscopic parti-
cles suspended in a liquid  (Brownian motion), showed that atoms 
actually exist. Another group of experiments confirmed special rel-
ativity’s predictions about phenomena involving particles traveling 
at nearly the speed of light. Though physicists continued to insist, 
and still insist, that scientific hypotheses stand or fall by their test-
able predictions, special relativity and the experimental vindication 
of the atomic hypothesis showed that not all scientific hypotheses are 
empirical generalizations. Could Leucippus and Democritus have 
viewed atomism as a scientific hypothesis? Would they even have 
understood the notion of a scientific hypothesis? 
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About Leucippus we know only that he was Democritus’s mentor. 
Democritus, however, was famous in his day as a mathematician as 
well as a philosopher. He wrote treatises on number theory, geome-
try, and astronomy. And he was no run-of-the-mill mathematician 
(if such people exist). According to the historian of Greek mathe-
matics Thomas Heath, Democritus “already had the idea of a solid 
being the sum of an infinite number of parallel planes, or indefinitely 
thin laminae [plates], indefinitely near together; a most important 
anticipation of the same thought which led to such fruitful results in 
Archimedes.” The thought in question is the idea underlying the inte-
gral calculus, an early version of which Archimedes used to calculate 
the area of a segment of a parabola and the surface area and volume 
of a sphere. Two centuries before Archimedes, Democritus used the 
same idea to prove that the volume of a circular cone is one-third 
the product of its height and the area of its base, and that the volume 
of a pyramid is likewise one-third the product of its height and the 
area of its base. So Democritus was, to say the least, an exceptionally 
creative and insightful mathematician. 

Nowadays many mathematicians specialize in subjects remote 
from the concerns of the natural sciences. But Greek mathematics, 
physics, and astronomy were closely interwoven strands of a single 
project. Heath tells us that these subjects “were born together at the 
beginning of the sixth century.”2 Collections of geometric and arith-
metic facts, rules, and algorithms had existed for millenniums in 
Egypt and Mesopotamia before Thales of Miletus (about 624 – 547 
BCE), after visiting Babylon and Egypt and acquainting himself with 
some of their mathematical treasures, invented a new kind of math-
ematics: He proved the first theorems. 

A theorem is a statement about mathematical objects and rela-
tions accompanied by a proof. Written out in full, a proof is a chain 
of logical deductions that connects the statement to be proved to a 
small fixed collection of unproved statements, or axioms, and a small 
fixed collection of terms, such as point and line in plane geometry, 
that are implicitly defined by the axioms that mention them. Logical 
deductions preserve truth: if the premises of a deduction are true, 
then so is its conclusion. So if geometry’s axioms are true, then so are 
its theorems. Greek mathematicians and their successors until well 
into the nineteenth century regarded the axioms of number theory 

2	 Heath, T. L, A History of Greek Mathematics. (Cambridge University Press, 2013).
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and geometry as self-evident truths. By contrast, many theorems 
about numbers and geometric objects were far from self-evident. 
Some were amazing. For example, Greek mathematicians discovered 
and proved that the lines connecting the vertices of any triangle to 
the midpoints of the opposite sides intersect in a single point, which 
divides each of these lines into two segments one of which is half the 
length of the other.  

 Again, Pythagoras (about 570 - 490 BCE) or one of his followers 
discovered that geometric atomism is false: a side and a diagonal 
of a square have no common measure; it isn’t possible to choose a 
unit of length so that the lengths of a side and a diagonal are both 
whole-number multiples of that unit. And since this claim could be 
proved, it had to be true. 

 Mathematics is a creative enterprise. Theorems and their proofs 
need to be invented. Mathematicians imagine properties of num-
bers or geometric objects that might be true; then they imagine 
possible routes to a proof. For its first practitioners the method of 
conjecture and proof was a way of arriving at hidden truths about 
the world, more reliable than divine revelation or authority. And 
its successes seemed to reveal that numbers and geometric forms 
underpin reality. Mathematics was the language of the new sciences 
of physics and astronomy. Even the parts of Greek philosophy that 
were not explicitly mathematical aspired to the logical rigor epito-
mized by mathematical demonstrations. Plato held that the study of 
mathematics was a necessary propaedeutic to the study of philoso-
phy. The motto “Let no one unversed in geometry enter here” was 
inscribed over the door of his Academy. 

Greek mathematicians didn’t draw a sharp distinction, as we do 
today, between pure mathematics and mathematical physics. They 
recognized that mathematics deals with idealized objects – that 
dimensionless points, perfectly straight lines, and perfectly smooth 
planes exist nowhere in the world of experience. But mathemati-
cal discoveries and the method of conjecture and proof seemed to 
reveal hidden and often surprising truths not only about idealized 
mathematical objects and relations but also about the physical world. 
Theorems about plane figures and solids are also testable proposi-
tions about their inexact real-world counterparts. And experience 
invariably supported these propositions to within the accuracy of 
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the measurements. Mathematics as a deductive science (rather than 
as a set of rules, formulas, and algorithms) was seen as a new and 
powerful tool in humankind’s struggle to understand and control 
nature, allowing its practitioners to glimpse a hidden reality that 
undergirds experienced reality but can be described only in math-
ematical language.  

Thales, reputed to have been the first mathematician, devised a 
method for finding the distance of a ship at sea and a method for cal-
culating the heights of the pyramids, both based, presumably, on the 
theorem that pairs of corresponding sides of similar triangles have 
the same ratio. Both methods also rely on identifying light rays or 
lines of sight with the straight lines of theoretical geometry. By com-
bining geometry with observation, Greek astronomers conjectured 
and then proved that the Earth and the Moon are spheres. They also 
arrived at the modern explanation of solar and lunar eclipses. In the 
fourth century BCE, Heraclides suggested that the daily motions of 
the stars are produced by the Earth’s rotation (rather than by the rota-
tion of a solid Earth-centered sphere in which the stars are embed-
ded). A century later Aristarchus anticipated Copernicus’s model of 
the planetary system, in which the Moon is a satellite of Earth, Earth 
is a planet, and the planets are satellites of the Sun. Aristarchus also 
invented and applied a method of deducing the ratio of the Sun’s 
and the Moon’s distances from observations of their directions 
when the Moon is exactly half full. His account marks the debut of 
trigonometric ratios such as sines and tangents. 

Archimedes took over the method and style of Euclid’s Elements 
(composed around 300 BCE) and extended its vocabulary to include 
the notions of mass, force, and mechanical equilibrium. He invented 
the notion of center of mass, discovered the principle of the lever 
(objects at opposite ends of a weightless beam balance if the ratio of 
their weights is equal to the reciprocal of the ratio of the distances 
of their centers of mass from the fulcrum), and founded the science 
of hydrostatics, which includes the proposition known as Archime-
des’ principle: An object wholly or partly submerged in water experi-
ences an upward, or buoyant, force equal in magnitude to the weight 
of the water it displaces; so the weight of a submerged object is equal 
to its weight in air minus the weight of an equal volume of water; if 
the difference is negative, the object experiences a net upward force.  



63V. Atomism

 Archimedes’s The Method of Mechanical Theorems used his 
method of infinitesimals, along with what we’d now call physical con-
cepts – the notion of center of mass and the principle of the lever – to 
calculate areas and volumes of geometric objects. For Archimedes, 
number theory, geometry, and mechanics were interlocking parts 
of a single mathematical structure.  Archimedes was famous in the 
ancient world for putting the physical principles he had discovered 
to practical uses. His inventions include the screw pump (for bailing 
ships), block-and-tackle pulley systems, and a mechanical model of 
the solar system. He also invented devices that were used to defend 
his native Syracuse, in Sicily, from the invading Romans: a powerful 
catapult, a device for lifting ships out of the water and then dropping 
them (Archimedes’s claw), and (perhaps) arrays of either lenses or 
parabolic mirrors for focusing the Sun’s rays on an invader’s ships 
and setting them on fire.   

To return to the atomic hypothesis, we can perhaps think of it, 
in the context of Greek mathematics and natural science, as the 
response to a question that is both philosophical and scientific. One 
way to state the question is to ask what would happen if you split a 
drop of water in two, then split each of the resulting drops in two, 
and kept on in this way. Leucippus and Democritus might perhaps 
have reasoned as follows.  

Either the process of splitting will go on forever or it will come to 
an end. If every substance is indefinitely divisible into smaller and 
smaller parts with the same physical properties, the only possible 
answer to the question “Why do different substances have different 
properties?” is “They just do.” If the splitting process eventually ends, 
we have a choice. Either the process ends with a large collection of 
indivisible water droplets or with a large collection of objects that 
aren’t water droplets. The first possibility doesn’t help us to under-
stand why alcohol differs from water. If, as I’m assuming, Leucippus 
and Democritus were seeking to understand such differences, they 
would have opted for the second possibility – that if you continue 
to split a drop of water you will eventually arrive at particles whose 
properties don’t coincide with but serve to explain the properties of 
water. In the historical context I have sketched, these would have been 
objects describable in the vocabulary of Euclidean solid geometry. If 
you ask the right question – a question that would have arisen quite 



64 Why We are Free

naturally in the context of Greek mathematics, physics, and natural 
philosophy – the atomic hypothesis seems almost inevitable. 

 We can interpret the question “What happens when you keep 
splitting a bit of matter into smaller and smaller parts?” as either 
a philosophical or a scientific question, depending on the kind of 
answer we’re looking for. Physicists ask questions whose answers can 
be expressed in the vocabulary of mathematics, even if they have to 
invent new mathematics to do so. Biologists ask questions that fit into 
a conceptual framework based in part on the premises that all living 
organisms are genetically related and have evolved from a single 
ancestral population. Empiricists ask questions that can be answered 
by an appeal to sensations and perceptions; metaphysicians, by an 
appeal to basic metaphysical principles, such as Gottfried Wilhelm 
Leibniz’s principles of sufficient reason (everything has a reason) and 
identity of indiscernibles (distinct objects can’t have identical prop-
erties).

    Atomism Becomes a Testable Hypothesis  
The atomic hypothesis had immediate explanatory value. It sup-

plied a starting point for an explanation of why water becomes a 
solid at low temperatures and becomes a vapor at high temperatures. 
It explained why you can mix wine and water in various proportions 
to make homogeneous liquids with experimentally distinguishable 
properties. It explained why a sample of brine exposed to air eventu-
ally turns into salt crystals.   Newton, with not much more direct evi-
dence than Democritus had had, was a convinced atomist. To quote 
the historian of the physical sciences Alan E. Shapiro:  

The corpuscular theory of matter was thus for Newton not a 
hypothesis but a demonstrated principle established with as much 
certainty as the existence of God or the theory of gravitation. He 
cites two principal sorts of evidence in its support: various sub-
stances penetrate the pores [empty spaces between atoms] of 
bodies, like water into vegetable and animal matter, and quick-
silver [mercury] into metals; and transparency, which shows that 
light passes through the pores of a great variety of bodies [such as 
thin layers of gold]3  

While Newton considered his view that matter consists of atoms 
to be “a demonstrated principle” on a level with his law of gravitation, 

3	 Shapiro, A.E., Fits, Passions and Paroxysms: Physics, Method and Chemistry and 
Newton’s Theories of Colored Bodies and Fits of Easy Reflection. (Cambridge University 
Press, 1993).



65V. Atomism

he considered another of his strongly held views – that light rays are 
streams of particles – to be a hypothesis in need of experimental 
support – which his own experiments consistently failed to provide. 

 Newton’s view of atoms and their role in observable phenomena 
differed from Democritus’s in a crucial respect: Newton assumed 
that the motions and interactions of atoms obey his three laws of 
motion. Thus enriched, Democritus’s picture of the physical world 
became a testable scientific hypothesis. It not only offered qualita-
tive explanations of some phenomena but could also serve as the 
basis for testable predictions about the outcomes of precise mea-
surements. Prominent among the empirical rules Newton hoped the 
atomic hypothesis could explain was Boyle’s law. 

In 1659 Robert Boyle, assisted by Robert Hooke, built an improved 
version of Otto von Guericke’s air pump, and with its help began a 
series of experiments on what Boyle called “the spring of the air” 
– the fact that a finite sample of air resists compression and also 
expands to fill any airtight enclosure. Their experiments supported 
the quantitative relation between the pressure and the volume of 
an enclosed gas sample (at a given temperature) that is now called 
Boyle’s law: the pressure, or force per unit area, the sample exerts 
on the walls of its container is inversely proportional to the sample’s 
volume.  

To account for this remarkably simple rule, Newton proposed 
that air atoms repel one another. He showed that this hypothesis 
would yield Boyle’s law if (a) each gas atom repelled only its nearest 
neighbor and (b) the repulsive force was inversely proportional to 
the distance between the two atoms. “But whether elastic fluids do 
really consist of particles so repelling each other,” he wrote in the 
Principia, “is a physical question” – that is, a question to be settled 
by experiment. 

 And experiment did settle it. Although Newton’s model accounted 
for Boyle’s law, another of its predictions contradicted an empirical 
law established by Guillaume Amontons between 1700 and 1702: If 
an air sample’s volume is held constant, its pressure increases with its 
temperature. Newton’s model predicts instead that the force a gas 
sample exerts on the walls of its container depends only on the aver-
age number of atoms per unit volume and not on the temperature. 

In his Hydrodynamica, published in 1738, Daniel Bernoulli pro-
posed an atomic model of gases that not only accounted much 
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more simply for Boyle’s law than Newton’s model but also predicted 
Amontons’ law and other, as-yet-undiscovered, empirical laws. 

Like Newton, Bernoulli postulated that in a uniform gas sample 
the number of gas particles per unit volume has the same value 
everywhere. But instead of postulating that the particles of a quies-
cent gas sample are themselves motionless, as Newton had done, he 
postulated that they have large random velocities. He imagined that 
each particle travels at constant speed in a fixed direction until it 
collides with another particle or with a wall, after which it sets off in 
a new direction. He assumed that the duration of a collision is much 
shorter than the time interval between collisions, as it is in collisions 
between billiard balls. (Bernoulli’s successors assumed further that 
particle collisions are elastic: the combined momentum of a pair of 
colliding particles is the same before and after a collision and so is 
their combined kinetic energy.)  

 Newton had attributed the expansive tendency of a gas sample 
to a repulsive force between the gas’s constituent particles. In Ber-
noulli’s model the fact that a gas sample expands to fill a box of any 
size follows directly from Newton’s first law of motion: a particle on 
which no force acts continues to move in a straight line with con-
stant speed; collisions with other particles deflect a gas particle but 
can’t confine it to a finite region.  

 Appealing to Newton’s second and third laws of motion, Ber-
noulli equated the force an enclosed gas sample exerts on a wall of 
its container to the rate at which gas particles transfer momentum 
(mass times velocity) to the wall when they strike it and rebound. He 
assumed that such encounters are elastic, conserving momentum. The 
force per unit area, or pressure, is then proportional to the number 
of particles per unit volume and to two-thirds the average value of a 
particle’s kinetic energy (half the product of its mass and the square 
of its velocity). So Bernoulli’s model predicts the following simple 
relation between the pressure, P, the number of gas particles per unit 
volume, n, and the average kinetic energy of a particle, 〈½ mv2〉:

 	  	 P = ⅔ n 〈½ mv2〉 〈E〉 〈E〉

 	 If we now assume that the temperature T of a gas is some 
constant multiple of the mean kinetic energy of the gas molecules, 
Bernoulli’s formula becomes 
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 	  	 P = constant × nT = constant × (N/V)T, 

where N is the number of particles in a sample, V is the sample’s 
volume, and n is the number of particles per unit volume.  This rela-
tion includes not only Boyle’s law and Amontons’ law (which says 
that the pressure in a gas sample whose volume is held constant 
increases with its temperature) but also Charles’s law (1780), which 
says that at constant pressure the temperature of an ideal-gas sample 
is proportional to its volume. Moreover, because the displayed equa-
tion doesn’t depend on any property of the gas particles, it contains 
Amedeo Avogadro’s hypothesis (1811): Equal volumes of different 
ideal gases at the same temperature and the same pressure contain 
equal numbers of particles (N in the displayed equation). 

We can’t call the preceding argument a derivation of the gas laws, 
because it merely assumes that the average kinetic energy of the gas 
particles is proportional to the gas sample’s temperature, as defined 
by Thomson through Carnot’s theorem. It doesn’t explain why. As 
we’ll see, a full derivation of the ideal-gas law didn’t appear until over 
a century after Bernoulli proposed his model.

Atoms and Molecules 
During the eighteenth century chemists devised experimental 

methods for distinguishing homogeneous “substances” from mix-
tures, and for distinguishing “elements” – substances that couldn’t 
be broken down into simpler substances –from “compounds.” They 
perfected the chemical balance and used it to discover that elements 
combine to form compounds in fixed proportions by weight. They 
also discovered that weight (or mass) is conserved when a com-
pound is formed or when it is separated into elements.  

During the first decade of the nineteenth century John Dalton 
(1766 – 1844) realized that simple assumptions about the atomic 
composition of elements and compounds could bring greater order 
to the wealth of experimental data chemists had built up during the 
preceding century. He postulated that every chemical element con-
sists of identical, unchanging atoms that differ from the atoms of 
other elements, and that chemical compounds consist of identical 
molecules made up of atoms of the compound’s constituent elements.  
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These postulates immediately accounted for a striking regularity 
in the data. Sometimes two elements combine to form different com-
pounds. For example, carbon and oxygen combine to form the gases 
we now call carbon monoxide and carbon dioxide. Experiments 
showed that if samples of the two compounds contain equal masses 
of carbon, the mass of oxygen in the heavier sample is twice the mass 
of oxygen in the lighter sample. To take another stock example, arse-
nic and oxygen likewise form two compounds. If samples of these 
compounds contain equal masses of arsenic the ratio between the 
masses of oxygen in the two samples is exactly 5/3 – again a ratio of 
two small whole numbers. These examples suggest, and experiment 
confirms, the following rule: If element #1 forms two (or more) dif-
ferent compounds with element #2, then samples that contain the 
same mass of element #1 contain masses of element #2 that are in the 
ratio(s) of small whole numbers. Before Dalton, this finding seemed 
inexplicable. Dalton’s postulates make the explanation obvious: 
Every molecule made up of atoms of different kinds contains a small 
integral number of each kind. 

 Dalton’s axioms by themselves didn’t allow chemists to predict the 
proportions of elements in every compound. In the preceding exam-
ples you might guess, correctly, that the two oxides of carbon are, 
in modern notation, CO and CO2, but you might also guess, incor-
rectly, that the oxides of arsenic contain a single arsenic atom (in 
fact they contain two). Dalton suggested that a “rule of simplicity” 
should guide the choice of chemical formulas for compounds. But 
efforts to follow this rule led to inconsistencies.  Then in 1808, the 
same year in which Dalton’s A New System of Chemical Philosophy 
appeared, Joseph Gay-Lussac (1778 – 1850) published a new empir-
ical law, the law of combining volumes.  Suppose a sample of gas 
#1 and a sample of gas #2 combine to form a compound. Gay-Lus-
sac measured the volumes of the reactants (gas #1 and gas #2) and 
the product at the same pressure and temperature. He found that the 
measured volumes always had the ratio of small whole numbers. For 
example, suppose that a sample of hydrogen and a sample of oxygen 
react to form water vapor, with no hydrogen or oxygen left over. The 
volumes of the hydrogen and oxygen samples and the volume of the 
water vapor produced by their reaction, all measured at the same 
temperature and pressure, turn out to have the ratios 2:1:2.  
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Three years later, in 1811, Avogadro published his conjecture that 
equal volumes of dilute gases at the same temperature and the same 
pressure contain equal numbers of particles (atoms or molecules). 
Dalton’s axioms then imply that in the preceding example two atoms 
of hydrogen combine with one atom of oxygen to make two mole-
cules of water. So each water molecule ends up with half an oxygen 
atom – or, as we now say, half an oxygen molecule.  

But Dalton and many of his contemporaries refused to consider 
the possibility that the “atoms” of oxygen (or hydrogen or nitro-
gen or chlorine) might be what we now call diatomic molecules. 
Before 1925, when quantum mechanics began to explain chemical 
bonds and chemical reactions, chemists had no firm basis for under-
standing what holds molecules together. They thought in terms of 
inherent affinities between atoms. Such affinities, many believed, 
couldn’t exist between atoms of the same kind.   Finally, in 1861, 
Stanislao Cannizzaro (1826 – 1910), ignoring this prejudice, used 
Avogadro’s hypothesis to infer from experimental data on combin-
ing volumes a great many mutually consistent molecular formulas of 
gaseous elements and compounds – enough to convince most of his 
colleagues that the hypothesis was sound.  

This brief account of the atomic hypothesis before it became the 
atomic fact suggests what is missing, or at least underemphasized 
in the conventional account of “the scientific method.” Radical and 
consequential scientific hypotheses are rarely if ever “suggested” by 
experimental and observational data. They are, as Einstein put it, 
free creations of the human mind. And, like other creative acts, they 
help bring into being novel and unforeseen kinds of order. 

 

Maxwell’s Statistical Interpretation of Thermal Equilibrium 
A box one centimeter on a side filled with air at standard tem-

perature and pressure contains roughly 3 × 1019 (30 billion billion) 
molecules. A completely detailed Newtonian description of this 
collection of particles would specify, among other things, the three 
position coordinates and three velocity components of each mol-
ecule. Yet experiments show that two undisturbed samples of the 
same gas, or of the same sample at different times, have the same 
measurable properties if the samples have the same temperature and 
the same pressure. What accounts for the vast disparity between how 
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much data we need to characterize the state of an undisturbed gas 
sample at the molecular level of description and how much we need 
to characterize the sample’s macroscopic, or thermodynamic, state? 

 Thermodynamics interprets equilibrium states of an isolated 
system as states of maximum entropy. So to understand thermal 
equilibrium at the molecular level we need to know the molecu-
lar-level counterpart of entropy.  

 Daniel Bernoulli postulated that the distribution of molecular 
positions and velocities in a gas sample in thermal equilibrium is 
uniform (the same at all positions) and isotropic (the same in all 
directions). Now, statistical uniformity and isotropy are aspects of 
randomness, or lack of order, at the molecular level. This in turn 
may suggest that randomness, appropriately defined, is the molecular 
counterpart of thermodynamic entropy and that thermal equilibrium 
is the condition in which the positions and velocities of gas molecules 
are distributed as randomly as possible. To pursue this suggestion we 
need to make the notion of a distribution (of molecular positions or 
velocities) more precise, and we need to define randomness. 

 Collisions between the molecules of an enclosed, undisturbed 
gas sample redistribute their positions and velocities. Experiments 
show that an undisturbed gas sample settles into a state in which its 
mass density, and hence the number of molecules per unit volume, 
has the same value everywhere, up to measurement error.   We can 
plausibly assume that in thermal equilibrium the gas molecules in 
any small region are traveling in random directions. But what about 
their speeds?  

 We might guess that in thermal equilibrium the molecules all 
have the same speed. But this can’t be right, because when we apply 
Newton’s laws to collisions between, say, billiard balls, we find (and 
experience confirms) that their post-collision speeds differ in gen-
eral from their pre-collision speeds. Newton’s laws require only that 
the combined momentum and the combined kinetic energy of col-
liding particles have the same values before and after a collision – 
provided the collision converts a negligible part of the pair’s initial 
kinetic energy into the particles’ internal energies. So molecular 
collisions tend to randomize the distribution of molecular speeds. 
Or so it may seem intuitively. But what, precisely, does randomize 
mean in this context? And what is the “most random” distribution of 
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the velocities of molecules in an undisturbed gas sample? In a short 
paper that appeared in 1860 James Clerk Maxwell offered answers to 
these questions.

To frame the question he began by representing a gas particle’s 
velocity by a point in what he called velocity space. By introducing a 
Cartesian reference frame – three mutually perpendicular lines pass-
ing through the same point (the coordinate origin) – we can assign 
a particle three Cartesian coordinates, x, y, z, and we can assign its 
velocity three Cartesian components: u parallel to the x axis, v par-
allel to the y axis, and w parallel to the z axis. We can think of u, v, 
w as the position coordinates of a particle’s representative point in 
velocity space.  

 The velocities of particles in a macroscopic gas sample are repre-
sented by a dense swarm of points in velocity space. To represent the 
distribution of these points we begin by dividing velocity space into 
identical cells whose edges are parallel to the coordinate axes. By the 
“occupation number” of a cell I mean the number of particles whose 
representative points lie in that cell at a given moment. By the “frac-
tional occupation number” I mean the occupation number divided 
by the number of particles in the sample. Maxwell assumed that there 
is a range of cell sizes for which the fractional occupation numbers 
of contiguous cells are nearly equal and each fractional occupation 
number is proportional to the cell volume. If these conditions are 
met we can approximate the fractional occupation number of a cell 
in velocity space with dimensions du, dv, dw centered on the point 
(u, v, w) by the product f(u,v,w)dudvdw of a smoothly varying func-
tion of position in velocity space, f(u,v,w), and the cell’s volume, du 
dv dw. We can think of the fractional-occupation-number density 
f(u,v,w) as the mass density of a smoothly varying “probability fluid.” 
(In the present context probability is synonymous with fractional 
occupation number.) The “mass” of probability fluid doesn’t change 
with time – probability fluid is conserved – because the quantities 
f(u,v,w) dudvdw summed over all the cells in velocity space, add up 
to 1. 

 Maxwell expressed the assumption that the particle velocities in a 
gas sample in thermal equilibrium are randomly distributed by two 
mathematical conditions: 

1. The distribution is isotropic. This condition implies that 
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the value of f at a point (u, v, w) depends only the point’s 
distance from the origin (0, 0, 0) and hence only on the 
quantity u2 + v2 + w2, the square of that distance. That is, 

	  f(u,v,w) = F(u2 + v2 + w2) for some function F. 

2. A molecule’s velocity components in mutually 
perpendicular directions are uncorrelated. Let g(u)du 
denote the proportion, or fraction, of the particles in 
the sample for which u lies in a given interval du. Then 
the proportions with v and w in given intervals must be 
g(v)dv and g(w)dw, since there are no preferred direc-
tions in velocity space. And if velocity components in 
mutually perpendicular directions are uncorrelated, the 
proportion of the molecules in the gas sample for which 
u, v, w lie in given intervals must be the product of the 
three individual proportions: 

  	 F(u2 + v2 + w2) = g(u) g(v) g(w). 

This equation has the solution  

	 F(u2 + v2 + w2) = C3 exp[– a(u2 + v2 + w2)]. 

Here a and C are constants and exp is the exponential function: 
exp(x) = ex, the number e raised to the power x. (e = 2.718 …, the 
limit of (1 + 1/n)n as n increases without limit.)  

 	 The fractional occupation numbers f(u,v,w)dudvdw, 
summed over all the cells in velocity space, must add up to 1. This 
requirement determines the constant C: 

	 f(u,v,w) = (a/π)3/2 exp[– a(u2 + v2 + w2)]     	           (1) 

Maxwell’s two randomness conditions therefore determine 
the distribution of particle velocities up to a single parameter, the 
constant a in (1).  

Now recall Bernoulli’s formula for the pressure of an ideal gas, 

	 P = ⅔ n 〈E〉, 

 where n is the number of particles per unit volume, E =  ½ m(u2 
+ v2 + w2), the kinetic energy of a particle, and 〈E〉  is the average 
value of E. This formula becomes the equation of state of an ideal 
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gas, P = nT, if we define the temperature T of an ideal gas as ⅔ 〈E〉. 
 Using Maxwell’s formula (1) for the distribution of particle veloc-

ities, we can calculate the average value of the squared particle veloc-
ity, and hence the average kinetic energy, which we then set equal to 
T. This calculation gives a = m/2T, so Maxwell’s formula becomes 

 	 f(u,v,w) = (m/2πT)3/2 exp[– E/T]  	  	          (2)
 

If we want to measure temperature on the Kelvin scale, we 
must replace T in this formula by kT, where k is a constant, called 
Boltzmann’s constant, whose value depends on the units in which we 
choose to measure mass, length, and time. 

Because Maxwell’s formula was not suggested by observational 
or experimental evidence but instead followed from mathematical 
conditions that Maxwell devised to make precise the notion of 
molecular disorder, it had a mixed reception. Most supporters of the 
atomic hypothesis considered the assumption that the equilibrium 
distribution of particle velocities doesn’t favor any position or direc-
tion in space plausible, but many balked at the assumption that in 
thermal equilibrium the components of a gas particle’s velocity are 
statistically uncorrelated.  

Nevertheless, Maxwell and other advocates of atomism used the 
formula to construct quantitative theories of heat conduction, molec-
ular diffusion, and viscous dissipation of internal motions in gases. 
These theories made testable prediction, which matched experiment 
up to experimental error.  

Experimental physics didn’t reach a stage in which Maxwell’s for-
mula (2) could be directly tested for another half-century. Since then, 
physicists have devised many direct tests. In one of the conceptually 
simplest of these a molecular beam on its way to a detector passes 
through narrow slits in two discs spinning at slightly different rates 
around a common axis parallel to the direction of the beam. The 
pair of spinning discs acts as a speed filter, like a pair of timed traffic 
lights. For a given difference between the rates at which the discs 
are spinning, a molecule that gets through a slit in the first disc also 
gets through a slit in the second disc if, and only if, its speed falls 
within narrow limits. This arrangement sorts molecules in the beam 
by their speeds.  
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 The Doppler effect supplies another way of sorting molecules 
in a hot gas by their speeds. Each atom or molecule in a hot gas 
emits light in narrow bands of frequency, called emission lines. An 
observer equipped with a spectroscope sees light whose intensity in 
each narrow frequency band is the sum of the intensities of the light 
waves emitted in this frequency band by the gas’s individual atoms. 
Because each atom is moving relative to the observer, its light is 
shifted at each frequency by an amount proportional to the line-of-
sight component of its velocity. Each emission line emitted by a hot 
gas is accordingly shifted in frequency and broadened: its frequency 
is shifted by an amount proportional to the average line-of-sight 
velocity of the atoms; it is broadened by the atoms’ thermal velocities 
– their velocities relative to the average velocity of the gas molecules. 
The profile (intensity versus frequency) of an emission line has the 
same shape as the distribution of line-of-sight velocities in the gas. If 
that distribution is Maxwellian, so is the emission-line profile.  

 Experiments like these show that Maxwell’s formula accurately 
characterizes the velocity distribution of gas molecules in thermal 
equilibrium. Thus they support the statistical assumptions on which 
the formula rests – assumptions that lend specificity to the notion of 
a “random” distribution of molecular velocities.

In 1867 Maxwell revisited the problem of the equilibrium distri-
bution of molecular velocities. Referring to his earlier assumption 
that mutually perpendicular components of molecular velocity are 
independently distributed, he wrote: “As this assumption may appear 
precarious, I shall now determine the form of the [molecular-velocity 
distribution] function in another way.” Maxwell’s new argument was 
part of a detailed account of how encounters between gas particles 
redistribute energy and momentum. It rests on the assumption that 
the incoming velocities of colliding molecules are statistically uncor-
related, a state of affairs Ludwig Boltzmann later called “molecular 
chaos.” Like the “precarious” assumption in Maxwell’s first derivation 
of formula (2), molecular chaos posits the absence of statistical 
correlations – but between the velocities of different molecules in 
a gas sample instead of between velocity components of the same 
molecule.
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The 1867 paper contained another major result. Maxwell consid-
ered two intermingled samples of different gases. He assumed that 
initially both gases are in thermal equilibrium, each at its own tem-
perature. He then showed that encounters between the molecules of 
the two gases tend to erase differences between their average kinetic 
energies. Earlier we saw that Bernoulli’s relation P =  ⅔ n〈E〉 becomes 
the equation of state of an ideal gas if we define the temperature T 
of a gas in thermal equilibrium as a constant multiple of its average 
molecular kinetic energy 〈E〉 . Maxwell’s argument shows that the 
average molecular kinetic energy of a gas sample in thermal equilib-
rium does indeed have the defining property of temperature: energy 
exchanges between two intermingled gas samples with different 
average molecular kinetic energies tends to equalize these average 
molecular energies.  Notice that this crucial link between Daniel 
Bernoulli’s atomic theory of an ideal gas and the empirical gas laws 
was supplied not by experiments or observations but by the predicted 
outcome of a thought experiment. 

 Entropy of an Ideal-gas Sample 
We’ve seen that certain thermodynamic properties of an ideal-gas 

sample in thermal equilibrium have counterparts in the atomic 
model: 

   Thermodynamic property      Atomic counterpart
Pressure  average momentum transfer per 

unit area
Temperature average particle kinetic energy
Energy total particle kinetic energy
Mass density particle mass × average number 

density
Mass total particle mass

Conspicuously absent from this list is entropy. In 1872 Ludwig 
Boltzmann filled this gap. He defined a statistical counterpart of 
thermodynamic entropy that is also a measure of randomness in 
systems and conditions for which entropy can’t be defined. I’ll refer 
to this measure as randomness. It’s also called statistical entropy. 
Randomness is fundamentally a mathematical property of abstract 
probability distributions. It is a precise mathematical counterpart of 
the word’s colloquial meaning. 
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 In one way Boltzmann’s definition of randomness is less general 
than Clausius’s definition of thermodynamic entropy. Clausius’s 
definition of entropy applies to macroscopic systems in thermal 
equilibrium or local thermal equilibrium. Boltzmann’s definition of 
randomness applies to states of an ideal-gas sample characterized by 
arbitrary distributions of molecular position and velocity.  

 Boltzmann’s 1872 paper also purported to demonstrate that the 
growth of an isolated gas sample’s randomness is a consequence of 
Newton’s laws of motion, applied to the atomic model of an ideal gas 
sample. Although, as we’ll see, Boltzmann’s proof of this claim was 
flawed, it broke new ground. It raised the possibility that Clausius’s 
law of entropy change is a special case of a far broader and more 
deeply rooted generalization about processes that destroy (and, as 
I’ll argue later, also create) order in the physical universe.

Boltzmann’s Formula for the Randomness of a Gas Sample 

We can derive a formula for the (thermodynamic) entropy of an 
ideal-gas sample in thermal equilibrium by combining Clausius’s 
definition of entropy with the equations that relate the energy and 
pressure of such a sample to its temperature, the number of particles 
in the sample, and the sample’s volume. 

We saw earlier that the first law of thermodynamics and Clausius’s 
definition of the entropy S imply the following formula for the 
change in S between neighboring equilibrium states of an enclosed 
gas sample: 

	 dS = dU + P dV   

Let’s apply this formula to an ideal-gas sample. If we choose a tem-
perature scale in which

	 U = NT   and   P = (N/V) T 

then 	 dS = N(dT/T + dV/V).  	  	  	  (3)
 

Since d[log (x/x0)] = dx/x,
 

 	  S = N[log(T/T0) + log(V/V0)] + constant 	               (4)
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T0 and V0 in equation (4) are arbitrary constants. They need to be 
there because the argument of the logarithm function – the quantity 
x in the expression log x – must be a positive pure number; it mustn’t 
depend on how we choose the units of distance, time, and mass. Any 
reference temperature T0 and reference volume V0 will do because, 
as we’ve seen, entropy is undefined up to an additive constant, and 
changing the values of T0 and V0 merely adds a constant to the right 
side of formula (4). 

In Newtonian mechanics six quantities define the state of a parti-
cle – its three position coordinates x, y, z and its three velocity com-
ponents u, v, w. If we know the laws that govern the forces acting on 
a particle and are given the values of these six quantities at a single 
moment, we can use Newton’s law of motion to calculate their values 
at any later or earlier moment. Boltzmann united Maxwell’s velocity 
space with position space to form a six-dimensional state space. The 
state of each particle in a gas sample containing N particles is repre-
sented by a point in this six-dimensional space, and a microstate of 
the whole sample is represented by a cloud of N such points.  

 To construct a statistical description of the state of the cloud 
Boltzmann divided the six-dimensional state space into cells of equal 
six-dimensional volume dxdydzdudvdw. A statistical description of 
the state of the cloud of representative points assigns each cell a frac-
tional occupation number 
f(x,y,z,u,v,w) dxdydzdudvdw or f(τ)dτ, where the Greek letter 
τ (tau) stand for the six coordinates of a representative point 
in a molecule’s state space and dτ stands for the cell volume 
dxdydzdudvdw in this space. We assume we can make the dimen-
sions of a cell so small and the value of N is so large that f(τ) varies 
smoothly from cell to cell, like the density of a continuous fluid. 

If the assembly of N identical particles is a gas sample of volume 
V in thermal equilibrium, the particles are uniformly distributed in 
space, so the fraction of the total number of particles N contained 
in a region of volume dV is dV/V. The particles also have a Maxwell 
distribution in velocity. Finally, Boltzmann assumed that a particle’s 
position isn’t correlated with its velocity. 

Then  f(τ)dτ  = (m/2πT)3/2 (1/V) exp[– E/T] dτ.
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Take the negative logarithm of both sides of this formula, noting 
that log(xk) = k log x, where k is any positive or negative real number:  

	  –log [f(τ)dτ] = E/T + log(T/T0)3/2 + log(V/V0),         (5)

where  	T03/2 = (m/2π)3/2 (dudvdw),  V0 = dx dy dz. 

Only the first term on the right side of equation (5), E/T, varies 
from cell to cell (E is the kinetic energy of a molecule; its average 
value 〈E〉 is 3T/2). Multiply equation (5) through by the fractional 
occupation number of a cell, f(τ)dτ, sum over all the cells, and denote 
the resulting average by angle brackets 〈 〉:

	 〈-log[f(τ)dτ]〉 = 〈E/T +log(T/T0)3/2 + log(V/V0)〉,

	 〈-log[f(τ)dτ]〉 = 〈E/T〉 +log(T /T0)3/2 + log(V/V0),
,

	 =3/2 + log(T/T0 )3/2 + log(V/V0)

Now recall that 

 	  S = N[log(T/T0)3/2 + log(V/V0)] + constant.                (4) 

From equations (5) and (4) we conclude that 

 	 S = N 〈-log f(τ)dτ〉 -log f(τ)dτ.	                                       (6) 

 Like the statistical counterpart of the energy E of an ideal-gas 
sample consisting of N identical particles, the statistical counterpart 
of the sample’s thermodynamic entropy S is N times an average value 
– the average value of the quantity – log f(τ)dτ, the negative loga-
rithm of the fractional occupation number. This quantity isn’t the 
average value of a physical property of the gas particles. Instead it 
characterizes a probability distribution – the distribution of the points 
that represent single-particle states in Boltzmann’s six-dimensional 
position-velocity space.

Boltzmann conjectured that formula (6) defines the atomic coun-
terpart of entropy not just for samples of an ideal gas in thermal 
equilibrium but of any smooth distribution of single-particle states 
in position- velocity space. When the particles are uniformly dis-
tributed in space and have a Maxwell velocity distribution, the for-
mula coincides with the formula for the thermodynamic entropy 
of an ideal gas. But formula (6) defines the randomness of a much 
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wider class of macroscopic states of an undisturbed gas sample than 
Clausius’s definition of thermodynamic entropy. For example, it 
defines the randomness of a gas sample in which all the particles 
have the same speed.   Boltzmann now asked: With the statistical 
counterpart of entropy defined in this way, does Clausius’s law of 
entropy change have a counterpart in his and Maxwell’s statistical 
description of an ideal-gas sample? 

Boltzmann’s Transport Equation and His H Theorem 
In his 1867 paper Maxwell used Newton’s laws of motion to study 

the trajectories of colliding particles. He then used the results of that 
study to describe how particle collisions cause the average values of 
single-particle properties like kinetic energy to change with time. 
Boltzmann deepened and extended Maxwell’s theory. He asked: How 
do particle collisions change the distribution of fractional occupa-
tion numbers in six-dimensional position-velocity space?  

 Boltzmann’s answer to this question, his transport equation, 
equates the rate at which the fractional occupation number of a 
given cell in the position-velocity space of a particle in an ideal-gas 
sample changes with time to the difference between the rate at which 
particles enter the cell and the rate at which they leave the cell.  

Boltzmann’s transport equation became the starting point of a 
flourishing discipline, kinetic theory, which he and his successors 
used to construct testable statistical theories of processes such as 
heat conduction, viscous dissipation of relative fluid motions, and 
the diffusion of one gas through another. 

 Boltzmann also used his description of how molecular collisions 
alter the populations of cells in position-velocity space to prove his 
H theorem (Boltzmann denoted randomness by –H): 

The randomness of an undisturbed gas sample not initially 
in thermal equilibrium increases until it reaches its largest 
possible value, which corresponds to thermal equilibrium.

As you’d expect, Maxwell’s form of the molecular-velocity 
distribution maximizes the distribution’s randomness.  
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 Boltzmann’s proof of the H theorem is logically rigorous if one 
accepts its premises. Unlike the law of entropy non-decrease, it 
applies to any isolated gas sample, not just to samples in local ther-
mal equilibrium. And unlike Clausius’s law of entropy non-decrease, 
the H theorem says that the randomness of an undisturbed gas 
sample not in thermal equilibrium actually increases with time if it 
isn’t already as large as it can be.

 

Criticism of the H Theorem 
Many of Boltzmann’s contemporaries rejected his statistical coun-

terpart of entropy and his H theorem. Some of the critics rejected 
the atomic hypothesis and everything based on it. Advocates of 
Energetics, a school whose members considered the idea that heat 
is molecular motion to be unscientific, were especially energetic in 
their criticisms. The introduction to Part I of Boltzmann’s Lectures 
on Gas Theory (1896)4 contains a long list of “works on Energetics”; 
the foreword to Part II (1898) contains a supplementary and equally 
long list of “attacks on the theory of gases.” Among the distinguished 
critics it cites are Ernst Mach, Pierre Duhem, Henri Poincaré, Robert 
Mayer, Wilhelm Ostwald – and V. Lenin.  

 	 But the criticism Boltzmann took most seriously was raised 
in 1876 by Josef Loschmidt. Loschmidt argued that the H theorem 
cannot show what it purports to show – that the randomness of an 
undisturbed gas sample not initially in thermal equilibrium increases 
with time – because it relies on a description of particle encounters 
based on Newton’s laws of motion. These laws are time-reversible: 
they don’t change when one replaces the time coordinate t by its neg-
ative, thereby reversing the direction in which t increases. So if we 
replace t by –t in Boltzmann’s account of how molecular encoun-
ters alter the populations of cells in position-velocity space and also 
replace his description of the sample’s initial state by a description of 
its final state, his proof of the H theorem becomes a proof that the 
randomness of an undisturbed gas sample decreases with time.  

Here’s how Boltzmann describes Loschmidt’s objection in his 
Lectures on Gas Theory. 

4	 Boltzmann, Ludwig 1895. Lectures on Gas Theory, translated by Stephen G. 
Brush, (New York, Dover Publications, 2011).
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Let a gas be enclosed by absolutely smooth, elastic walls. Initially 
there is an unlikely but molecular-disordered state – for example, 
all the molecules have the same velocity. After a certain time the 
Maxwell velocity distribution will nearly be established. We now 
imagine that at time t, the direction of the velocity of each molecule 
is reversed, without changing its magnitude. The gas will now go 
through the same sequence of states backwards. We have therefore 
the case that a more probable [more highly random] distribution 
evolves into a less probable [less random] one, and the quantity H 
[the negative of randomness] increases as a result of collisions.5 

We can rephrase Loschmidt’s objection to Boltzmann’s derivation 
of his H theorem as a question: How can molecular collisions, gov-
erned as they are by time-reversible laws, produce an irreversible 
macroscopic change in a gas sample? As Boltzmann points out imme-
diately following the passage just quoted, the time-reversed picture 
differs from the picture envisaged in his proof of the H theorem in 
a crucial respect: The proof assumes (as did Maxwell’s earlier proof 
that collisions between the molecules of intermingled gases tend to 
equalize their temperatures) that the incoming (or initial) velocities 
of colliding molecules are uncorrelated. This assumption can’t be true 
in the time-reversed picture imagined by Loschmidt. Suppose, Boltz-
mann writes, that at some initial moment all the molecules have the 
same speed a. Because a collision leaves the combined kinetic energy 
of the collision partners unchanged, the collision partner of a mole-
cule that emerges from its first collision with a velocity b, say, must 
have speed √(2a2 – b2). So in the time-reversed picture, molecules 
with initial speeds b must collide only with molecules with speed 
√(2a2 – b2). The assumption that the initial velocities of colliding 
particles are uncorrelated doesn’t hold in the time-reversed picture. 

Yet this assumption is crucial not only to Boltzmann’s proof of the 
H theorem. It is a special case of an assumption that – as Boltzmann 
emphasized – underlies the entire molecular theory of ideal gases, 
from Bernoulli to Boltzmann. The molecular theory of gases rests on 
the assumption that the states of individual molecules in a gas sample 
are uncorrelated. If this assumption weren’t true, at least to an excel-
lent approximation, we couldn’t characterize the state of an ideal-gas 
sample by the distribution in position-velocity space of the points 
that represent possible states of a single molecule. Since experience 
strongly supports the predictions of the molecular theory of gases, it 

5	 ibid. p. 58.
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also supports the assumption that single-particle states in an isolated 
gas sample are statistically uncorrelated. Why then is the assumption 
true, or at least very nearly true?  

Before addressing that question, we need to consider a theory that 
extends Boltzmann’s theory of an undisturbed ideal-gas sample to 
any undisturbed system of particles whose motions and interactions 
conform to Newton’s laws – Josiah Willard Gibbs’s statistical 
mechanics. 

Gibbs’s Statistical Mechanics 
The theory expounded by Gibbs in his Elementary Principles in 

Statistical Mathematics, Developed with Special Reference to the 
Rational Foundations of Thermodynamics (1902) rests squarely on 
ideas introduced by Maxwell and Boltzmann but takes a giant step 
beyond them. Boltzmann, like Maxwell, assumed that the particles 
of a gas sample are statistically independent; the probability of find-
ing a particle in a particular microstate doesn’t depend on the micro-
states occupied by the remaining N – 1 particles. He could therefore 
represent a macrostate of an undisturbed gas sample by a probability 
distribution of the microstates of a single gas particle. Gibbs dropped 
this assumption. His theory represents the macrostates of any N-par-
ticle system – not just samples of an ideal gas – by a probability dis-
tribution of N-particle microstates. (That is, it assigns a non-negative 
number to every possible N-particle microstate, and these num-
bers add up to 1.) Because Gibbs didn’t assume that the particles 
of a macroscopic system have statistically independent probability 
distributions, this probability distribution – a function of 6N posi-
tion coordinates and velocity components – doesn’t factor into N 
identical functions of a single particle’s six position coordinates and 
velocity components. 

 Gibbs represented the possible microstate of an undisturbed 
system of N interacting particles by a point in a 6N-dimensional 
position-momentum, or phase, space. His account of how the system 
evolves relies on a reformulation of Newton’s laws of motion pub-
lished by William Rowan Hamilton in 1833. 

Hamilton’s version of Newtonian mechanics revealed a hidden 
symmetry between the roles of position and momentum in dynam-
ical processes. It also underpins the most cogent formulation of the 
principles of quantum mechanics.  
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 Following Boltzmann’s example, Gibbs partitioned his phase 
space into identical cells. He represented a probability distribution of 
an undisturbed system’s microstates by a large (in principle infinite) 
collection of points distributed among these cells, and he identified 
the probability that a microstate’s representative point lies in a given 
cell with the cell’s fractional occupation number (or its limiting value 
as the number of cells increases without limit). 

Gibbs called the collection of N-particle microstates and the asso-
ciated probability distribution an ensemble.  The members of a Gibbs 
ensemble are imaginary N-particle systems. As he wrote, “Let us 
imagine a great number of independent systems, identical in nature 
but differing in phase, that is, with respect to their configuration and 
velocity.”6 Gibbs called the fractional occupation numbers of cells 
in the 6N-dimensional phase space probabilities and denoted them 
by the letter P. But whereas the occupation numbers in Boltzmann’s 
theory represent numbers of gas-particles in an actual gas sample, 
Gibbs’s occupation numbers don’t have a concrete interpretation: 
they refer to imaginary replicas of an N-particle system. 

 Having defined an ensemble, Gibbs asked: Which ensembles are 
the statistical counterparts of thermal equilibrium? 

Because a macroscopic system has finite spatial extent and finite 
energy, the points that represent its possible microstates occupy a 
finite region of the 6N-dimensional phase space. Since we can make 
the number of these points as large as we please – the points rep-
resent imaginary replicas after all – we can represent the swarm of 
points that represents them by a continuous fluid of variable density. 
If we stipulate that the total mass of the fluid is 1, the probability 
that a representative point lies in any given region of the phase space 
equals the mass of the fluid within the region. As the system evolves, 
the density of probability fluid changes smoothly at each point.  

 Gibbs now deduces from Hamilton’s equations of motion that 
these changes have a remarkable property. Consider the moving 
point in 6N-dimensional position-momentum space that represents 
a particular evolving microstate. Gibbs proved that the density of 
probability fluid at that moving point is constant in time. He called 
this conclusion “the fundamental equation of statistical mechanics.”

6	 Gibbs, J. Willard, Elementary Principles in Statistical Mathematics, Developed 
with Special Reference to the Rational Foundations of Thermodynamics, (New Haven: Yale 
University Press, 1902) 
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To visualize this conclusion, imagine a swirling fluid of 
variable mass density in physical space. Suppose the color 
of the fluid varies from white to black through shades 
of grey in such a way that the fluid is darker where it is 
denser. If the motion of the fluid preserved the density 
of every sufficiently small fluid element, its color would 
remain unchanged as it moved and changed shape. 

The actual motion of a fluid of variable density, such as 
air, doesn’t have this property. For example, a sound wave 
in air produces alternate compressions and rarefactions; 
fluid elements become smaller and denser as they con-
tract, larger and less dense as they expand. Why does 
the motion of probability fluid in 6N-dimensional posi-
tion-momentum space differ in this way from the motion 
of a real fluid like water or air in physical space?

In important ways the two kinds of motion are similar. 
Newton’s laws of motion govern the flow of a real fluid; 
they also govern – though less directly, of course – the 
flow of probability fluid in 6N-dimensional phase space. 
Moreover, both flows are conservative: one conserves the 
mass of physical fluid; the other conserves the mass of 
probability fluid. Why, then, are the volume and densi-
ty of an element of probability fluid in 6N-dimensional 
position-momentum space constant in time, while the 
volume and density of an element of a compressible fluid 
in physical space vary with time?

Consider an imaginary closed surface, such as a sphere, 
in physical space. Because mass is conserved, during any 
given time interval the mass of fluid inside the surface 
changes by an amount equal to the inflow of mass across 
the bounding surface (counting outflows as negative 
inflows). The same is true of conserved fluids in Euclide-
an spaces with any number of dimensions. (A Euclidean 
space of n dimensions is a space in which the squared 
distance between two points is equal to the sum of the 
squares of the n Cartesian-coordinate differences.) But 
conservation of mass does not entail that the volume of a 
fluid element (and hence its density) never changes.
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Now consider a closed surface in a 6N-dimensional 
position-momentum space. As before, during any given 
interval of time the mass of probability fluid inside the 
surface changes by an amount equal to the inflow of mass 
across the surface. But the mass of probability fluid that 
flows across a surface element of unit area in unit time 
has two parts. The first part results from the fact that the 
3N position coordinates of a point in 6N-dimensional 
position-momentum space that represents an evolving 
microstate change by small amounts during a short time 
interval. The second part is new: it results from the fact 
that the point’s 3N momentum coordinates also change 
by small amounts during that time interval. When we 
calculate the probability current we need to add these two 
contributions. And when we do that, using Hamilton’s 
version of Newton’s laws, we find that the volume, as well 
as the mass, of an element of probability fluid centered 
on a point that represents an evolving microstate never 
changes.7

Earlier we denoted by τ the set of six coordinates of a point in the 
six-dimensional position-velocity space of a gas particle’s state space. 
We denoted by dτ  a volume element in that space; and by f(τ)dτ   
the fractional occupation number, or probability, of a cell of volume 
dτ  centered on the point with coordinates τ. Let’s now use the same 
notation for points, volume elements, and fractional occupation 
numbers in the 6N-dimensional position-momentum space of an 
undisturbed macroscopic system containing N particles. Gibbs’s 
“fundamental equation of statistical mechanics” then says that f(τ), 
evaluated at a moving point τ(t) that represents an evolving micro-
state of the system never changes.  As before, define the randomness 
S of the probability distribution {f(τ)dτ} as the probability-weighted 
average, or mean, of the negative logarithm of the probability

	 f(τ)dτ = 〈-log[f(τ)dτ〉. 

 	 S = 〈-log 〈f(τ)dτ〉.
  

Gibbs’s fundamental theorem implies that if τ(t) denotes the 6N 
coordinates of a moving point that represents an evolving microstate 

7	 ibid.
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of an undisturbed system, then the mass of probability fluid in an 
evolving cell, f[τ(t)]dτ(t), doesn’t depend on the time t. 

So neither do its logarithm and the negative mean of its logarithm, 
the randomness S:  

The randomness of the probability distribution that 
characterizes an evolving macrostate of an undisturbed 
macroscopic system is constant in time.

In marked contrast, the entropy of an undisturbed macroscopic 
system may increase with time. 

Boltzmann showed that an undisturbed gas sample is in thermal 
equilibrium when the randomness of the probability distribution of 
single-particle microstates has the largest value compatible with a 
given value of the mean particle energy 〈E〉. He also showed that  the 
single-particle randomness, multiplied by the number of particles 
N in a gas sample, plays the same role in the statistical theory of 
an ideal-gas sample as Clausius’s entropy does in thermodynamics. 
Gibbs proved the analogous propositions for an undisturbed system 
composed of particles whose motions and interactions are governed 
by Newton’s laws of motion:  

 An undisturbed macroscopic system is in thermal 
equilibrium when the randomness of the probability 
distribution of its microstates has the largest value 
compatible with the mean energy E of the imaginary 
replicas that make up the ensemble that represents 
the system’s macrostate. Call this largest value Smax. 
Smax plays the same role in Gibbs’s statistical description 
of equilibrium states as Clausius’s entropy does in 
thermodynamics. 

 Gibbs also showed, as Maxwell had done for an ideal gas, that the 
parameter T in Maxwell’s formula for the randomness- maximizing 
probability distribution of microstates has the defining property of 
temperature: when two initially undisturbed macroscopic systems 
characterized by randomness-maximizing probability distributions 
with different values of T are brought together and allowed to interact, 
the system with the larger value of T loses energy to the system with 
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the smaller value, and the systems’ combined randomness increases 
during this process.

After 1925, quantum mechanics replaced Newtonian mechanics 
as the fundamental theory of matter and radiation on small scales. 
But thanks to deep structural similarities between quantum mechan-
ics and Hamilton’s formulation of Newton’s laws, the mathematical 
framework of Gibbs’s theory survived this replacement virtually 
unchanged. Gibbs’s theory, modified to fit the new microphysics, 
has succeeded brilliantly in predicting the observable properties of 
matter and radiation in thermal equilibrium.  

It also has an important new feature. The six-dimensional 
position-momentum space, or phase space, of a particle governed by 
quantum mechanics differs from the phase space of a classical parti-
cle. We can partition a classical particle’s phase space into arbitrarily 
small cells of equal (six-dimensional) volume. In contrast, cells in 
the phase space of a quantum particle have a minimum volume, 
determined by Werner Heisenberg’s indeterminacy relations: the 
product of the indeterminacies of a position coordinate and the 
corresponding momentum component can’t be less than h/4π, where 
h is Planck’s constant. So the volume of a cell in the phase space of 
a quantum particle can’t be less than (h/4π)3, and the volume dτ of 
a cell in the 6N-dimensional phase space of a collection of N iden-
tical quantum particles can’t be less than (h/4π)3N. Now recall that 
Boltzmann’s randomness, like Clausius’s entropy, is defined only up 
to an additive constant; only changes in randomness and entropy 
are well defined. In Boltzmann’s theory this is because we can par-
tition the position-momentum space of a classical particle into cells 
of arbitrarily small volume. The smaller we choose a cell’s volume, 
the smaller the cells’ fractional occupation numbers; the smaller the 
cells’ fractional occupation numbers, the larger the average value of 
the logarithm of their reciprocals – Boltzmann’s randomness. For 
quantum particles Heisenberg’s indeterminacy relations imposes a 
lower limit on the volume of a cell in position-momentum space, 
and hence an upper limit on the randomness of an N-particle gas. 
Quantum mechanics makes randomness – not just its changes – well 
defined. I’ll argue later that randomness is an objective property of 
the physical universe. 
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Boltzmann’s molecular theory of gases replaces thermodynamics’ 
description of the equilibrium states of ideal-gas samples by a statis-
tical theory based on the assumption that gases consist of particles 
moving and interacting in ways governed by Newton’s laws of motion. 
Gibbs’s theory extends Boltzmann’s theory to arbitrary macroscopic 
systems. Both theories have enjoyed great predictive success. Yet, as 
the preceding discussion has shown, they don’t fit smoothly together. 
Nor does either theory fit smoothly with thermodynamics:  

— In Boltzmann’s theory the randomness of the 
probability distribution that characterizes a macrostate 
of an undisturbed gas sample containing N particles 
equals the randomness of the probability distribution 
that characterizes a macrostate of a single gas particle, 
multiplied by N. This is a consequence of the assump-
tion that the motions of gas particles are statistically 
uncorrelated. But as discussed below, Gibbs’s theory 
shows that this relation almost never holds. And even 
if it were to hold at one moment, it would immediately 
break down, because, as Boltzmann himself emphasized, 
encounters between gas particles create statistical cor-
relations between the probability distributions of their 
velocities.  
— How can we reconcile Boltzmann’s proof that the 
randomness of an undisturbed gas sample not initially 
in thermal equilibrium always increases with the fact, 
pointed out by Loschmidt, that the proof rests on a 
time-reversible description of the motions of gas particles 
in the sample?  
— How can we reconcile Gibbs’s proof that the 
randomness of a closed system is constant in time with 
Boltzmann’s proof that the randomness of an undisturbed 
sample of an ideal gas increases with time (unless it 
already has its largest possible value)? 
— Gibbs’s proof that the randomness of a closed system 
is constant in time also clashes with Clausius’s law of 
entropy non-decrease. Yet, as we saw, the randomness 
of the probability distribution that characterizes an 
equilibrium state of an ideal-gas sample coincides with 
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the system’s entropy. 
— Finally, Boltzmann’s theory supplies a physical 
interpretation of the probabilities it assigns particle​
microstates. It locates the N points that represent the 
microstates of a gas sample’s N particles in a single 
particle’s six-dimensional position-velocity space, and 
it identifies the probabilities of single-particle states 
with the fractional occupation numbers of (sufficiently 
small) cells in that space. Gibbs’s statistical mechanics, 
in contrast, leaves the probabilities it assigns the micro-
states of a macroscopic system uninterpreted. It identifies 
system microstates with fractional occupation numbers 
of cells in the 6N-dimensional position-momentum space 
of an N-particle system, but the systems whose repre-
sentative points are distributed among these cells are 
imaginary replicas, or, as Erwin Schrödinger called them, 
“mental copies” of a single, real system. “Now what on 
earth could it mean, physically,” Schrödinger asked, “to 
distribute a given amount of energy over [a collection of] 
mental copies?”8  

We can gain insight into these issues by using some mathematical 
properties of randomness stated and proved by Claude Shannon in 
1948 in “A Mathematical Theory of Communication,” the paper that 
launched information theory.9  

Conditional Randomness and Correlation Information 
Let {pi} denote a discrete set of non-negative numbers pi that add 

up to 1. These are the defining properties of probabilities pi and a 
probability distribution {pi}. The index i labels an individual “event” 
in a discrete set of events {i}. (It can also label a possible value Ai of 
a random variable A, a mathematical object that has a discrete set 
of possible values A1, A2, ... with corresponding probabilities p1, p2, 
... . These might be the possible outcomes of a measurement of a 
physical quantity A.) 

We interpret the quantity
 

8	 Schrödinger, Erwin, Statistical Thermodynamics, (Cambridge University
Press, 1948) p. 3.
9	 Shannon, C.E., The Bell System Technical Journal (Vol. 27, July, October, 1948) pp. 

379–423, 623–656.  
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  	  	 S = –Σi pi log pi

as a measure of the probability distribution’s randomness. 
Denote by Smax the largest value of S for which the set of probabilities 

{pi satisfies a given constraint. For example, we might require the 
mean of a molecule’s kinetic energy, Σi pi Ei, to have a given value. 
Boltzmann’s theory characterizes the state of thermal equilibrium of 
a gas sample by the probability distribution that maximizes S subject 
to this constraint.

We interpret the difference 

 	  	              I = Smax – S 

as a measure of a probability distribution’s information. A 
probability distribution is maximally informative if S = 0, that is, if 
one of the system’s possible state has probability 1 and the rest have 
probability zero. It is least informative if S has the largest possible 
value that is consistent with given constraints on the probability dis-
tribution. If the number of possible states is finite and equal to n 
and there are no constraints on the probability distribution, the most 
random distribution assigns the same probability 1/n to each state, 
and S = log n. 

 	 Suppose that the error δ of a particular measurement has a 
certain probability distribution. Assume that the mean error is 0 and 
that the average of the squared error, or mean square error, is some 
real number σ2. The most random probability distribution of mea-
surement errors δ – the distribution whose randomness is as large 
as possible subject to these conditions – is then f(δ) = (1/√(2π σ2))
exp[–δ2/2σ2]. The probability that the error lies between δ and δ + dδ 
is f(δ)dδ. Maxwell’s theory predicts that each component of a mole-
cule’s velocity in a gas sample in thermal equilibrium is distributed 
according to this formula. So the present definition of randomness 
coincides with Maxwell’s. 

 	 Now consider a pair of random variables, A, whose possible 
values are A1, A2, ...,  and B, whose possible values are B1, B2, ... . We 
assign each pair of possible values Ai, Bj a joint probability P(Ai, Bj). 
Summed over all pairs of indices i, j, these joint probabilities add up 
to 1. Summed over the possible values Bj of B, the joint probabilities 
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P(Ai, Bj) add up to P(Ai), the probability that A takes the value Ai 
regardless of the value taken by B: 

		  P(Ai) = Σj P(Ai, Bj).  			   (a) 

Similarly, 	 P(Bj) = Σi P(Ai, Bj).  			   (b) 
 

 	 We can think of the joint probabilities as entries in a table 
whose rows are labeled by the index i and whose columns are labeled 
by the index j. The entries in the ith row sum to P(Ai). So if we divide 
each of these entries by P(Ai) we get a new set of nonnegative num-
bers that sum to 1. These are the conditional probabilities P(Bj|Ai); 
P(Bj|Ai) is the probability that B takes the value Bj given that A has 
the value Ai : 

 

 	  P(Bj|Ai) = P(Ai, Bj)/P(Ai),   Σj P(Bj|Ai) = 1  (i =1, 2, ...) 
 

Similarly, the entries in the jth column sum to P(Bj), so if we divide 
the ith entry in the jth column by P(Bj) we get the conditional prob-
ability P(Ai|Bj), the probability that A takes the value Ai given that B 
has the value Bj : 

 

 	  P(Ai|Bj) = P(Ai, Bj)/P(Bj), Σi P(Ai|Bj) = 1  (j = 1, 2, ...) 

Since the logarithm of a product is the sum of the logarithms of 
the factors, 

 	  log P(Ai, Bj) = log P(Ai) + log P(Bj|Ai) 
 	  	           = log P(Bj) + log P(Ai|Bj)  

If you insert these expressions for log P(Ai, Bj) into the definition 
of S you will find, after a short calculation: 

 	  S({P(Ai, Bj)}) = S({P(Ai)}) + Σi P(Ai) S({P(Bj|Ai)}) 
 	  	              = S({P(Bj)}) + Σi P(Bj) S({P(Ai | Bj)}) 
or, more succinctly, 

 

 	  S(A, B) = S(A) + Σi P(Ai)S(B|Ai) 
 	  	   = S(B) + Σj P(Bj)S(A| Bj)  
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The joint randomness of a pair of random variables A, B equals 
the randomness of one of them plus the weighted average value of 
the conditional randomnesses of the other.  

The random variables A, B are said to be (statistically) independent 
or uncorrelated if, for every pair of indices i, j the joint probability 
P(Ai, Bj) is the product of the individual probabilities: 

 P(Ai, Bj) = P(Ai) P(Bj), just in case A, B are independent, or 
uncorrelated, random variables (RVs). 

And this condition implies that the randomness of the joint prob-
ability distribution of uncorrelated random variables equals the sum 
of the randomnesses of the individual probability distributions: 

 

 	  S({P(Ai, Bj)}) = S({P(Ai)}) + S({P(Bj)}), 

or more succinctly, 

 	  S(A, B) = S(A) + S(B)   if A, B are uncorrelated RVs. 

Now consider the set of all joint probability distributions {P(Ai, Bj)} 
that have a given pair of individual probability distributions {P(Ai)}, 
{P(Bj)} that satisfy formulas (a), (b) above. Using a standard algorithm 
of elementary calculus (the method of Lagrange multipliers), one 
can find the joint probability distributions {P(Ai, Bj)} that maximizes 
the randomness S({P(Ai, Bj)}), or S(A, B), subject to these conditions. 
It turns out to be the joint probability distribution {P(Ai) P(Bj)}.  

The randomness of the joint probability distribution of 
two random variables has its largest possible value if the 
variables are uncorrelated. 

According to the preceding definition of information, the differ-
ence  

 	  	 S({P(Ai)P(Bj)}) – S({P(Ai, Bj)})  

is positive unless A and B are uncorrelated, in which case it 
vanishes.  The difference represents correlation information – infor-
mation associated with correlations between the random variables 
A, B. To repeat: Unless the random variables A and B are statistically 
independent, the randomness of their joint probability distribu-
tion falls short of its largest possible value, the sum of the statistical 
entropies of the probability distributions of the individual variables, 
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by a quantity that represents information associated with statistical 
correlations between the variables. (Two random variables are cor-
related if the probability that one of them takes one of its possible 
values depends on the value taken by the other random variable.)  

 If we have three random variables, A, B, C, a straightforward gen-
eralization of the preceding argument shows that the randomness of 
their joint probability distribution falls short of its largest possible 
value, the sum of the randomnesses of the probability distributions 
of the individual variables, by a quantity that represents information 
associated with statistical correlations between the random variables 
– correlations between the pairs A and B, B and C, A and C, as well 
as triple correlations.   	 With the concept of correlation infor-
mation in hand, we can now resolve the conflicts between Boltz-
mann’s and Gibbs’s theories. We can also get a deeper understanding 
of Loschmidt’s objection to the H theorem and Boltzmann’s reply to 
that objection. 

Boltzmann and Gibbs  
Gibbs represented the possible macrostates of an undisturbed 

system of N interacting particles by probability distributions of 
N-particle microstates. The preceding discussion shows that (a) the 
randomness S of such a probability distribution takes its largest pos-
sible value when the microstates of the N particles have mutually 
independent probability distributions; (b) the N-particle probabil-
ities are then products of single-particle probabilities, and S is N 
times the randomness of the single-particle probability distribution; 
and (c) the difference between S and its largest possible value rep-
resents information associated with correlations between variables 
that refer to different particles.  

 Boltzmann assumed, in effect, that correlation information 
is initially absent in an N-particle gas sample; the N-particle ran-
domness is then initially equal to N times the single-particle ran-
domness. Gibbs proved, however, that the N-particle randomness 
of any isolated system is constant in time. Boltzmann’s response to 
Loschmidt’s criticism of the H theorem shows that he understood 
that particle collisions create statistical correlations between par-
ticles. His proof of the H theorem shows that particle collisions 
initially create correlation information – that in an undisturbed gas 
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sample, an increase in single-particle randomness is accompanied 
by an equal increase in correlation information. Collisions transform 
single-particle information into correlation information.  

Boltzmann’s proof of the H theorem would be valid if, and only if, 
the correlation information created by the decay of single-particle 
information immediately left the system – if, say, it leaked into the 
system’s surroundings. 

 And if correlation information tended to leak into a nominally 
undisturbed system’s surroundings, the following discussion shows 
that we would also be able to resolve the conflict between Clausius’s 
law of entropy non-decrease and Gibbs’s theorem that the random-
ness of the probability distribution that characterizes a macroscopic 
system’s macrostate is constant in time. We’d then be led to ask: Under 
what conditions does correlation information leak out of a nominally 
undisturbed macroscopic system? And is there any reason to suppose 
that such conditions regularly occur? 

Gibbs’s Theorem and Clausius’s Law 
Gibbs’s definition of the randomness of an undisturbed macro-

scopic system applies to a wider class of macroscopic systems than 
Clausius’s definition of thermodynamic entropy. Yet Gibbs proved 
that the randomness of an isolated, or undisturbed, system is con-
stant in time, whether or not the system is in a state of thermal 
equilibrium. In contrast, the system’s thermodynamic entropy can 
increase with time if the system is not initially in thermal equilib-
rium. Gibbs’s proof that the randomness of an undisturbed system 
is constant in time is simple and straightforward. His “fundamental 
equation of statistical mechanics” shows that both the volume and 
the “mass” of an element of probability fluid centered on a point that 
represents an undisturbed system’s evolving microstate are constant 
in time.   	  

In Chapter XII of his Elementary Principles of Statistical Mechanics 
Gibbs addresses this conflict between his theory and Clausius’s law 
of entropy non-decrease. He argues that the probability fluid in 
6N-dimensional phase space changes with time like a stirred liquid. 
Suppose the liquid contains coloring matter of variable density.   

If we give the liquid any motion whatever … the density of the col-
oring matter at any same point [i.e., any point moving with liquid] 
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will be unchanged.... Yet no fact is more familiar to us than that 
stirring tends to bring a liquid to a state of … uniform densities of 
its components. … 10 

Imagine the region occupied by the liquid to be divided into cells 
of equal volume. No matter how small we make these cells, the dis-
tribution of coloring matter will eventually appear to be uniform on 
that scale. In language introduced by Gibbs’s successors, the “coarse-
grained” probability distribution becomes increasingly uniform 
while the “fine-grained” distribution never changes. Some of Gibbs’s 
successors therefore proposed to identify thermodynamic entropy 
with the coarse-grained randomness of the probability distribution 
that characterizes a macrostate of an undisturbed system in Gibbs’s 
theory.. 

 Gibbs’s argument doesn’t, however, provide a criterion for the 
scale of coarse-graining. More important, while his analogy between 
the flow of probability fluid in phase space and the flow of a col-
ored liquid is illuminating, it doesn’t supply a reason for the temporal 
asymmetry of the process. Because the equations that govern the 
motion of an ideal fluid are time-reversible, any description of the 
mixing process is likewise reversible if we exclude the effects of 
molecular diffusion (as Gibbs does). In a single brief passage Gibbs 
addresses this problem. He suggests that the conflict we’ve been 
discussing reflects an inability of mathematical models to capture 
physical reality:

 

But while the distinction of prior and subsequent events may be 
immaterial with respect to mathematical fictions, it is quite other-
wise with respect to the events of the real world. It should not be 
forgotten, when our ensembles are chosen to illustrate the proba-
bilities of events in the real world, that while the probabilities of 
subsequent events may often be determined from the probabilities 
of prior events, it is rarely the case that the probabilities of prior 
events can be determined from those of subsequent events, for we 
are rarely justified in excluding the consideration of the antecedent 
probability of the prior events. 11 

Whereas a realistic picture of the physical world distinguishes 
between the directions of the past and the future, Gibbs’s statistical 
mechanics, like Boltzmann’s kinetic theory of gases, rests on 
mathematical laws – Newton’s laws of motion – that don’t make this 
distinction.

10	 Gibbs  Elementary Principles  pp. 144-5.
11	 Gibbs Elementary Principles p. 150.
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Toward a Resolution 
Although Clausius’s law of entropy non-decrease rests on an 

empirical generalization (that no cyclic engine can convert heat 
drawn from a single source into mechanical energy and leave the rest 
of the world unchanged), no physical law has been confirmed more 
strongly or in more different ways. Yet Gibbs’s statistical mechan-
ics, which supplies what Gibbs in the subtitle of his book called “a 
rational foundation” for thermodynamics, predicts that the statis-
tical counterpart of the entropy of an undisturbed system is con-
stant in time. If both Clausius and Gibbs are right, as I think they 
are, it follows that the systems for which Clausius’s law holds aren’t, 
strictly speaking, undisturbed. For if they were, and if the domain 
of statistical mechanics includes the domain of thermodynamics 
(as it surely does), Gibbs’s theorem implies that the law of entropy 
non-decrease is false. So we’re led to ask: When are we justified in 
treating macroscopic systems as if they didn’t interact at all with the 
outside world? 

 We can think of any macroscopic system as part of a larger mac-
roscopic system. If we take that system to be large enough, we are 
surely justified in neglecting its interaction with its environment 
when we describe what is happening in the original system. Now 
recall Gibbs’s remark that “while the distinction of prior and sub-
sequent events may be immaterial with respect to mathematical 
fictions, it is quite otherwise with respect to the events of the real 
world.” Gibbs’s statistical mechanics applies to undisturbed mac-
roscopic systems – systems that do not interact at all with the out-
side world. The Second Law, in contrast, refers directly to the world 
of experience.12 It refers neither explicitly nor implicitly to undis-
turbed systems, which are mathematical fictions. This line of rea-
soning suggests that by investigating the environments in which 
macroscopic systems are usually embedded and how the nominally 
isolated systems of experimental macrophysics interact with these 
environments, we may be able to do three things: reconcile Gibbs’s 
theorem on the constancy of entropy’s statistical counterpart with 
the law of entropy non-decrease; reconcile Gibbs’s theorem with 

12	 “We, therefore, put forward the following proposition as being given directly by 
experience: It is impossible to construct an engine which will work in a complete cycle, and 
produce no effect except the raising of a weight and the cooling of a heat-reservoir.” Max 
Planck, Treatise on Thermodynamics, trans. Alexander Ogg. Third edition translated from 
the seventh German edition. Dover Publications, New York, 1945. 
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Boltzmann’s H theorem and with the postulate of molecular chaos, 
which underpins both Maxwell’s and Boltzmann’s gas theories; and 
counter Loschmidt’s objection to the H theorem.  

Physicists recognized early on that they could gain insight into 
the mathematical regularities that lie behind appearance by mini-
mizing interactions between the objects they studied in their labo-
ratories and the outside world, and by ignoring these interactions in 
their theories. Galileo’s experimental and theoretical studies of the 
(almost) frictionless motion of bodies sliding down inclined planes 
illustrate this strategy. But whereas macroscopic systems can be 
effectively insulated against exchanges of heat, mechanical energy, 
and momentum with their environments, it’s much harder to insu-
late them against exchanges of information (in the technical sense 
defined earlier) with their environments. Suppose now that nominally 
undisturbed macroscopic systems are normally embedded in highly 
random environments, and consider an isolated system composed 
of a nominally undisturbed macroscopic system S and an extensive 
(but bounded) random environment 00 – a system characterized by 
a probability distribution of microstates whose randomness has its 
largest possible value. By Gibbs’s theorem, the randomness of the 
combined system S + E is constant in time. But, as Boltzmann’s proof 
of his H theorem implies, collisions between molecules of S and mol-
ecules of E at the interface between S and E create molecular correla-
tions. Information associated with these correlations flows from S to 
E. Hence the randomness of S increases, while the randomness of E 
decreases by an equal amount. The transfer of correlation informa-
tion from S to its environment preserves the mutual statistical inde-
pendence of the single-particle probability distributions and causes 
the randomness of the N-particle distribution to increase steadily 
with time – a stronger – as well as more widely applicable –statement 
than that provided by the law of entropy non-decrease.  

But what justifies the assumption that (actual) macroscopic sys-
tems are embedded in random environments? The assumption of 
primordial randomness implies that  

A complete description of a macroscopic system’s initial 
state contains just the information created by the system’s 
history, which includes an account of how the initial state 
was prepared.
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 This supplies a framework – but only a framework – for address-
ing what the physicist Nico Van Kampen13 has called “the main 
problem in the statistical mechanics of irreversible processes:” What 
determines the choice of macrostates and macroscopic variables?   

 Van Kampen has also emphasized the role of “repeated random-
ness assumptions” in theories of stochastic processes:

 

This repeated randomness assumption is drastic but indispensable 
whenever one tries to make a connection between the micro-
scopic world and the macroscopic or mesoscopic levels.  It appears 
under the aliases “Stosszahlansatz,” “molecular chaos,” or “random 
phase approximation,” and it is responsible for the appearance 
of irreversibility.  Many attempts have been made to eliminate 
this assumption, usually amounting to hiding it under the rug of 
mathematical formalism.14  

To derive his transport equation and his H theorem, Boltzmann 
had to assume (following Maxwell) that the initial velocities of 
colliding molecules in a closed gas sample are uncorrelated.  This 
assumption can’t hold for non-equilibrium states, because when the 
information that characterizes a non-equilibrium state decays, resid-
ual information associated with molecular correlations comes into 
being at the same rate. Indeed Poincaré proved that if you wait long 
enough, the (classical) microstate of an undisturbed system whose 
particles move and interact in ways governed by Newton’s laws of 
motion eventually returns to a state that approximates the system’s 
initial state arbitrarily closely. However, because a gas sample’s res-
ervoir of microscopic information is huge, molecular chaos may 
prevail to a good approximation for periods much shorter than the 
Poincaré recurrence time, which is typically much greater than the 
age of the universe.   

Another approach to the problem of justifying repeated random-
ness assumptions starts from the remark that no gas sample is an 
island unto itself.  Almost sixty years ago, J. M. Blatt15 argued that the 
fact that actual gas samples interact with their surroundings justifies 

13	 N. G. van Kampen in Fundamental Problems in Statistical Mechanics, Proceedings 
of the NUFFIC International Summer Course in Science at Nijenrode Castle, The Netherlands, 
August, 1961, compiled by E. G. D. Cohen (Amsterdam, North-Holland, 1962), especially 
pp. 182-184.

14	 N.G. van Kampen, Stochastic Processes in Physics and Chemistry, 3d edition 
(Amsterdam, Elsevier, 2007), p. 58.

15	 J. M. Blatt, Prog. Theor. Phys. 22, 745 (1959).
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the assumption that correlation information is permanently absent 
in a nominally closed gas sample. The walls that enclose a gas sample 
are not perfectly reflecting.  When a gas molecule collides with a 
wall, its direction and its velocity acquire tiny random contributions.  
These leave the single-particle probability distribution virtually 
unaltered, but they alter the histories of individual molecules, 
thereby disrupting multi-particle correlations.  Blatt distinguished 
between states of true equilibrium, characterized (in the vocabulary 
of the present essay) by an information-free probability distribu-
tion, and quasi-equilibrium states, in which single-particle infor-
mation is absent but correlation (or residual) information is pres-
ent.  With the help of a simple thought experiment, he argued that 
collisions between molecules of a rarefied gas sample and the walls 
of its container cause an initial quasi-equilibrium state to relax into 
true equilibrium long before the gas has come into thermal equilib-
rium with the walls.   Earlier, P.J. Bergmann and J.L. Lebowitz16 con-
structed and investigated detailed mathematical models of the relax-
ation from quasi-equilibrium to true equilibrium through external 
“intervention.”  More recently, T.M. Ridderbos and L.G. Redhead17 
have expanded Blatt’s case for the interventionist approach.  They 
constructed a simple model of a famous experiment, the spin-echo 
experiment18, in which a macroscopically disordered state evolves 
into a macroscopically ordered state.  They argued that in this 
experiment (and more generally) interaction between a nominally 
isolated macroscopic system and its environment mediates the loss 
of correlation information. 

Blatt noted that this “interventionist” approach “has not found 
general acceptance.”

 

There is a common feeling that it should not be necessary to intro-
duce the wall of the system in so explicit a fashion.  ... Further-
more, it is considered unacceptable philosophically, and some-
what “unsporting,” to introduce an explicit source of randomness 
and stochastic behavior directly into the basic equations.  Statis-
tical mechanics is felt to be a part of mechanics, and as such one 
should be able to start from purely causal behavior.19  

16	 P. J. Bergmann and J. L. Lebowitz, Phys. Rev. 99, 578 (1955); J. L. Lebowitz and P. 
J. Bergmann, Annals of Physics 1, 1 (1959).

17	 T. M. Ridderbos and M. L. G. Redhead, Found. Phys. 28, 1237 (1988).
18	 E. L. Hahn, Phys. Rev. 80, 580 (1950).
19	 J. M. Blatt, Prog. Theor. Phys. 22, 745 (1959), p. 747.
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 Derivations of Boltzmann’s H theorem and its generalization 
that rely on decoherence20 exemplify and significantly extend the 
interventionist approach.  These derivations assume that macro-
scopic systems are initially in definite quantum states but interact 
with random environments.  Under these conditions, environmental 
interactions transfer information very effectively from the system to 
its surroundings.  Microscopic information that is wicked away from 
the system disperses outward, eventually getting lost in interstellar 
and intergalactic space.    

 Because the microstates of undisturbed systems evolve reversibly, 
a theory that assigns macroscopic systems (or the universe) definite 
quantum states cannot provide a framework for theories that distin-
guish in an absolute sense between the two directions of time.  The 
historical approach sketched in this book offers such a framework 
because by linking the initial states of macroscopic systems to states 
of the early universe it supplies a cosmological context for theories 
of irreversible processes. Because the probability distributions that 
characterize the initial states of macroscopic systems depend on 
their histories, there can be no genuine laws about initial conditions, 
only historical generalizations. For example, macroscopic systems 
cannot usually be prepared in definite quantum states; but physicists 
have succeeded in preparing superconducting quantum interference 
devices (SQUIDs) in superpositions of macroscopically distinct 
quantum states.  Again, macroscopic systems are usually microscop-
ically disordered; but Hahn’s spin-echo experiment showed that this 
is not necessarily the case. A historical narrative based on the strong 
cosmological principle and the assumption of primordial random-
ness predicts that macroscopic systems are usually embedded in 
random environments and that their initial states usually contain 
only information associated with the values of macroscopic variables.  
However, as the spin-echo experiment shows, macroscopic systems 
can be prepared in states that do contain microscopic information.    

20	 M. Schlosshauer, Decoherence and the Quantum-to-Classical Transition, corrected 
2d printing (Berlin, Springer, 2008).
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      The Measurement Problem 

		  Figure 2 . The Stern-Gerlach experiment	  
Some atoms – silver, for example – have magnetic moments: in 

a magnetic field they behave as if they were tiny bar magnets. In 
1922, three years before the birth of quantum mechanics and two 
years before Samuel Goudsmit and George Uhlenbeck proposed that 
electrons have an intrinsic spin and an intrinsic magnetic moment, 
physicists Otto Stern and Walter Gerlach devised a now classic 
experiment to measure the strength of a silver atom’s magnetic 
moment. (Because silver atoms have a single valence electron, they 
have a magnetic moment equal to the electron’s magnetic moment.) 
Their experimental setup included a vertical magnetic field whose 
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field-lines diverged from top to bottom. When a silver atom travel-
ing in a horizontal direction enters such a field, classical electromag-
netic theory predicts that it is deflected upward or downward by an 
amount proportional to the cosine of the angle its magnetic moment 
makes with the field. In the Stern-Gerlach experiment (Figure 2) 
the atom, after emerging from the diverging magnetic field, strikes a 
detector, where it leaves a permanent trace. The height of this trace 
above or below the point at which the atom would have struck the 
detector if it hadn’t been deflected by the magnetic field is propor-
tional to the vertical component of the atom’s magnetic moment. So 
if we knew the initial orientation of the atom’s magnetic moment we 
could infer its magnitude from the height of the trace. This is the 
quantity Stern and Gerlach set out to measure. 

The experiment was done not with a single silver atom but with 
a narrow beam of silver atoms. The atoms had nearly the same hor-
izontal velocities but randomly oriented magnetic moments. So 
Stern and Gerlach expected that the heights of the traces produced 
by individual atoms would be distributed smoothly along a vertical 
strip, whose length would be a calculable multiple of a silver atom’s 
magnetic moment. To their surprise the traces of individual atoms 
clustered around the points that corresponded to the two extreme 
orientations of the magnetic moment, as if half of the magnetic 
moments had been initially parallel to the field, half antiparallel. 
Yet the conditions of the experiment ensured that before the atoms 
entered the field their magnetic moments were randomly oriented. 
What was going on?  

 Quantum mechanics eventually answered the question. Its laws 
predict that under the conditions of the Stern-Gerlach experiment 
the magnetic moment of a silver atom must exhibit one of two equal 
values, parallel or antiparallel to the magnetic field.  But while this 
prediction, along with countless other similar predictions, agrees 
with experiment, physicists still – after more than 90 years – don’t 
agree about how to interpret the theory on which it rests. They 
disagree about how that theory relates to classical physics and the 
world of experience. That disagreement in turn reflects, in part, a 
diversity of opinion about the nature of chance and its role in physi-
cal theories – questions that also underlie the issue of free will versus 
determinism. 
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The Classical World and the Quantum World
Classical physics both refines and extends commonsense notions 

about the physical world. The world of classical physics is made up of 
objects with measurable properties, usually called “dynamical vari-
ables” or just “physical quantities.” Physical quantities have definite 
values, which represent the outcomes of ideal error-free measure-
ments and which define the physical state of the system they refer to. 
For example, at each moment a classical particle has a definite posi-
tion, specified by its three position coordinates in some coordinate 
system, and a definite velocity, specified by its three velocity compo-
nents in that coordinate system; and these six quantities define its 
physical state, which varies smoothly with time in a way governed 
by Newton’s laws of motion and appropriate force laws, including 
Newton’s law of gravitation. 

Some of the physical quantities of classical physics have 
counterparts in quantum theory, where they go by the same names. 
Among these properties are position, velocity, energy, linear momen-
tum, and angular momentum. Many relations between classical 
quantities also have quantum counterparts. For example, the for-
mulas that express a particle’s momentum, kinetic energy, potential 
energy and angular momentum in terms of its position and velocity 
have the same form in classical physics and quantum physics.  

But the mathematical objects that represent the quantum coun-
terparts of classical quantities don’t always have definite numerical 
values when the system they refer to is in a definite state. For exam-
ple, while the electron in a hydrogen atom can be in a state of definite 
energy, neither the quantum counterparts of its position coordinates 
nor the quantum counterparts of its momentum components have 
definite values in such a state.

Because quantum dynamical variables can’t in general be assigned 
definite numerical values, the outcome of an ideal error-free mea-
surement of a quantum dynamical variable that refers to a quantum 
system in a definite state isn’t predictable in general. It does, though, 
have a predictable set of possible values. These are called the physical 
quantity’s eigenvalues. For example, the Stern-Gerlach experiment 
shows that the magnetic moment of a silver atom has just two eigen-
values, +h/4π and –h/4π, where h is the constant introduced in 1900 
by Max Planck in his semi-empirical formula for the frequency 
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distribution of thermal radiation.) Each eigenvalue of a physical 
quantity is associated with one or more eigenstates. 

 

An ideal measurement of a physical quantity has a 
predictable outcome just in case the system to which the 
quantity refers is in one of the quantity’s eigenstates. The 
measurement then yields the corresponding eigenvalue.

This statement is the most basic of the rules that link the 
mathematical formalism of quantum mechanics to the mathematical 
formalisms of classical theories and to experience.  

Different physical quantities that refer to the same system needn’t, 
and in general don’t, have the same eigenstates. For example, the 
energy eigenstates of the electron in a hydrogen atom are not eigen-
states of either the electron’s position coordinates or its velocity com-
ponents. Even if an electron is in a state of definite energy it doesn’t 
have a definite orbit.  

An undisturbed, or isolated, system needn’t be in an eigenstate 
of any of the system’s physical quantities, including its energy. But 
every state of the system can be expressed as a superposition of the 
eigenstates of any physical quantity that pertains to the system. That 
is, the wavefunction (or state vector) that represents a given state can 
be expressed as a linear combination – a sum of multiples – of wave-
functions (or state vectors) that represent eigenstates of any given 
physical quantity that pertains to the system. The coefficients in such 
linear combinations are complex numbers, numbers of the form a 
+ bi, where a and b are real numbers and i denotes the square root 
of –1. For example, we can express the wavefunction that represents 
an arbitrary state of the electron in a hydrogen atom as a sum of 
complex multiples of wavefunctions that represent states of definite 
energy. 

The mathematical language of quantum theory expresses these 
highly non-intuitive (and philosophically opaque) properties of 
physical quantities and physical states of molecules, atoms, sub-
atomic particles, and other quantum systems precisely and unam-
biguously. These are the language’s main features:

Quantum states. Every isolated, or undisturbed, physical 
system has its own state space. The mathematical objects 
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that inhabit state space are called wavefunctions or, more 
generally, state vectors. Each state vector represents a 
possible state of the system. For example, an electron has 
two possible spin states, represented by a pair of state 
vectors. If a vertical magnetic field is present, an experi-
ment designed to exhibit an electron’s magnetic moment, 
which is proportional to its spin, will show either that 
the magnetic moment and the spin point up or that they 
point down. Spin-up and spin-down are the only two 
possible outcomes of such an experiment, and in a series 
of identical experiments they occur equally frequently. 

 

State vectors combine with one another and with numbers much 
like vectors in Euclidean space. 

 

Vectors and their algebra. Let u denote a vector in 
Euclidean space. It is defined by its direction and length. 
We can picture it as a free-floating arrow, untethered to 
any particular point. If c is a positive real number, cu is 
also a vector, represented by an arrow whose length is c 
times the length of the arrow that represents u. If c is a 
negative real number, cu is the vector whose direction 
is opposite to the direction of u and whose length is |c| 
times the length of u, where |c| denotes the absolute value 
of c. If u1 and u2 are any two vectors, their sum u1+ u2 is 
represented by an arrow you can construct by joining the 
arrows that represent u1 and u2 end to tip in either order 
(while preserving their lengths and directions), then join-
ing the free end to the free tip. 

 

State vectors in an undisturbed physical system’s state 
space have exactly the same algebraic properties, except 
that the constant c in the preceding account is a complex 
number. Thus if ψ1 and ψ2 are state vectors in the state 
space of a given system and a and b now denote any 
complex numbers, then aψ1 + bψ2 is also a state vec-
tor in the same space, representing one of the system’s 
possible states. The state vector aψ1 + bψ2  represents a 
superposition of the states represented by ψ1 and ψ2.
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Superpositions of quantum states have no counterpart in the 
language of classical physics (or in ordinary language). They are 
responsible for the most counterintuitive features of the quantum 
world. For example, the cat in Erwin Schrödinger’s  famous thought 
experiment is in a superposition of the states “dead” and “alive” until 
its interaction with the world of experience puts it into one state or 
the other, just as in the Stern-Gerlach experiment a silver atom’s 
interaction with the measuring apparatus puts into a definite classi-
cal state, “up” or “down.”  

 	 Observables. The language of quantum physics rep-
resents physical quantities by mathematical objects called 
observables, a subclass of a broader class of objects called 
operators. Like the variables that represent physical quan-
tities in Newtonian physics, observables (as well as other 
operators) can be added to one another, multiplied by 
complex numbers, and multiplied by one another. And 
relations between Newtonian variables have counterpart 
in relations between the corresponding observables. But 
multiplication of operators (including observables) is non-
commutative: if O1 and O2 are operators, O1O2 need not 
equal O2O1. In particular, the observables that represent 
a particle’s position coordinates don’t commute with the 
operators that represent the corresponding momentum 
components. Heisenberg’s indeterminacy relations are a 
consequence of the fact that “conjugate” physical quan-
tities, like a position coordinate and the corresponding 
momentum component or like a particle’s energy and its 
time coordinate, don’t commute.  

Physics texts and papers in physics journals often distinguish the 
quantum counterparts of classical variables by adding a circumflex 
ˆ or a suffix, like op, to the symbol that represents the corresponding 
classical variable, if there is one, writing Ê or Eop for the quantum coun-
terpart of energy E. But physicists customarily use the same words, 
such as position, momentum, and energy, for classical variables 
and their quantum counterparts, relying on context to distinguish 
between them. In nontechnical contexts the failure to distinguish 
between classical variables and their quantum counterparts can lead 
to confusion. Consider the Stern-Gerlach experiment. Stern and 
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Gerlach thought of silver atoms as classical objects. They thought 
they were measuring the vertical position coordinates of silver atoms 
in the beam by recording the positions at which the atoms struck a 
detector. In 1923, when Stern and Gerlach carried out their experi-
ment, the phrases “the vertical position coordinate of a silver atom” 
and “the height at which an atom strikes the detector” referred to the 
same physical quantity, the z coordinate of a silver particle. But once 
quantum mechanics had been formulated as a mathematical theory, 
this was no longer true. “The vertical position coordinate of a silver 
atom” became a quantum observable, represented by an operator, 
while “the height at which an atom strikes the detector” remained a 
classical quantity. What Stern and Gerlach measured, and what the 
classical theory of the motion of a tiny bar magnet in an inhomoge-
neous magnetic field (incorrectly) predicted, were values of a classi-
cal position coordinate. What quantum theory predicts, through a 
rule that links the quantum world to the world of experience, is the 
average value of the classical counterpart of a quantum observable. 

Before they strike the detector, each silver atom is in a superposi-
tion of two distinct position states, corresponding to the fact that a 
silver atom’s magnetic moment has just two eigenstates. But the atom 
isn’t in two places at the same time. Nor is it strictly accurate to say 
that the detector records the atom’s position. Before the atom inter-
acts with the detector its position is represented by an operator and 
doesn’t have a definite value. Afterwards the same atom does have 
a definite position, which coincides with a spot on a photographic 
plate.  

More generally, in a quantum measurement a system in a definite 
quantum state interacts with a macroscopic measuring device, such 
as a photographic plate or a particle detector, that is in a definite clas-
sical state. The interaction causes the combined system, consisting 
of the measured system plus the measuring device, to evolve rapidly 
from its initial state, in which the measured system is in a definite 
quantum state and the measuring device is in a definite classical 
state, to a final joint state, in which the measured system is in an 
eigenstate of the measured quantity and the measuring device is in a 
corresponding “pointer state.” The rapid evolution of the combined 
system during a quantum measurement is sometimes called a “jump.” 
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Here’s how Dirac describes the measurement process in the fourth 
edition of The Principles of Quantum Mechanics (1967; first edition 
1930):  

When we measure a real dynamical variable ξ, the disturbance 
involved in the act of measurement causes a jump in the state of the 
dynamical system. From physical continuity, if we make a second 
measurement of the same dynamical variable ξ immediately after 
the first, the result of the second measurement must be the same 
as that of the first. Thus after the first measurement has been made, 
there is no indeterminacy in the result of the second. Hence, after 
the first measurement has been made, the system is in an eigen-
state of the dynamical variable ξ, the eigenvalue it belongs to being 
equal to the result of the first measurement. This conclusion must 
still hold if the second measurement is not actually made. In this 
way we see that a measurement always causes the system to jump 
into an eigenstate of the dynamical variable that is being measured, 
the eigenvalue this eigenstate belongs to being equal to the result of 
the measurement.1 (italics added)

Dirac doesn’t describe the rapid evolution of the combined system 
in a quantum measurement. He fills this gap by what he calls a “gen-
eral assumption.” Consider an observable O and a physical state s 
of the system of which O is a property. Dirac’s general assumption 
equates the average outcome of a large number of identical ideal mea-
surements of O when the system O pertains to is in state s to a real 
number constructed according to a simple rule from the operator O 
and the state vector s.  

Dirac’s general assumption contains – and extends in the simplest 
possible way – our earlier basic rule: if a system is in an eigenstate of 
the observable O, an ideal measurement of O yields the correspond-
ing eigenvalue of O. It implies further that if the system isn’t in an 
eigenstate of O, the outcome of an ideal measurement is one of O’s 
eigenvalues. Finally, it yields a formula for the relative frequencies of 
the possible measurement outcomes in an infinite series of identical 
measurements of O when the system is in state s.  

Dirac’s general assumption links the mathematical formalism 
of quantum mechanics to measurement outcomes efficiently and 
unambiguously. It has enabled physicists to carry out experimental 

1	 Dirac, P.A.M., The Principles of Quantum Mechanics, fourth edition (revised), 
(Clarendon Press, Oxford, 1967), p. 46.
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tests of quantum theories of molecules, atoms, and subatomic par-
ticles and of macroscopic objects such as crystals, conductors, and 
semi-conductors – objects whose observable properties depend 
critically on their quantum microstructure. Up until now all such 
predictions have been confirmed to the accuracy of the models and 
calculations on which they rest.  

What is missing from Dirac’s account of measurement is a descrip-
tion of the measurement process itself – the rapid evolution, during 
a measurement, of the joint state of the combined system. Can quan-
tum theory supply such a description? This is the measurement 
problem. In a recent popular article, “The Trouble With Quantum 
Mechanics,” the physicist Steven Weinberg succinctly defines the 
core of the problem: 

If we regard the whole process of measurement as being governed 
by the equations of quantum mechanics, and these equations are 
perfectly deterministic, how do probabilities get into quantum 
mechanics?2

 

“The Quantum-to-Classical Transition” 
Introductory textbooks on quantum mechanics usually have a 

section entitled “The Hydrogen Atom.” The hydrogen atom the text-
books describe is a fictitious object because, unlike actual hydrogen 
atoms, it doesn’t interact with the outside world. Yet the quantum 
theory of an undisturbed hydrogen atom accurately predicts the 
measurable properties of real hydrogen atoms, such as the frequen-
cies at which a hot sample of atomic hydrogen gas emits light and a 
cool sample absorbs light.  

In contrast, an account of quantum measurement that neglects the 
interaction between the measuring device and its environment fails 
spectacularly. For, as Weinberg emphasized, an undisturbed quan-
tum system, like an undisturbed classical system, evolves determin-
istically; but the measurement postulate, Dirac’s “general assump-
tion,” predicts (and experiments confirm) that in general a quantum 
measurement has more than one possible outcome. Thus we can 
neglect the interaction between a physical system and its environ-
ment, at least in a first approximation, in some circumstances but 
not in others. What, precisely, are these circumstances?  
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An undisturbed quantum system can be in a state that doesn’t 
change with time and in which its energy, like the energy of an 
undisturbed classical system, has a definite value. But unlike an 
undisturbed classical system, whose energy has a continuous range 
of possible values, an undisturbed quantum system that occupies a 
bounded region of physical space has a discrete set of possible ener-
gies and a corresponding discrete set of possible quantum states. In 
1970 physicist Hans Dieter Zeh pointed out that we can assign the 
system a definite quantum state if and only if the difference between 
the energy of that state and the energies of neighboring states greatly 
exceeds the energy associated with the system’s interaction with its sur-
roundings. If this condition isn’t fulfilled, transitions between neigh-
boring energy levels occur so rapidly that the system can no longer 
be assigned a state of definite energy. 

Atoms and molecules in dilute gases satisfy this condition because 
the intervals between their low-lying energy levels typically exceed 
the energies associated with the interaction between an atom or 
molecule and its neighbors. In contrast, as I mentioned earlier, mac-
roscopic systems have very closely spaced energy levels. Under ordi-
nary experimental conditions the intervals between adjacent energy 
levels of a macroscopic object are much smaller than the energy 
associated with the object’s interaction with its environment. So 
even if the laws of quantum mechanics apply to isolated, or undis-
turbed, macroscopic objects, as experimental evidence strongly 
suggests they do, these objects cannot, under ordinary conditions, 
be assigned definite quantum states.  

This remark is the starting point of decoherence theories of quan-
tum measurement. These theories seek to refine and improve an 
account of quantum measurement proposed in 1932 by the math-
ematician John von Neumann. Von Neumann set out to replace 
Dirac’s general assumption by an account of the measurement 
process itself. He idealized the combined system in a quantum 
measurement – the measured system plus the measuring appara-
tus – as an undisturbed system in a definite quantum state. He also 
assumed that if the measured system is initially in an eigenstate of 
the measured observable, the measurement leaves it in that state 
and puts the measuring apparatus into a corresponding quantum 
state that is macroscopically distinguishable from the quantum states 
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associated with other possible measurement outcomes. If the mea-
sured system’s initial, or pre-measurement, state is not an eigenstate 
of the measured observable, the rules of quantum mechanics allow 
us to represent it as a superposition of eigenstates of the measured 
observable – a sum of complex multiples of the state vectors that 
represent the measured observable’s eigenstates. Schrödinger’s equa-
tion then predicts that the combined system evolves into the same 
superposition of combined-system states. Each state of the combined 
system in this superposition is a possible outcome state, in which the 
measured system is in one of the eigenstates of the measured observ-
able and the measuring apparatus is in a correlated quantum state. 
Moreover, the squared magnitude of each coefficient in the superpo-
sition is the probability of the corresponding measurement outcome, 
as predicted by Dirac’s general assumption.  

But Dirac’s general assumption implies, and experiment confirms, 
that a quantum measurement leaves the measured system in one or 
another of the measured quantity’s eigenstates, not in a superposi-
tion of all of them.  

There’s a more subtle difficulty with von Neumann’s account of a 
quantum measurement as I’ve described it so far. Each coefficient 
in the superposition that represents the measured quantum system’s 
initial state is a complex number; it has a magnitude and a phase.3 
A measurement governed by Dirac’s general assumption preserves 
information about the magnitudes of the coefficients in the super-
position that represents the measured quantum system’s initial state: 
their squares are the probabilities of the outcomes represented by the 
state vectors they multiply. 

But Dirac’s account of a quantum measurement implies that it 
destroys information about the relative phases of the coefficients. In 
von Neumann’s account, a quantum measurement preserves infor-
mation about both the magnitudes and the relative phases of the 
coefficients in the superposition that represents the evolved joint 
state of the measured system and the measuring apparatus.   	

3	 Consider a complex number a + bi, where a and b are real numbers and i is the 
square root of –1. We can think of a and b as the rectangular coordinates of a point in a 
plane, the complex-number plane. The angle between the x-axis and the line joining the 
origin to the point that represents a complex number is called the phase of that number. 
Two complex numbers have the same phase if and only if the line joining their representa-
tive points passes through the origin of the complex-number plane.
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There’s also a more subtle difficulty with von Neumann’s account: 
It contradicts the fact, stressed by Niels Bohr, that the measuring 
apparatus in a quantum measurement is a macroscopic system in a 
definite classical state. Von Neumann’s account of a quantum mea-
surement assumes that the measuring apparatus is initially in a defi-
nite quantum state. Decoherence theories emend von Neumann’s 
account not by addressing this difficulty but by postulating that 
the measuring apparatus interacts with a random environment (in 
calculations, either thermal radiation or a tenuous gas). Instead of 
assuming, as von Neumann did, that the combined system is undis-
turbed (and hence in a definite quantum state), decoherence theories 
assume that a supersystem consisting of the combined system plus 
a bounded portion of the postulated random environment can be 
treated as an undisturbed system in a definite quantum state. A 
quantum measurement then transfers information about the rela-
tive phases of the state vectors of the combined system (measured 
system plus measuring device) to the environment. Model calcu-
lations by Wojciech H. Zurek, Erich Joos and Hans Dieter Zeh, by 
Maximilian Schlosshauer, and by other authors, have shown that 
interaction between the measuring apparatus and the random envi-
ronment rapidly decoheres macroscopically separated states of the 
combined system, randomizing the relative phases of the coefficients 
in the superposition of combined-system state vectors predicted by 
von Neumann’s account: 

Formally, decoherence can be viewed as a dynamical filter on the 
space of quantum states, singling out those states that, for a given 
system, can be stably prepared and maintained, while effectively 
excluding most other states, in particular, nonclassical superposi-
tion states of the kind popularized by Schrödinger’s cat.4

 

By predicting the loss of coherence between different possible out-
comes of a quantum measurement, decoherence theory improves 
von Neumann’s account. But as the authors mentioned above have 
stressed, it doesn’t predict that quantum measurements have defi-
nite but unpredictable outcomes. And, as I’ve already emphasized, 
it ignores Bohr’s requirement that the measuring apparatus is in a 
definite classical state before and after a quantum measurement.

 

4	 Schlosshauer, Maximilian, “The quantum-to-classical transition and
decoherence,” arXiv:1404.2635v1 [quant.phys], 9 April 2014.
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Von Neumann’s Collapse Hypothesis and Attempts to Avoid It 
Von Neumann completed his account of quantum measurement 

by postulating that no sooner does the superposition of outcome 
states produced by interaction between the measured system and the 
measuring apparatus come into being than it “collapses” randomly 
onto one of these outcome states, the probability of each possible 
outcome being equal to the squared magnitude of the corresponding 
coefficient in the superposition. With this additional assumption, 
von Neumann’s account reproduces – but doesn’t explain – Dirac’s 
general assumption. It replaces Dirac’s “jump” of the joint state of 
the combined system by a “collapse” of the combined system’s wave-
function. Von Neumann assumed that this collapse is a real physical 
process. But quantum mechanics doesn’t describe it. Does quantum 
mechanics need to be modified or extended to include it?  

 Von Neumann suggested that the experimenter’s awareness of 
the outcome of a quantum measurement causes the superposition 
of outcome states to collapse. Other prominent physicists, including 
Eugene Wigner, embraced this view. Wigner interpreted a system’s 
wavefunction as representing the physicist’s knowledge about the 
system: “Given any object, all the possible knowledge concerning 
that object can be given as its wave function.”5   

[T]he impression which one gains at an interaction [with a quan-
tum system] may, and in general does, modify the probabilities 
with which one gains the various possible impressions at later 
interactions. In other words, the impression which one gains at an 
interaction, called also the result of an observation, modifies the 
wave function of the system. The modified wave function is, fur-
thermore, in general unpredictable before the impression gained 
at the interaction has entered our consciousness: it is the enter-
ing of an impression into our consciousness which alters the wave 
function because it modifies our appraisal of the probabilities for 
different impressions which we expect to receive in the future.6

 

 In an essay entitled “The Copenhagen Interpretation of Quan-
tum Theory” Werner Heisenberg (1958) argued that the indetermi-
nacy of quantum measurement outcomes arises from “our incom-
plete knowledge of the world.” Just before a measurement begins, the 

5	 Wigner later changed his mind.
6	 Wigner, Eugene, “Remarks on the Mind-Body Question” in Symmetries and 

Reflections, (Cambridge, MA. MIT Press, 1970) p. 173
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measured object is in a definite quantum state. Then, in Heisenberg’s 
account, it interacts with a macroscopic measuring device. 

 

 This influence introduces a new element of uncertainty, since the 
measuring device is necessarily described in the terms of classical 
physics; such a description contains all the uncertainties concern-
ing the microscopic structure of the device which we know from 
[statistical] thermodynamics, and since the device is connected 
with the rest of the world, it contains in fact the uncertainties of the 
microscopic structure of the whole world. These uncertainties may 
be called objective in so far as they are simply a consequence of the 
description in the terms of classical physics and do not depend on 
any observer. They may be called subjective in so far as they refer 
to our incomplete knowledge of the world. … It is for this reason 
that the result of the [measurement] cannot generally be predicted 
with certainty; what can be predicted is the probability of a certain 
result …7

 

Physicists Christopher Fuchs and Rüdiger Schack have proposed 
a related interpretation of quantum theory, which they call Quantum 
Bayesianism or QBism. (Bayesian statistics interprets probabilities as 
degrees of belief. Its methods enable one to update his or her degree 
of belief in a hypothesis in the light of new evidence.) It rests in part 
on an earlier paper they co-authored with Carlton Caves. Physicist 
N. David Mermin, a prominent supporter of this interpretation, has 
written:

QBism attributes the muddle at the foundations of quantum 
mechanics to our unacknowledged removal of the scientist from 
the science.8 

Much of this muddle is associated with the ‘wavefunction’ that 
quantum mechanics assigns to a physical system. This irritatingly 
uninformative term reveals the lack of clarity present in the field from 
its very beginning in 1925. People argue to this day about whether 
wavefunctions are real entities, like stones or ripples on a pond, or 
mathematical abstractions that help us to organize our thinking, like 
the calculus of probabilities. 

Fuchs and Schack adopt the latter view. They take a wavefunction 
to be associated with a physical system by an agent – me, for example, 

7	 Heisenberg, W. Physics and Philosophy: The Revolution in Modern Science, 
(London: George Allen & Unwin, 1958.) 

8	 Mermin, N. David, Nature, 26 March 2014, “QBism puts the scientist back into 
science”
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based on my past experience. I use the wavefunction, following rules 
laid down by quantum mechanics, to calculate the likelihood of what 
I might experience next, should I choose to probe further. Depend-
ing on what I then perceive, I can update the wavefunction on the 
basis of that experience, allowing me to better assess my subsequent 
expectations.9 

 At the opposite pole from QBism are emended versions of 
Schrödinger’s equation that describe the “collapse of the wave-
function” as a real physical process. G.C. Ghirardi, A. Rimini, and 
T. Weber (1986) have proposed one such theory, and Philip Pearle 
(1989) has described a modified version of it. Both versions add 
to Schrödinger’s equation a stochastic term that causes a superpo-
sition of quantum states to collapse onto one of its components. 
The stochastic term represents an interaction between a nominally 
undisturbed system and a purpose-built and otherwise unobserved 
space-filling stochastic field, reminiscent of the ether of pre-relativity 
physics. These theories contain adjustable parameters whose values 
are chosen to ensure that superpositions representing possible states 
of atoms and molecules do not collapse within observable periods of 
time whereas superpositions representing impossible states – super-
positions whose components are separated by macroscopic distances 
– do not persist long enough to be detected experimentally. 

Still other attempts to explain why measurements have definite 
but unpredictable outcomes take as their starting point the remark 
that under typical experimental conditions no bounded system 
(including the supersystems considered in decoherence theories) 
can be idealized as an undisturbed system in a definite quantum 
state. In 1957 Hugh Everett III, then a doctoral student of John A. 
Wheeler, suggested a radical answer to the question: Why do quan-
tum measurements have definite but unpredictable outcomes? He 
postulated that quantum mechanics is universally valid: it applies to 
arbitrarily large undisturbed physical systems. But only the universe 
is an undisturbed physical system. So, Everett reasoned, we should 
identify the supersystem consisting of the measured system, the mea-
suring device, and the environment with the universe. A quantum 
measurement then causes the premeasurement state of the universe 
to evolve into a superposition of universe-states in each of which the 

9	 Caves, C. M., Fuchs, C. A., & Schack, R. (2002). “Quantum probabilities as 
Bayesian probabilities.” Physical Review A, 65(2), 022305.
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measured system is in an eigenstate of the measured observable and 
the rest of the universe is in a correlated quantum state. Everett now 
postulated that the universe-states that occur in this superposition 
represent states of distinct but equally real universes in each of which 
a particular measurement outcome has occurred. A measurement 
causes the universe in which it occurred to split into many – some-
times infinitely many – replicas, differing only in the outcome of the 
measurement that caused the splitting.  

There is an extensive literature about what this account might (or 
could) mean, and how (or whether) it can be reconciled with the rest 
of physics, including general relativity and the physics of the every-
day world of medium-sized objects. As far as I know, these issues 
haven’t been resolved.  

The theories of quantum measurement I’ve been describing 
assume either that some bounded part of the universe can be ide-
alized as being in a definite quantum state or that the universe itself 
is in a definite quantum state. None of these theories successfully 
predicts that an ideal quantum measurement leaves the measuring 
apparatus in a definite pointer state and the measured system in a 
corresponding quantum state, an eigenstate of the measured phys-
ical quantity. They leave Weinberg’s question “How do probabilities 
get into quantum mechanics?” unanswered. My suggested answer to 
this question also answers a question asked in 1908 by the mathema-
tician and theoretical physicist Henri Poincaré in his essay “Chance”: 
How do probabilities get into classical mechanics?

 

 Poincaré’s “Chance” 
Poincaré begins his essay by contrasting the “ancients’” view of 

chance with the “modern” view: 
 

To begin with, what is chance? The ancients distinguished between 
the phenomena which seemed to obey harmonious laws, estab-
lished once for all, and those that they attributed to chance, which 
were those that could not be predicted because they were not sub-
ject to any law. In each domain the precise laws did not decide 
everything, they only marked the limits within which chance was 
allowed to move. In this conception, the word chance had a pre-
cise, objective meaning; what was chance for one was also chance 
for the other and even for the gods.  
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But this conception is not ours. We have become complete deter-
minists, and even those who wish to reserve the right of human 
free will at least allow determinism to reign undisputed in the 
inorganic world. Every phenomenon, however trifling it be, has 
a cause, and a mind infinitely powerful and informed concerning 
the laws of nature could have foreseen it from the beginning of the 
ages. If a being with such a mind existed, we could play no game of 
chance with him; we should always lose.  
For him, in fact, the word chance would have no meaning, or 
rather there would be no such thing as chance. That there is for 
us is only on account of our frailty and our ignorance. And even 
without going beyond our frail humanity, what is chance for the 
ignorant is no longer chance for the learned. Chance is only the 
measure of our ignorance. Fortuitous phenomena are, by defini-
tion, those whose laws we are ignorant of.10 

No sooner does Poincaré arrive at this answer to his opening ques-
tion than he explains why it won’t do. Chance, he argues, must be 
“something more than the name we give to our ignorance,” because 
some chance phenomena, while individually unpredictable, obey 
mathematical laws. “Laws of chance” relate the probabilities of mea-
surement outcomes and other macroscopic phenomena to the fre-
quencies of these outcomes in large (or infinite) collections of iden-
tical trials. For example, probability theory allows us to calculate the 
probability of k heads in N tosses of a coin, for k = 0, 1, 2, ..., N, if 
we are given the probability p of heads for a single toss. It predicts 
that the probability of pN heads approaches 1 as N increases without 
limit.  

Poincaré now asks, “What are the defining properties of chance 
processes whose outcomes are governed by probabilistic laws?” He 
considers three examples of such processes.  

The first is an idealized cone balanced on its tip. If no force other 
than gravity acts on it, the cone remains in this state forever, but 
any disturbance, however slight, causes it to topple over. If we try to 
balance a real cone on its tip we will fail. The cone will topple in an 
unpredictable direction. But if we repeat the experiment many times, 
using exactly the same experimental arrangement to fix the cone’s 
initial position and motion, the direction in which it tips will be 
more or less uniformly distributed between 0 and 2π radians (0 and 
360 degrees). If the cone tended to topple in a particular direction, 

10	 Poincaré, H. Science and Method, (New York, Dover Publications, 2003), p.64-5.
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we would look for the cause of this asymmetry in a corresponding 
asymmetry of the cone itself or of the experimental arrangement that 
determines its initial state.   In this example, as Poincaré put it. “slight 
differences in the initial conditions produce very great differences 
in the final phenomena.” Roulette, another of Poincaré’s examples, 
exemplifies the same principle. Small uncontrollable differences in 
the relative speed of the ball and the roulette wheel produce unpre-
dictable differences in the number of red and black compartments 
it passes over before coming to rest. But probability theory predicts 
that the fraction of N spins with the outcome red approaches ½ as N 
increases.  

 Poincaré discusses other processes that display extreme sensitivity 
to small changes in their initial conditions. In the 1880s he had dis-
covered that in some regions of the planetary system, a small change 
in an asteroid’s initial position or velocity causes its orbit to diverge 
at an exponential rate from the original orbit. Such orbits are pre-
dictable in principle but not in practice. They are said to be chaotic; 
and the phenomenon they exemplify is called deterministic chaos. 
Students of chaos theory have found that mathematically analogous 
processes occur in a wide variety of complex systems, including the 
Earth’s atmosphere and the biosphere. 

The processes Poincaré discusses have unpredictable outcomes 
not because we don’t know the laws that govern them – we do – 
but because, unlike an “infinitely powerful and informed” mind, we 
don’t know enough about their initial conditions. Yet we correctly 
predict that the cone topples in a random direction, that in the long 
run the roulette ball comes to rest in a red compartment as often as it 
does in a black compartment, and that in the planetary system small 
bodies in chaotic orbits are randomly distributed along the eclip-
tic (the great circle in which the plane of Earth’s orbit intersects the 
celestial sphere). Why do these statistical predictions succeed?  

Consider roulette. If we knew the initial speeds of the ball and 
the wheel we could predict the color of the compartment in which 
it came to rest. But the initial speeds have ranges of possible values. 
Define subranges of these ranges so that initial relative speeds in the 
same subranges correspond to the same outcome. If the number of 
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these subranges is large enough and if the initial relative speeds are 
smoothly – not necessarily uniformly – distributed over the whole 
range of possible initial speeds, then the probabilities of the out-
comes red and black will be nearly equal, because any smooth curve 
has nearly the same height at nearly equal horizontal coordinates. 
Thus, Poincaré concludes, red and black occur equally frequently in 
a long series of identical spins of the wheel because two conditions 
are satisfied: (a) small changes in a relevant initial condition produce 
large differences in the outcome (i.e., the number of same-outcome 
subranges in the range of initial conditions is very large); and (b) the 
distribution of initial conditions is smooth, so that contiguous sub-
ranges have (nearly) equal probabilities of being realized. Poincaré’s 
other examples admit a similar analysis. 

 Condition (a) defines a class of chance processes that have statisti-
cally predictable outcomes. Poincaré’s remaining task was to explain 
why, in processes that satisfy this condition, the curve that represents 
the distribution of the relevant initial conditions is smooth.  

 Poincaré argued that the distribution of initial conditions of 
chance processes that have statistically predictable outcomes is the 
“outcome of a long previous history,” during which irregularities 
on the smallest scales have been smoothed out by “complex causes” 
working over a long period of time.  

 Poincaré doesn’t appeal to the second law of thermodynamics to 
justify this claim. (As I argued earlier, such an appeal would be ille-
gitimate because the Second Law doesn’t apply to the physical uni-
verse.) He does, though, connect the absence of irregularities on very 
small scales to the temporal asymmetry of macroscopic processes – 
the fact that macroscopic processes such as heat flow, unlike molec-
ular motions and collisions, are governed by laws that distinguish 
between the direction of the past and the direction of the future. He 
discusses in some detail how different the course of events would 
look to a being traveling backward in time and concludes: “Lengthy 
explications [of such differences] perhaps would aid in the better 
comprehension of the irreversibility of the universe.” In the end, he 
leaves the smoothness of the curve that represents the probability 
distribution of the cone’s initial tilt unexplained.
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Poincaré’s Cone in Light of the Strong Cosmological Principle 

Poincaré assumes that the initial positions and velocities of the 
cone’s axis, the roulette ball, and the asteroid have definite values. 
In other words, these systems are in definite (classical) microstates. 
Since we don’t know the precise values of the physical quantities that 
characterize classical microstates we assign probabilities to them.  

 A probability distribution of initial microstates defines a (clas-
sical) macrostate. A macrostate is the result of an experimental or 
observational protocol. An experiment or observation gives us infor-
mation about the macrostate of the measured or observed system.  

 Newton’s laws of motion connect initial microstates to final 
microstates. Hence they connect the probability distribution that 
characterizes a system’s initial macrostate to the set of its possible 
final macrostates. What Poincaré couldn’t explain was why we can 
successfully represent the probability distributions of microstates 
that characterize the initial macrostates of the cone, the roulette ball, 
and the asteroid by smooth curves. 

 In a universe in which the strong cosmological principle holds, 
macroscopic systems don’t in general have definite initial micro-
states. Instead a macroscopic system’s initial macrostate is character-
ized by a probability distribution of microstates fashioned by the sys-
tem’s history. The most recent episode of such a history describes the 
act of measurement or observation, and the probability distribution 
it creates typically contains particular kinds of information but not 
others. An experimental arrangement designed to put the cone into 
its initial state imposes limits on the cone’s initial tilt and initial angu-
lar velocity but creates little or no additional information. The device 
that sets the roulette wheel and the ball in motion determines their 
ranges of initial speeds but nothing more. And plausible scenarios 
for the origin of the solar system don’t specify the initial distribution 
of the positions and velocities of each of the myriad small bodies it 
contains in enough detail and with enough precision to produce a 
non-uniform distribution of their present celestial longitudes. If the 
strong cosmological principle holds, the probability distributions that 
characterize the initial macrostates of the macroscopic systems in Poin-
caré’s examples are represented by smooth curves because in each case 
the system’s history didn’t create the kinds of information that would 
produce deviations from smoothness.  	
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Instead of imagining an infinite series of identical trials whose ini-
tial conditions are defined by a probability distribution of (initial) 
microstates, we can imagine an experimental ensemble – an infinite 
collection of identical cones uniformly distributed in space, each in 
a definite microstate. We stipulate that the fraction of cones in every 
range of microstates equals the fraction of identical trials in which 
the cone’s initial microstate lies in that range. That fraction is the 
probability assigned to that range by the probability distribution that 
characterizes the cone’s initial macrostate. Such a collection evolves 
into one in which the fraction of cones in every range of microstates 
equals the fraction of trial outcomes in which the cone’s final micro-
state lies in that range.  

 This mode of description extends to experimental systems the 
indeterminacy in position that the strong cosmological principle 
attributes to naturally occurring systems. It says that physics doesn’t 
describe particular systems but only uniformly dispersed and iso-
tropically oriented systems defined by their histories.  	

The strong cosmological principle and the assumption of primor-
dial randomness also explain what Poincaré called “the irreversibility 
of the universe.” In a history of the physical universe based on these 
initial conditions, randomness is the primordial condition. Subse-
quently, cosmogonic processes create information associated with 
the probability distributions that characterize galaxies, stars, planets, 
and other self-gravitating systems. Some of this information decays 
in processes governed by the second law of thermodynamics, and 
thereby fuels the creation of new kinds of information. For exam-
ple, the burning of hydrogen to helium in the Sun’s core creates the 
sunlight that supports life on Earth.  Do these inferences about the 
strong cosmological principle still hold in a universe whose micro-
structure is governed by quantum mechanics rather classical phys-
ics? Can the strong cosmological principle resolve the problem of 
time’s arrow and the measurement problem of quantum mechanics? 

Quantum Indeterminacy and Quantum Measurement 
To extend Poincaré’s account to macroscopic systems whose 

microstates are governed by quantum physics we need a way of link-
ing measurement outcomes, which give us information about a mea-



122 Why We are Free

suring device’s classical macrostate, to the microstates of the mea-
sured system, described in the language of quantum physics. Dirac’s 
general assumption and its generalization11 supply such a link.  

Let s denote a microstate of a system S, and let O denote a property 
S. Suppose S is in the microstate s. 

 

Dirac’s general assumption equates a real number, 
denoted by 〈s|O|s〉, that depends on the state s and the 
observable O to the average result of a large number of 
measurements of O when the system is in state s. 

 Let α denote a macrostate of the macroscopic system S. Gibbs’s 
statistical mechanics characterizes such macrostates by probability 
distributions of the system’s microstates. Let s denote a microstate 
of S, and let pα(s) denote the probability assigned to that microstate 
by the probability distribution that characterizes the macrostate α. 
Dirac’s general assumption implies that the weighted average of the 
quantities 〈s|O|s〉 – the sum of products 〈pα(s)  s|O|s〉 – equals the 
average result of a large number of measurements of O when the 
system is in the macrostate α:   

The average of the quantities s|O|s , weighted by the 
probability that the microstate s is in the macrostate α, 
equals the average result of a large number of measure-
ments of O when the system is in the macrostate α.       (1)

 In a description of measurement that comports with the strong 
cosmological principle we interpret the initial conditions that char-
acterize a macroscopic system S as characterizing an experimental 
ensemble of systems, and the preceding rule becomes: 

The weighted average in rule (1) equals the average value 
of the macroscopic counterpart of O in an experimental 
ensemble of systems in the macrostate α.                         (2)

We can now describe quantum measurements in a way that differs 
slightly but significantly from von Neumann’s account as emended 
by decoherence theory. Decoherence also plays an essential role in 
the new account: it randomizes the relative phases of wavefunc-
tions of microstates of the combined system that belong to different 

11	 Dirac, P.A.M., The Principles , pp. 132-133.
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pointer states. But the new account, unlike von Neumann’s account 
as emended by decoherence theory, doesn’t assume that the com-
bined system plus a random section of its environment is in a 
definite quantum microstate. Instead it assumes that the combined 
system plus a random section of its environment is in the super-
position of microstates that, in the quantum version of Gibbs’s sta-
tistical mechanics, represents a macrostate of the combined system. 
A straightforward calculation then shows that the experimental 
ensemble that represents the premeasurement state of the combined 
system rapidly evolves into an experimental ensemble of postmea-
surement states in each of which the measured system is in an eigen-
state of the measured observable and the measuring apparatus is in 
the corresponding pointer state.  	

Does this account of quantum measurement explain how proba-
bility gets into quantum mechanics? Does it solve the measurement 
problem?  

 One can argue that it does not explain how probability gets into 
quantum mechanics, because it rests on the strong cosmological 
principle, which posits that a complete description of the physical 
world specifies only probabilities of physical states and physical 
quantities. Posits are not explanations.  

 Yet the strong cosmological principle doesn’t have an ad hoc char-
acter. As I mentioned earlier, it defines the simplest possible model 
of the universe that is consistent with  observations of the cosmic 
microwave background and of the spatial distribution and line-of-
sight velocities of galaxies. It also accounts for the fact that refer-
ence frames in which Newton’s and Maxwell’s laws as well as their 
special-relativistic generalizations hold are unaccelerated relative 
to a frame defined by the cosmic microwave background and the 
distribution and motions of distant galaxies. Equally importantly, 
the strong cosmological principle supplies a single, objective inter-
pretation of probability as it occurs in quantum physics, in statis-
tical mechanics, and in cosmology. Does the preceding account of 
measurement solve the measurement problem? One can argue that 
it doesn’t.

 Dirac’s general assumption equates the number denoted by 
〈s|O|s〉  to the average result of a large number of measurements of 
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O. Von Neumann’s account of measurement was intended to replace 
this assumption by a theory of measurement. It failed to do so, even 
when emended by decoherence theory. The preceding account of 
measurement unlike the emended von Neumann account, success-
fully predicts that quantum measurements have definite outcomes. 
But it relies on Dirac’s general assumption (which underlies the quan-
tum version of Gibbs’s statistical mechanics). Doesn’t this mean that 
it leaves the measurement problem unresolved? 

Yes and no. Yes if you assume that there are as-yet undiscovered 
mathematical laws of which the laws of quantum physics and clas-
sical physics (including general relativity) are limiting cases. If such 
laws existed, Dirac’s general assumption wouldn’t be an assumption; 
it would be a theorem. In their present forms, however, quantum 
physics and classical physics have unbridgeable differences. Quan-
tum superpositions have no classical counterpart; and quantum 
physics can’t describe curved spacetime. At the same time, special 
relativity is a pillar of quantum mechanics. The last point is worth a 
more detailed discussion.

 

Special Relativity and Quantum Mechanics 
Einstein based his special theory of relativity (1905) on two 

assumptions: a) All inertial reference frames – frames in which New-
ton’s laws of motion and Maxwell’s laws of electricity and magnetism 
hold – enjoy equal status. b) The speed of light in empty space has 
the same value in every direction and in every inertial frame. Min-
kowski accordingly set the speed of light in empty space equal to 1, 
so that in his new geometry distance intervals and time intervals 
are always measured in the same unit. He then defined the squared 
space-time interval between two point-events in spacetime as the 
squared time interval between the point-events and the squared dis-
tance interval (given by Pythagoras’s theorem as the sum of their 
squared position-coordinate differences); and he postulated that this 
quantity has the same value in every unaccelerated reference frame. 
Finally, he stipulated that the algebraic statements that express phys-
ical laws should take the same form in all unaccelerated, or inertial, 
reference frames.  

These postulates greatly extended the domains of mechanics and 
electromagnetism. The laws of pre-relativity physics became limiting 
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cases of relativistic laws, valid only for particles traveling with speeds 
much less than the speed of light. And experiments invariably con-
firmed the predictions of theories that comported with the princi-
ples of special relativity. Nevertheless, the earliest versions of quan-
tum mechanics, Werner Heisenberg’s “matrix mechanics” of 1925 
and Erwin Schrödinger’s “wave mechanics” of 1926, didn’t comport 
with these principles: like Newton’s laws of motion, they assumed 
that space is Euclidean and that the time interval between any two 
moments has the same value in all allowed coordinate systems.  

 Schrödinger’s wave equation is the quantum counterpart of New-
ton’s equation of motion for an electron in an external electric field. 
Schrödinger and other founders of quantum theory tried to formu-
late a relativistic generalization of the wave equation – an equation 
that would have the same form in all unaccelerated, or inertial, ref-
erence frames. But they ran into a formidable mathematical obsta-
cle. Schrödinger’s equation is “linear”: any sum of numerical multi-
ples of two (or more) solutions of the equation that satisfy the same 
boundary conditions) is likewise a solution. There were compelling 
reasons to require the equation’s relativistic generalization to share 
this property. But that requirement seemed impossible to satisfy. 

 In 1928 Paul Dirac discovered a way around this difficulty. He 
devised a wave equation whose coefficients were not numbers but 
4×4 matrices – rectangular arrays of (real or complex) numbers that 
can be added to and multiplied by one another according to certain 
rules. These matrix-coefficients weren’t arbitrary: they were deter-
mined by the requirement that the relativistic wave equation be con-
sistent with special relativity’s version of the law of energy conserva-
tion. Three years earlier, Heisenberg had used matrices to represent 
an electron’s position coordinates and momentum components, but 
no physical law with matrices as coefficients had previously been 
suggested.  

 Schrödinger’s equation has a single solution that satisfies given 
boundary conditions. It represents the quantum state of a point-like 
charged particle. Dirac’s relativistic wave equation has not one but 
four solutions.  

One pair of these solutions describes electrons with an extra, inter-
nal degree of freedom. Dirac proved that the extra degree of freedom 
shows up in two ways: as an intrinsic angular momentum, or spin; 



126 Why We are Free

and as an intrinsic magnetic moment. A classical point charge has 
neither an intrinsic angular momentum nor an intrinsic magnetic 
moment. Dirac showed that his relativistic wave equation predicts 
that electrons have both. It also predicts that the spin has two possible 
values, h/4π and –h/4π, where h is Planck’s constant. And it predicts 
the ratio between the intrinsic magnetic moment and the spin. The 
predicted ratio has twice the value classical electromagnetic theory 
predicts for a spinning charged sphere. Experiments confirmed both 
predictions with high accuracy. For example, Dirac’s theory predicts 
that each energy level of an electron in an external magnetic field 
splits into a pair of levels, one with the electron’s magnetic moment 
parallel to the magnetic field line at its position, the other antiparal-
lel; and it predicts the magnitude of the splitting. 

Dirac’s wave equation also made new predictions about the energy 
spectrum of hydrogen. Schrödinger’s equation predicts that the elec-
tron in a hydrogen atom has a discrete set of negative energy states. 
The energy of the nth state, for n = 1, 2, 3, ..., is inversely proportional 
to n2. Schrödinger’s equation also predicts the (negative) constant 
of proportionality. Both predictions agree closely with experiment. 
Dirac’s relativistic theory predicts that the energy levels have a fine 
structure that depends on a second quantum number, j, which also 
takes integer values. This prediction matched precise experimental 
measurements. 

The second pair of solutions to Dirac’s relativistic wave equation 
was harder to interpret than the first pair. It seems to describe elec-
trons in impossible states of negative total energy (including the rest 
energy mc2). Dirac eventually concluded that the negative-energy 
solutions represent a previously unknown particle with the same 
mass and spin as the electron and an equal but opposite charge. A 
short time later, experimental physicists discovered a particle with 
precisely these characteristics, the positron. 

Despite its successes, Dirac’s relativistic theory of the electron 
raised important technical problems. “[T]hese problems were all 
eventually to be solved (or at least clarified) through the development 
of quantum field theory.”12At the same time, quantum field theory 
reinforced the link between quantum mechanics and special rela-

12	 Weinberg, Steven, The Quantum Theory of Fields, (Cambridge University Press, 
1995,) Volume 1, p. 14.
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tivity. In the preface to his magisterial two-volume The Quantum 
Theory of Fields, Steven Weinberg writes: “The point of view of this 
book is that quantum field theory is the way it is because ... it is the 
only way to reconcile the principles of quantum mechanics ... with 
those of special relativity.”13 

 Special relativity, in turn, is a local approximation to general rela-
tivity, Einstein’s unified theory of spacetime and gravitation. In Min-
kowskian spacetime the squared spacetime interval between two 
events equals the squared time interval between the events minus 
the squared distance interval, which in turn equals the sum of the 
three squared coordinate intervals. Gauss showed that the geometry 
of a smoothly curved surface could be derived from a formula that 
expresses the squared distance between two neighboring points on 
the surface as a sum of multiples of the squares of the coordinate 
intervals in a system of curvilinear coordinates, in which the multi-
ples vary smoothly with position. Riemann, Gauss’s pupil, extended 
his theory to curved spaces with any number of dimensions. Rie-
mann’s theory expresses the squared distance between two neigh-
boring points as a sum of multiples of the squares of the coordinate 
intervals in an n-dimensional system of curvilinear coordinates; 
the multiples vary smoothly with position. Finally, Einstein’s theory 
expresses the squared distance between two neighboring events in 
spacetime as the difference between a multiple of the squared time 
interval between the events and a sum of multiples of the squared 
space intervals in a four-dimensional system of curvilinear coordi-
nates; each of the four multiples is a smooth function of the four 
coordinates. Einstein’s field equations relate these multiples and their 
first and second derivatives to the spacetime distribution and flow of 
mass/energy. Quantum mechanics presupposes that the (undisturbed) 
systems it describes are embedded in the spacetime Einstein’s general 
theory of relativity describes. 

For decades physicists have tried to construct a mathematical struc-
ture that would contain general relativity and quantum mechanics as 
limiting cases. Yet, as we’ve seen, quantum mechanics needs general 
relativity; and general relativity doesn’t explain the microstructure 
of the physical world. The preceding discussion shows that in a uni-
verse that comports with the strong cosmological principle, quantum 

13	 ibid. p. xxi
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mechanics and general relativity fit smoothly together, linked by the 
quantum version of Gibbs’s statistical mechanics and the ensemble 
version (2) of Dirac’s general assumption (1). In this scheme chance 
arises from the postulated existence of space-time coordinate sys-
tems relative to which a complete description of the physical world 
privileges no position or direction, and manifests itself in quantum 
indeterminacy, in the probabilities that relate microstates (governed 
by quantum mechanics) and macrostates (governed by classical 
physics), and in the largely indeterminate character of the initial 
conditions that define macroscopic objects and processes.    
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Physicalism rests on the assumption that the physical quantities 
that occur in classical, or non-quantum physical theories, have 
definite values even when we don’t or can’t know them precisely. It 
implies a modified form of determinism that allows for quantum 
indeterminacy. As an alternative to physicalism I’ve proposed a 
pair of cosmological hypotheses:  the strong cosmological princi-
ple and the assumption of primordial randomness. I’ve argued that 
these hypotheses define a framework for physics that supplies phys-
ical interpretations of chance in quantum mechanics and statistical 
mechanics. Now I want to argue that this framework allows us to 
view biology as an autonomous science – one that, though based 
on strongly confirmed physical laws, doesn’t reduce to physics. In 
particular the new framework accommodates consciousness and, 
more generally, the inner lives of living organisms. 

Biological Complexity 
Although the same strongly confirmed physical laws govern phys-

ical and biological processes, Ernst Mayr has argued that living sys-
tems exhibit kinds of complexity that have no counterpart in the 
physical world. The organization of living systems 

endows them with the capacity to respond to external stimuli, to 
bind or release energy (metabolism), to grow, to differentiate, and 
to replicate. Biological systems have the further remarkable prop-
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erty that they are open systems, which maintain a stead-state bal-
ance in spite of much input and output. This homeostasis is made 
possible by elaborate feedback mechanisms, unknown in their 
precision in any inanimate system.1

 

Mayr immediately points out that “complexity in and of itself is 
not a fundamental difference between organic and inorganic sys-
tems.” But organic complexity has “extraordinary properties not 
found in inert matter”2:

 

The complexity of living systems exists at every hierarchical level, 
from the nucleus to the cell, to any organ system (kidney, liver, 
brain), to the individual, to the species, the ecosystem, the society. 
The hierarchical structure within an organism arises from the fact 
that the entities at one level are compounded into entities at the 
next higher level – cells into tissues, tissues into organs, and organs 
into functional systems.3 

Moreover, “systems at each hierarchical level have two properties. 
They act as wholes ... and their characteristics cannot be deduced 
from the most complete knowledge of the components taken sepa-
rately ...”4 In other words, systems at each level are characterized by 
emergent properties – properties that evince novel and unpredict-
able kinds of order. 

By contrast, the kinds of order that physicists study are predictable, 
at least in principle. As an example consider the orderly structure of 
hemoglobin, the molecule in the blood of vertebrates that carries 
oxygen from the lungs to the rest of the body. Quantum mechanics 
predicts the structure of hemoglobin. It also predicts that the mol-
ecule has two distinct conformations with different oxygen-binding 
affinities. But chemists, as chemists, don’t ask how these two confor-
mations came about – why they occur in the blood of vertebrates – 
or why the active form is found in the lungs but flips into the inactive 
form in muscle tissues undergoing exertion. Quantum mechanics 
doesn’t address these questions. More generally, it doesn’t seek to 
explain the functions and histories of specifically biological kinds 
of complexity – kinds of complexity that emerge in the course of 
evolution. 

1	 Mayr, Ernst, Toward a New Philosophy of Biology (Cambridge, Harvard University 
Press, 1988), p. 14.

2	 ibid.
3	 ibid. 
4	 ibid, p.15.
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Chance and Order 
Earlier I quoted Mayr on the importance of chance in evolution. 

Chance, he points out, plays a central role both in genetic vari-
ation and natural selection. It is likewise central to our pre-scien-
tific views of individual human experience and human history. Yet 
in the physicalist world-view only quantum measurements have 
objectively unpredictable outcomes, and quantum measurements 
are largely irrelevant to both genetic variation and natural selection. 
In the physicalist worldview the unpredictability of events that are 
not quantum measurement reflects our ignorance of relevant ini-
tial conditions. In contrast, in a scientific worldview that comports 
with the strong cosmological principle chance and the assumption 
of primordial randomness chance is objectively real at all levels of 
description, from the molecular to the cosmological. Randomness 
is the raw material from which processes governed by deterministic 
mathematical laws fashion myriad novel varieties of physical and – 
especially – biological order

 

Randomness and Information Have a Hierarchical Structure 
In a scientific theory that comports with the strong cosmological 

principle physical quantities are associated with probability distri-
butions. Such a theory assigns a physical quantity’s possible values 
probabilities and assigns each of these values (or each small range 
of values) a probability. It interprets these probabilities as relative 
frequencies in a cosmological ensemble. Following Boltzmann, I 
defined the randomness of a probability distribution as the mean, or 
probability-weighted average, of the negative reciprocal of the prob-
ability, and the probability distribution’s information as the amount 
by which the distribution’s randomness falls short of its largest pos-
sible value – the value that meets given constraints. Claude Shannon 
showed that the information of a probability distribution is the sum 
of contributions associated with statistical correlations between 
pairs, triples, quadruples, and so on of the events to which the distri-
bution assigns probabilities.   	

If the assumption of primordial randomness holds, the probability 
distributions that characterized the universe at the earliest times 
when our present strongly confirmed physical laws held were max-
imally random; they contained no information. As the universe 
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expanded, physical processes governed by quantum mechanics and 
by the laws of general relativity created information in the form of 
multiparticle correlations. In particular, gravitational instability 
– the tendency of relatively dense regions to expand more slowly 
than less dense regions – caused the initially uniform distribu-
tion to become progressively more clumpy.5 This process creates 
information on very large scales, leaving randomness on molecular 
and small macroscopic scales untapped. 

Once self-gravitating systems have begun to form, gravitational 
collapse – the tendency of relatively dense regions to expand more 
slowly than less dense regions –creates spatial inequalities of mass 
density and temperature. Thus gravitational collapse diminishes 
randomness and creates information. It is the ultimate source of 
the information that, in accordance with Clausius’s law of entropy 
non-increase, fueled the origin of, and continues to sustain, life on 
Earth.  

In experimental physics and chemistry, the experimenter uses a 
local source of information to create the information that charac-
terizes an experimental setup. As Bohr emphasized, experimental 
setups must be capable of being described in the language of clas-
sical physics. So descriptions of experimental setups don’t contain 
quantum-level information. Of course, experimental predictions can 
and do involve quantum mechanics. 

(Think of the Stern-Gerlach experiment.) 
Biophysicists and biochemists use the experimental and theoretical 

methods of physics and chemistry to study specific biological phe-
nomena. Their efforts leave little room for doubt if any that biolog-
ical structures and processes are also physical structures and pro-
cesses, governed by the same strongly confirmed physical laws. Yet 
the theory of biological evolution, within which accounts of specific 
biological structures and processes are necessarily embedded (recall 
Dobzhansky’s dictum that nothing in biology makes sense except 
in the light of evolution), can’t be construed as a physical theory. 
Physical theories make testable predictions about the outcomes of 
experiments or observations based on assumptions about initial 

5	 For a detailed account of one version of this process, see David Layzer, 
Cosmogenesis: The Growth of Order in the Universe, (Oxford, Oxford University Press, 1990)
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conditions. In contrast, evolution gives rise to novel and unpredict-
able kind of order.   	

How do evolutionary explanations differ from explanations 
offered by physical theories? Evolutionary theories, like theories in 
the physical sciences, seek to show that the present state of a system 
could have evolved from a hypothetical earlier state through pro-
cesses governed by physical laws. Laplace’s theory of the origin of 
the solar system, for example, sought to explain why the system con-
sists of planets that circle the Sun in the same direction. The theory 
purported to show that an initially structureless gas cloud governed 
by Newton’s laws would evolve into a system with these features. 
Analogously, population genetics, the predictive arm of evolution-
ary theory, successfully models the evolutionary acquisition of rel-
atively simple traits like industrial melanism, “the darkness—of the 
skin, feathers, or fur—acquired by a population of animals living in 
an industrial region where the environment is soot-darkened.”6But 
population genetics doesn’t aspire to predict, for example, that some 
species of fish will evolve into land-dwelling animals. We don’t yet 
have a sufficiently detailed and reliable description of the evolution-
ary precursors of land-dwelling animals. And, as Mayr has empha-
sized, the evolutionary history of land-dwelling animals is punctu-
ated, and to a considerable extent determined by, chance events that 
have major but unpredictable evolutionary consequences. The story 
that connects a structureless gas cloud to a model of the solar system 
can’t have an evolutionary counterpart because chance events break 
the causal chain.

 

What Is Life? 
Although the origin of life is still highly speculative, biologists’ 

understanding of the history of life leaves little room for doubt that all 
living organisms descended from small populations of membrane-
-enclosed, approximately self-replicating collections of molecules. 
What distinguished these primordial organisms from nonliving 
molecular assemblies of similar composition and complexity?  

Unlike nonliving molecular assembles, every living organism, no 
matter how simple, has interests and needs that set it apart from and 
put it into a particular relationship with its environment. A living 

6	 “Industrial Melanism”, Encyclopedia Britannica.
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organism must regulate its interaction with its surroundings in ways 
that allow it, among other things, to: 

•	 replicate itself more or less accurately; 
•	 maintain processes that allow it to import building 

materials and high-grade (i.e. low-entropy) 
information and export waste products and low-grade 
information;  

•	 maintain close-to-optimal relative chemical 
abundances 

•	 (homeostasis); protect itself against predators. 
•	 promote the wellbeing and reproductive success of 

other, not necessarily related, individuals and groups. 
These and other interests and needs not only distinguish organ-

isms from nonliving systems. They also distinguish living organisms 
from one another. Every living organism has a unique set of interests 
and needs as well as a unique history.  

 The observation that sensitivity to external stimuli, sentience, 
and consciousness are ubiquitous in the living world suggests that 
the emergence of enclosed, approximately self-replicating molecular 
assemblies coincided with the emergence of something like a point of 
view – a rudimentary version of subjectivity. Inner lives enable living 
organisms to respond in unified and creative ways to the challenges 
and opportunities presented by the external world and to exploit the 
opportunities offered by the ubiquity of chance in the macroscopic 
world. 

This hypothesis may seem daring but it’s hard to avoid. Because 
evolution is a fact and consciousness and sentience are biological 
attributes, they must be the product of evolutionary processes, like 
bilateralism or the structure of hemoglobin. Since the most essen-
tial feature of consciousness is its subjective character, we can hardly 
avoid assuming that subjectivity came into being with our earliest 
ancestors, the first enclosed, approximately self-regulating molec-
ular aggregates with interests and needs that include those men-
tioned above. How primitive forms of subjectivity evolved into more 
complex forms then becomes a scientific problem, like the origin of 
feathers. 
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Why then do many contemporary neuroscientists and philosophers 
deny the reality of consciousness as a feature of physical reality dis-
tinct from the neural processes that underpin it?  The thesis that 
elementary particles and photons are the ultimate and only con-
stituents of physical reality is neither required nor implied by any 
strongly confirmed physical law. One can deny it without accepting 
the strong cosmological principle and the assumption of primordial 
randomness. But someone who does accept these assumptions has 
a strong motive to reject physicalism because it implies (and phys-
icalism denies) that chance, randomness, and order, along with the 
novel kinds of order that biological evolution fashions from the raw 
material of randomness are as real and objective as mass and electric 
charge.

Creativity 
In a paper entitled “Evolution as a Creative Process” Theodosius 

Dobzhansky wrote: “A living organism resembles a work of art, 
and the evolutionary process resembles the creation of a work of 
art.”7The creation of a work of art involves analogues of random 
genetic variation and natural selection. But I think it involves some-
thing more. Creative processes not only rely on macroscopic ran-
domness, a feature of the physical world that is a consequence of 
the strong cosmological principle and the assumption of primordial 
randomness. They also exploit this feature. Consider the following 
example of the creative process, supplied by a member of my family. 

My brother Bob is a lyric poet as well as a neurologist. I asked him 
to write down an account of how he writes a poem. This is what he 
wrote: 

                                             HOW I WRITE A POEM  	

	                                 by Robert Layzer 
A new poem often starts with a phrase that evokes some interest 

or feeling, or points to a subject that might be interesting or moving. 
Sometimes the phrase describes something I saw or heard in the envi-
ronment, or a painting that I am attached to; or it could be a fragment 
of a thought or a feeling. 

7	 Dobzhansky, T., Proc. Ninth Int. Congress Genetics, 1954, pp. 435-449.
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Rarely, the poem may emerge and be completed within a day. More 
often nothing much happens for a while-hours or days-while I repeat 
the phrase silently or aloud now and then. Then, out of nowhere, new 
phrases and sentences start to cluster around the original idea, like 
crystals coming out of solution. I begin to see a theme, and that sug-
gests more words to enlarge the theme. My conscious mind becomes 
more involved as I shape and plan the structure and content. Pruning 
and revising may take place as the poem develops, or after it is nearly 
finished. This is a much more conscious process; now I am reading the 
poem in the context of the history of literature, as if I were a critic.  

During the composition, I try to listen for unexpected words or ideas, 
and to the internal assonances and other harmonies that tell a story of 
their own.  In fact, the sound of the poem may turn out to be the main 
carrier of meaning, and if the poem is successful I may not understand 
the real “message” for some time afterward.  But if I’m successful, the 
ending often gives a sense of a question answered.  

The creative process described in this account generates candidates 
for selection by a process that is both random and constrained: only 
candidates in certain broad categories, which themselves depend on 
the work being created, present themselves for selection. The goal 
of a creative process isn’t known beforehand; the process isn’t tele-
ological. But once the process has reached its endpoint, its product 
can be seen to satisfy “fitness criteria” that were already in place; it 
“gives a sense of a question answered”; “everything comes together, 
and you say ‘that’s it.’”    The sustained exploratory effort in artis-
tic creation has a counterpart in Bergson’s philosophical account of 
evolution: the élan vital. It also has counterparts in modern accounts 
of biological evolution. Notably, biologists John Gerhart and Marc 
Kirschner have proposed a theory of phenotypic variation in evolu-
tion – a theory of how differences between anatomical, physiolog-
ical, and behavioral traits of organisms have evolved – that differs 
radically from older accounts, in which phenotypic variation and the 
divergence of genetic lineages result mainly from the action of natu-
ral selection on uncorrelated variations of individual genes:  



137VII. Living World

Most anatomical and physiological traits that have 
evolved since the Cambrian are, we propose, the result 
of regulatory changes in the usage of various members of 
a large set of conserved core components that function 
in development and physiology. Genetic change of the 
DNA sequences for regulatory elements of DNA, RNAs, 
and proteins leads to heritable regulatory change, which 
specifies new combinations of core components, operat-
ing in new amounts and states at new times and places 
in the animal. These new configurations of components 
comprise new traits.8

As I mentioned, artistic creation is an exploratory process. An 
artist searches for and eventually finds targets in a large “space” of 
imagined structures. Kirschner and Gerhard have argued that evo-
lution is an exploratory process in this sense: 

As the name [Exploratory Processes] implies, some conserved 
core processes appear to search and find targets in large spaces or 
molecular populations. Specific connections are eventually made 
between the source and target. These processes display great robust-
ness and adaptability and, we think, have been very important in 
the evolution of complex animal anatomy and physiology. Examples 
include the formation of microtubule structures, the connecting of 
axons and target organs in development, synapse elimination, muscle 
patterning, vasculogenesis, vertebrate adaptive immunity, and even 
behavioral strategies like ant foraging. All are based on physiological 
variation and selection. 9 

Kirschner and Gerhart have given a more extended (and highly 
readable) account of their view of evolution in The Plausibility of 
Life.10 

In 1980 I discussed the hypothesis that evolution is a process of 
hierarchic construction, involving not just constraints on deleterious 
mutations but also what Kirschner and Gerhart call “deconstraints.” 

8	 Kirschner, Marc W. and Gerhart, John C., Proc. National Academy of Sciences 104, 
supp. 1, May 15, 2007.

9	  ibid.
10	 Kirschner, Marc W. and Gerhart, John C., illustrated by John Norton, The 

Plausibility of Life, (Yale University Press, 2005). 
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The only example I then knew about was the adaptive vertebrate 
immune response. I append the abstract of that paper to this chapter. 

Free Will 

In his introduction to The Oxford Handbook of Free Will 
philosopher Robert Kane writes: 

[D]ebates about free will in the modern era (since the seven-
teenth century) have been dominated by two questions, not 
one – the “Determinist Question”: “Is determinism true?” 
and the “Compatibility Question”: “Is free will compatible (or 
incompatible) with determinism?”11

Some scientists and philosophers have argued that free will must 
be an illusion because genuine freedom – the capacity to influence the 
course of future event – would be incompatible with determinism; 
and science, they argue, is deterministic: past conditions and physical 
laws determine future events. Although quantum mechanics predicts 
that certain processes – quantum determined measurements – have 
unpredictable outcomes, such processes don’t begin to account for 
the kind of unpredictability required by a robust conception of 
human freedom.  

If we replace physicalism’s assumption that classical physical 
quantities have definite values by the strong cosmological principle 
and the assumption of primordial randomness, the answer to Kane’s 
first question – Is determinism true? – is no. Initial conditions in 
biological processes ranging from evolution to individual develop-
ment and cultural evolution are products of histories punctuated by 
unpredictable events. And these processes have a creative character. 
They give rise to novel and unpredictable forms of order. 

Since human behavior is a province of biology, we can now replace 
Kane’s second question (“Is free will compatible (or incompatible) 
with determinism?”) by the question “Is free will compatible with 
biology?” If this book’s central argument is correct, the answer is an 
unambiguous yes. 

11	 The Oxford Handbook of Free Will, ed. Robert Kane, Oxford, Oxford University 
Press, 2002.
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Appendix, Chapter VII 
Abstract. The present theory offers a unified solution to three 

closely related evolutionary problems. (1) Why does an evolving 
population explore only a small fraction of the accessible pathways 
in genotype space? (2) Conventional ideas about genetic variation 
suggest that major adaptive shifts, which involve large numbers of 
separate but functionally related genetic changes, have vanishingly 
small probabilities of occurrence and require long periods of time. 
Yet the fossil record indicates that such shifts are neither slow nor 
uncommon. (3) Studies in comparative morphology and compar-
ative embryology indicate that evolution is a process of hierarchic 
construction. How is the principle of hierarchic construction related 
to the basic postulates of evolutionary theory? According to the 
theory elaborated in this paper, the genomes of both unicellular and 
multicellular organisms contain two functionally distinct systems 
of genes: an α system, which encodes a program for the organism’s 
development and which includes regulatory genes and other “mod-
ifiers” as well as structural genes; and a β system, which encodes a 
strategy for adaptive variability and whose elements regulate the 
rates of genetic recombination and of genic and chromosomal 
mutations. Corresponding to these two systems are two classes of 
adaptations: α adaptations, which enhance the fitness of their pos-
sessors, and β adaptations, which increase the expectation of fitness 
in the descendants of their possessors. Sexual reproduction is the 
most familiar example of a β adaptation. It is noteworthy that the 
most primitive known form of sexuality, that found among bacteria, 
is characterized by genetic mechanisms serving to regulate genetic 
recombination in precisely the manner postulated here for β genes. 
The β system serves to direct evolutionary flows in genotype space 
into potentially adaptive channels. It also serves to stabilize and buffer 
highly adapted genetic structures against the potentially disruptive 
effects of accidental variations. At the genetic level of description, a 
major adaptive shift corresponds to the ascent of a fitness peak in a 
multidimensional subspace of genotype space. The β system serves to 
focus evolutionary flow in this subspace in the direction of steepest 
ascent, thereby ensuring rapid and coordinated evolution of the 
genetic systems involved. (A mathematical framework that should 
make it possible to construct numerical models of the evolutionary 
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process just described is given by Layzer12) The principle of hierarchic 
construction emerges as a natural consequence of selection-regulated 
genetic variation. Hierarchic units are defined by their covariability 
(or costability). The “otherwise inexplicable tendency of organisms 
to adopt ever more complicated solutions to the problem of remain-
ing alive” (Medawar 1967, pp. 99-100) results from the action (and 
progressive elaboration) of a genetic system that promotes just those 
kinds of genetic variation that result in the growth of functionally 
hierarchic genetic systems. The present theory also throws light on 
several specific evolutionary problems, including the interpretation 
of genic polymorphism, the variability of evolutionary rates inferred 
from the fossil record, the evolution of “pseudoexogenous” and 
“trivial” adaptation, and the problem of speciation. Applications to 
the evolution of social behavior are discussed elsewhere.13

12	 Layzer, David. “A macroscopic approach to population genetics.” Journal of 
Theoretical Biology 73.4 (1978): 769-788.

13	 Layzer, D., The American Naturalist, 115, 6, June 1980.
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Afterword
As two researchers who knew well and were deeply influenced by 

David Layzer’s life and work, we are honored to have been able to 
help his family in assembling, editing, and communicating his final 
book.

David Layzer believed in and argued for the existence of true 
novelty, creativity, and freedom in the physical world, and against 
a worldview of physicalism that he saw as regarding all of these as 
convenient fictions.  In that worldview everything we see around us 
today was “already contained” within the beginning state of the Uni-
verse, bound to that early state by an inevitable and barren unfolding 
via mathematical physical laws.

In this work and others he argued that the flaw in this physicalist 
view is not in the mathematical laws of nature that partly underly 
it, but rather in the historical and cosmological context in which 
those laws operate.  His postulated Strong Cosmological Principle 
implies that chance is inevitable: a fully-detailed description of the 
Universe simply does not exist – or perhaps more accurately, the 
most-detailed description is statistical in the sense that no matter 
how much data is specified about some region of the Universe, there 
will be predictive questions with only probabilistic answers.  This 
applies at all times, and only statistical statements about the current 
universe can possibly follow from its early state.  Importantly, while 
it is widely believed that quantum mechanics implies (some sense 
of) objective chance, Layzer saw the objective chance inherent in the 
Strong Cosmological Principle to be the basis rather than the result 
of quantum uncertainty, forming a completely original way of view-
ing the quantum measurement problem that has been taken up by 
other researchers including one of us (AA).
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If the forms and structures inhabiting the current Universe were 
not (implicitly) present at its beginning, how did this information 
arise?  In this question Layzer has provided insight after insight.  He 
appears to be among the first who crisply connected non-equilib-
rium processes in cosmology to the formation of chemical and other 
order – which is now a somewhat textbook view.  But he also pointed 
out how this can be viewed as a competition between entropy gener-
ation in a system versus the increase in the maximal possible entropy 
of that system; an expanding universe provides a widening gap 
between the two that is cosmological order. This insight has still not 
been fully concretized in thinking about the statistical mechanics of 
the Universe, though work in that direction is happening, includ-
ing by one of us (AA).  The cosmic store of order is the grist for the 
creation of higher levels of order, through astrophysical structure 
formation, chemical evolution, biological evolution and then neural 
systems; these combine to transform some of that cosmological-
ly-generated reservoir of order into all of the artifacts we value.  

How this creative transformation takes place in the evolution-
ary and neural domains occupied Layzer through much of his later 
life, but Why We are Free provides only a very compact view, so it is 
worth here bringing forward a bit more material here, pointing to 
further sources.

For biology, he approvingly quotes Theodosius Dobzhansky: 
“A living organism resembles a work of art, and the evolutionary 
process resembles the creation of a work of art.”1 

Layzer’s insight into biological evolution endorses the role of 
chance in the creation of random genetic variations, but he sees 
subsequent natural selection as a non-chance process. He quotes 
evolutionary biologist Ernst Mayr:. 

Evolutionary change in every generation is a two-step process: 
the production of genetically new individuals and the selection 
of the progenitors of the next generation. The important role of 
chance at the first step, the production of variability is universally 
acknowledged, but the second step, natural selection, is on the 
whole viewed rather deterministically: Selection is a non-chance 
process.2 

1	 Dobzhansky, T., Proc. Ninth Int. Congress Genetics (1954), pp. 435-449 
2	 Mayr, E., Toward a New Philosophy of Biology. (Cambridge, Harvard University 

Press, 1988) p. 21
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And Layzer writes 
Randomness is the raw material from which processes governed 
by deterministic mathematical laws fashion myriad novel varieties 
of physical and – especially – biological order.3 

For Layzer, chance again plays an essential role in freedom 
of the will, but it does not make our choices and decisions them-
selves random, any more than biological evolution created random 
life forms.  Just as randomness seeds genetic variation that is then 
selected for fitness, random chance simply generates multiple alter-
native possibilities for thoughts and actions. 

In this way Layzer draws a parallel between biological evolution, 
a two-step process as Ernst Mayr described it, and free will, which 
has also been described as a two-step process by many thinkers since 
at least William James in the 1880’s.4  One of us (BD) has identified 
nearly two dozen philosophers and scientists who have proposed or 
endorsed two-stage models of free will since James.5 James was also 
the first thinker to draw the parallel between Darwinian evolution 
(then a new idea), freedom of the will, and chance. 

In an unpublished manuscript, “Naturalizing Libertarian Free 
Will,” Layzer explained... 

It entails a picture of the physical universe in which chance pre-
vails in the macroscopic domain (and hence in the world of experi-
ence). Because chance plays a key role in the production of genetic 
variation and in natural selection itself, evolutionary biologists 
have long advocated such a picture. Chance also plays a key role 
in other biological processes, including the immune response and 
visual perception. I argue that reflective choice and deliberation, 
like these processes and evolution itself, is a creative process medi-
ated by indeterminate macroscopic processes, and that through 
our choices we help to shape the future.6 

But Layzer makes clear that the ultimate decision or choice 
between alternative possibilities is in no way itself random, but an 
act of self-determination: 

To be fully human is to be able to make deliberate choices. Other 
animals sometimes have, or seem to have, conflicting desires, but 
we alone are able to reflect on the possible consequences of differ-

3	 See chapter VII - Chance and Order, p.127.
4	 See Doyle, R.O.  “Jamesian Free Will,” in William James Studies (2010) Vol. 5, p. 1 
5	 See https://informationphilosopher.com/books/scandal/Two-Stage_Models.pdf.  
6	 See https://informationphilosopher.com/solutions/scientists/layzer/
Naturalizing_Libertarian_Free_Will.doc. (2010) p.2.
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ent actions and to choose among them in the light of broader goals 
and values. Because we have this capacity we can be held respon-
sible for our actions; we can deserve praise and blame, reward and 
punishment. Values, ethical systems, and legal codes all presup-
pose freedom of the will... 
A decision is free to the extent that it results from deliberation. 
Absence of coercion isn’t enough. Someone who bases an import-
ant decision on the toss of a coin seems to be acting less freely than 
someone who tries to assess its consequences and to evaluate them 
in light of larger goals, values, and ethical precepts.117 

This makes clear that in Layzer’s view not all of the Universe is 
free — that is a capability enjoyed by only a very special set of sys-
tems — like human minds — far up the hieheirarchy of complexity.  
But in his view all of the Universe is creative. From the creation of 
chemical order in the early universe to the creation of biological and 
mental novelty, new structures are continually coming into being, 
and allowing others to come into being.  This notion extends even 
to mental creations such as the mathematical laws of physics that we 
use to describe the Universe itself.  Layzer often quoted Einstein’s 
famous observation that scientific theories are “free creations of the 
human mind.”  When one of us (AA) once asked him how to rec-
oncile this with the notion that mathematical statements are true 
(or not) long before being discovered by people, he gave a beautiful 
response: many, many, many statements in mathematics follow from 
a given set of axioms.  But this set of “all possible true statements” is 
information free — just like a physical system in equilibrium. Human 
mathematicians and physicists select particular ones from that giant 
set.  In doing so, we create information that did not exist before.  

Layzer’s work was deeply novel itself, and in many ways uncon-
ventional.  We hope that this volume might help others to discover 
and build on some of his many insights, continuing to unfold the 
creative process he began.

Anthony Aguirre, UC Santa Cruz 
Bob Doyle, Harvard University 

January, 2021 

7	 See https://informationphilosopher.com/solutions/scientists/layzer/Free_Will_
As_A_Scientific_Problem.pdf. (2011) p. 31
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wide-ranging and foundational thinker, his 1990 
Cosmogenesis, The Growth of  Order in the Universe, 
laid out a compelling holistic understanding of  
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growth of  information in a big-bang universe.

In Why We are Free, his final book, Layzer distills a lifetime of  thinking 
about the fundamental nature of  order and cosmic evolution, to address 
one of  the most basic questions: what is our place in nature, in a world 
governed by physical law? Why We are Free crisply presents and rigorously 
defends a view “in which our joys and our sorrows, our memories and 
our ambitions, our sense of  personal identity and free will, are just as 
real as the objects and relations of  the world. physics describes.”

In Why We are Free, Layzer writes, “the strong cosmological principle and 
the assumption of  primordial randomness explain...the irreversibility of  
the universe.” They are also his basis for freedom of  the will.

In Cosmogenesis Layzer described the initial conditions 
of  the universe and  how orderly structures like the 
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