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ABSTRACT 
Four distinct classes of physical processes define a preferred direction in time: entropy- 

generating processes, which define the thermodynamic arrow; information-generating processes, 
which define the historical arrow; the cosmic expansion, which defines the cosmological arrow; 
and the decay of neutral kaons, which defines the microscopic arrow. The theory presented here 
shows that the thermodynamic, historical, and cosmological arrows may be derived from a pair 
of closely related cosmological postulates. The first postulate, a strong version of the familiar 
cosmological principle, states that no statistical property of the Universe serves to define a 
preferred position or direction in space. This postulate is shown to imply that microscopic infor- 
mation about the state of the Universe is objectively absent in the sense that two descriptions that 
agree in all statistical properties are operationally indistinguishable. The second cosmological 
postulate states that local thermodynamic equilibrium prevails near the cosmological singularity. 
This postulate is justified by the behavior of microscopic thermalization rates as ¿ 0. 

Expansion from the singularity is shown to generate macroscopic information as well as 
entropy; the widely held view that the Universe is running down rests upon a mistaken assump- 
tion concerning the relationship between information and entropy. When self-gravitating systems 
separate out, their initial states are characterized by the presence of macroscopic information 
(defined as information generated by cosmogonic processes) and the absence of microscopic 
information. These properties also characterize the initial states of subsystems of self-gravitating 
systems. The precise definition of macroscopic information for any given physical system depends 
on its history (i.e., on how the system was “prepared”). These conclusions link up in a natural 
way with modern statistical theories of irreversibility like those of van Hove, Bogoliubov, 
Prigogine and Balescu, and others, which have established that, for certain well-defined classes of 
systems, the coarse-grained entropy is nondecreasing with time when specific kinds of microscopic 
information are absent in the initial state. 

The objective absence of microscopic information represents a new kind of indeterminacy, 
distinct from quantal indeterminacy. In any finite system this indeterminacy may be reduced 
through the expenditure of free energy, but it cannot be reduced in the Universe as a whole. The 
growth of macroscopic information in the Universe therefore implies that the future is, in principle, 
not wholly predictable. 
Subject heading: cosmology 

I. THE THERMODYNAMIC ARROW 

a) The Paradox of Irreversibility 

The second law of thermodynamics defines a pre- 
ferred direction in time; yet it applies to physical 
systems whose detailed microscopic behavior is 
governed by equations that are invariant under time 
reversal. Moreover, a well-known theorem due to 
Poincaré states that in a closed many-particle system 
occupying a finite region of phase space, any given 
initial state is bound to recur, to any specified degree 
of accuracy, infinitely often. Thus a gas initially con- 
fined to one corner of a box and then released must 
eventually make its way back into the corner. Poin- 
caré’s theorem is important because it shows that 
solutions of the governing dynamical equations (as 
well as the equations themselves) are time-reversible, 
in the sense that for every set of initial conditions there 
exists an arbitrarily closely matching set of final condi- 
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tions. How can this kind of microscopic reversibility 
be reconciled with the macroscopic irreversibility 
demanded by the second law ? 

The classical answer, given by Boltzmann and Gibbs, 
contains two distinct elements, illustrated by the 
following example. Consider a time-reversed film of 
the diffusion experiment mentioned in the last para- 
graph. In the reversed film, molecules initially occu- 
pying a large volume V spontaneously reassemble in a 
much smaller volume i;. Since the governing equations 
are invariant under time-reversal, the reversed film 
makes dynamical sense; it is only the initial state of 
the gas that does not make sense, because its a priori 
probability is exceedingly low—about (v/V)N, where N 
is the number of molecules. Under typical macroscopic 
conditions this number is practically indistinguishable 
from zero, so it is safe to assume that the putative 
initial state is actually a final state and that the film 
has been reversed. Yet the true initial state (in which 
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the molecules are confined to a small volume t;) has 
precisely the same low probability as the initial state 
in the reversed film. (This fact, a consequence of 
Liouville’s theorem, was used to calculate the proba- 
bility of the initial state in the reversed film.) Hence 
the quantity of information needed to specify the 
initial state is the same as that needed to specify the 
final state. But the quality of the information is 
different in the two cases : the information needed to 
specify the initial state is macroscopic (each molecule 
lies in a macroscopic region of volume v)\ that needed 
to specify the final state is microscopic (the velocity 
of each molecule must lie in a certain narrow range, 
depending on its position). This distinction between 
the microscopic and macroscopic levels of description 
is one of the two essential elements in the Boltzmann- 
Gibbs account of irreversibility. It corresponds, in 
Gibbs’s terminology, to the distinction fine-grained/ 
coarse-grained. 

The second essential element is a statistical assump- 
tion about the initial states of macroscopic systems. 
In our example this assumption says that all possible 
microstates cônsistent with a given set of macroscopic 
properties (for example, prescribed values of the 
temperature and pressure) are equally probable. It was 
this assumption that led us to question the provenance 
of the initial state in the reversed film. More generally 
(but less precisely), the assumption may be formulated 
in the following terms: “Naturally occurring initial 
states of macroscopic systems are deficient in micro- 
information.” Examples of microinformation are 
many-particle correlations in classical gases and the 
relative phases of state vectors in quantal systems. 

b) Formal Derivations of Irreversible 
Statistical Theories 

The transition from a reversible microscopic des- 
cription of a many-particle system to an irreversible 
description involves the following three key steps. 

and the coarse-grained (or macro-) entropy is given by 

H = -^pa\ogpa- (3) 
a 

It follows from equations (l)-(3) that 

H=H+H', (4) 

where 

the conditional probability pija being given by 

Pi= PiW.Pa - (6) 

Equation (4) expresses the important property of 
decomposability : the total entropy is the sum of the 
entropies associated respectively with the macroscopic 
and microscopic levels of the statistical description. As 
mentioned_above, the total entropy H stays constant, 
so that if H changes with time, H' must change in a 
compensating manner : entropy must flow from macro- 
scopic to microscopic degrees of freedom or vice versa. 

iii) Introduction of Irreversibility 

The original deterministic description has now been 
replaced by a two-level statistical description, but the 
description remains invariant under time-reversal. An 
additional assumption is needed to make it irre- 
versible. Many such assumptions have been suggested, 
nearly all of which fall into two broad categories that 
I shall label “strong” and “weak.” 

Strong assumptions are exemplified by the following 
rule relating the macroprobabilities pa evaluated at 
time t + Ai to their values at time t (see, for example, 
Wu 1966): 

pa{t + Ai) = 2 A«ßPß(f) > (7) 
ß 

i) Introduction of Microuncertainty 

Each microscopic state A: is assigned a probability 
pk. This step is obviously necessary (a closed system 
initially in a definite microstate remains in that state 
indefinitely), but it is not sufficient, for Liouville’s 
theorem tells us that the probabilities pk do not change 
with time. The microentropy, 

H = -^pklogpk, (1) 
k 

where the coefficients Aaß satisfy the conditions 

Aaß > 0 , 2 d<xß =: 2 ^«0 = 1 • (8) 
a ß 

From the fact that xlogx is a continuous, convex 
function and from equations (3), (7), and (8), it follows 
that 

H(t + Ai) > ¿7(0 • (9) 

also does not change with time. 

ii) Introduction of Macrouncertainty 

This is the step that Gibbs called coarse-graining. 
Each coarse-grained (or macro-) state a is a collection 
of fine-grained (or micro-) states /, and every micro- 
state i belongs to one and only one macrostate a. The 
probabilities pa are then given by 

Pec = 2^ V (2) 
tea 

Thus if conditions (7) and (8) are valid for a given 
initial value of_j£ and all positive values of A¿, the 
macroentropy 71 is a nondecreasing function of A¿. 
With the help of (8), we can rewrite equation (7) in 
the form 

^ = 2(^-<WV), (10) 

where a^ represents a (time-dependent) transition 
probability. 
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If the matrix A is nonsingular, we may invert 
equation (7) : 

pm = 2 ~ ^ccßPßit + At), (ii) 
ß 

but the matrix elements of ^4'1 do not satisfy the condi- 
tions (8). Thus equation (7) with the conditions (8) 
explicitly introduces a preferred direction in time. 

A general quantal derivation of equation (10) was 
given by Pauli (1928), based on the assumption that 
the off-diagonal elements of the density matrix vanish 
permanently. Van Hove (1955) pointed out that this 
condition (the random phase approximation) is too 
strong: it holds only for systems in thermodynamic 
equilibrium. This conclusion follows directly from our 
earlier observation that the total entropy 7/ = H + H' 
of a closed system stays constant in time. If FT increases, 
H' must decrease; that is, the microscopic information 
of the system must increase. But off-diagonal elements 
of the density matrix express microscopic information, 
hence they cannot vanish permanently. An exactly 
analogous criticism applies to Boltzmann’s kinetic 
equation, which has the form of equation (10). The 
physical assumption underlying this equation (the 
Stosszahlansatz) implies that two-particle correlations 
are permanently absent, which is impossible for a 
closed system that is not in thermodynamic equi- 
librium. 

The question now* arises whether irreversibility can 
be established for isolated systems that satisfy sub- 
stantially weaker irreversibility postulates than those 
of Boltzmann and Pauli. An explicit answer was given 
by van Hove (1955), who succeeded in demonstrating 
that the coarse-grained entropy of quantal systems 
satisfying the random-phase approximation (and 
certain other conditions) at some “initial” instant 
cannot “subsequently” decrease.1 Bogoliubov (1946) 
had earlier demonstrated irreversibility for a classical 
dilute gas under the assumption that many-particle 
correlations vanish asymptotically in the infinite past 

Subsequent studies (e.g., Kac 1956; 
Prigogine and Balescu 1959,1960; Kohn and Luttinger 
1957, 1958) have established irreversibility theorems 
for other kinds of systems and other kinds of initial 
conditions. 

c) Unresolved Questions 

Two questions now arise. (1) What is the origin of 
the initial conditions postulated by current theories of 
irreversible behavior in many-particle systems? (2) 
What is the objective significance of these initial con- 
ditions ? Can microscopic information about the state 
of a macroscopic system be said to be objectively 
absent if that information can in principle be obtained ? 

1 The quotation marks in this sentence are intended to 
remind the reader that the theorem itself defines the direction 
of time for any system to which it applies. Statistical theories 
of isolated systems cannot explain why the thermodynamic 
arrow has the same direction in different isolated systems. 

II. PREVIOUS ATTEMPTS TO EXPLAIN THE 
ORIGIN OF THE THERMODYNAMIC ARROW 

d) Random-Perturbation Theories 

The concept of a closed macroscopic system is, of 
course, an idealization; no finite system can be per- 
fectly insulated from interaction with the rest of the 
Universe. Many authors, of whom Borel (1912) was 
perhaps the first, have seen in this circumstance the 
key to an understanding of the thermodynamic arrow; 
see Bergmann and Lebowitz (1955), Blatt (1959), 
Morrison (1966). The argument runs as follows. 
Suppose we had a box with perfectly reflecting, 
perfectly insulating walls, and suppose it was techni- 
cally feasible to reverse instantaneously the velocities 
of all the molecules within it. Even then we would not 
be able to create an initial state leading to a significant 
decrease in entropy, for gravitational interactions 
between the gas-molecules and distant matter would 
quickly destroy the microscopic correlations needed 
to sustain “anti-entropic” macroscopic behavior. In 
general, interactions between the particles composing 
a nominally closed system and the outside world may 
be thought of as contributing a small random com- 
ponent to the Hamiltonian of the system. Microscopic 
information then flows out of the system as fast as it 
is generated by the decay of macroscopic information. 
The objection against “strong” irreversibility postu- 
lates raised in § lb now becomes irrelevant. 

The difficulty with this argument lies in the concept 
of a random perturbation. What is intended by the 
argument is clear enough: perturbations are random 
insofar as they do not conspire to produce anti- 
entropic behavior. But what grounds are there for 
assuming that perturbations of finite systems by the 
rest of the Universe do not in fact conspire to produce 
anti-entropic behavior? If the Universe as a whole 
admits a complete microscopic description, there is no 
obvious reason why the interactions we have chosen 
to classify as perturbations should not on occasion 
give rise to anti-entropic episodes in nominally closed 
systems—or even why such episodes should not be as 
common as entropie episodes. The only reason for 
assuming that anti-entropic episodes hardly ever occur 
seems to be the Second Law itself. 

b) Irreversibility and the Cosmic Expansion 

It has been suggested by Gold (1958, 1962) that the 
thermodynamic arrow is a consequence of the cosmic 
expansion. Gold’s argument runs as follows. (1) If the 
Universe were in thermodynamic equilibrium, there 
would be no preferred time-direction; hence the fact 
that the Universe is not in thermodynamic equilibrium 
is crucial to the explanation of time asymmetry. (2) 
The Universe as now constituted is an almost perfect 
sink for radiation. (3) The last fact makes it possible 
for nonequilibrium states of finite systems to come into 
being and persist. (4) The Universe is an almost perfect 
sink for radiation because it is expanding. (5) Hence 
the time-direction in which entropy increases must 
coincide with that in which the Universe expands. 
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Before examining individual steps in this argument, 
let us recall the questions formulated at the end of § I : 
What is the origin of the initial conditions postulated 
by current theories of irreversible behavior in many- 
particle systems ? And what is the objective significance 
of these initial conditions? We have seen that current 
theories postulate that microscopic information is 
absent and macroscopic information is present at an 
“initial” instant.2 When these postulates are suitably 
formulated for well-defined classes of physical sys- 
tems, they have been shown to imply that the coarse- 
grained entropy is a nondecreasing function of the 
elapsed time. The argument outlined above does not 
address the questions of what distinguishes micro- 
scopic from macroscopic information and why the 
latter but not the former is “initially” present in 
natural systems. What it does seek to elucidate are 
{d) the presence of macroscopic information in natural 
systems (i.e., the observation that natural systems are 
not in thermodynamic equilibrium), and (b) the obser- 
vation that all natural systems exhibit the same 
thermodynamic arrow. 

Suppose, for the sake of the argument, we accept 
Gold’s contention that “without the radiation sink 
that the universe provides, sub-units would have 
reached thermodynamic equilibrium” (Gold 1974). 
This could explain why natural systems have persisted 
in nonequilibrium states, but it does not explain how 
they got there in the first place. The most obvious (and 
perhaps most fundamental) feature of the processes 
through which natural systems have come into being 
is that they have acted to concentrate mass. There is no 
compelling theoretical reason for believing that the 
transparency of the Universe is responsible for mass- 
concentration (Layzer 19716, 1976). 

Finally, it is not correct that the Universe is a sink 
for radiation because it is expanding. As Harrison 
(1965a, b; see also Layzer 1966) has pointed out, the 
night-sky is dark not because the Universe is expanding 
but because the cosmic mass- (or energy-) density is 
small. In the absence of redshift observations, there 
would be no valid observational or physical reason for 
supposing that the Universe is expanding rather than 
contracting. Hence there is no reason to assume that 
the cosmic expansion is directly linked to the growth 
of entropy in isolated systems. And if the Universe is 
finite, there is no reason to question the naïve expec- 
tation that the present correlation between entropy 
generation and cosmic expansion will be reversed 
during the contraction phase. 

c) The Electromagnetic Arrow and Its Origin 
Consider a finite system of charged particles. 

According to classical electromagnetic theory, the 
field F acting on the zth particle is given by the 
equivalent formulae 

^ = 2 F-t(i) + , (2.1a) jii 

= 2 Fadvü) - PÍ) + ^out , (2.1b) 
2 See note 1. 

where Fret
{i) Fadv

(J) are the retarded and advanced 
fields associated with the yth particle, Fin denotes the 
incident field, F9Vit the outgoing field, and F the radia- 
tion reaction, given by Dirac’s (1938) formula 

= i(Fret
m - Faäv

m) . (2.2) 

Under time-reversal, equations (2.1a, b) are inter- 
changed, so the description is time-symmetric. To 
bring out the symmetry we may write F in the form 

^ i 2 (F-t0) + ^adv(i)) + i (Fln + Fout) (2.1c) 

which follows from equations (2.1a, b). 
At the microscopic level, the retarded and advanced 

descriptions are entirely equivalent, but at the macro- 
scopic level a preferred time-direction emerges. Con- 
sider, for example, an antenna radiating into a cavity 
bounded by opaque walls. The conventional retarded 
description requires one to specify certain macro- 
scopic properties of the antenna (its geometry and the 
distribution of electric currents) at some instant of 
time. Classical electromagnetic theory then enables 
one to complete the description, given appropriate 
macroscopic information about the cavity and the 
walls. A reversed film of this macroscopic absorp- 
tion/emission process would show wavelets emitted by 
the wall-atoms combining to form waves converging 
on the antenna. A description of this process would 
necessarily require the specification of detailed micro- 
scopic information about the individual emitters and 
their relative phases. Thus the distinction initial/final 
hinges on the quality of the information needed to 
characterize the terminal states: macroscopic infor- 
mation is present in the initial state and absent in 
the final state; microscopic information is absent in the 
initial state and present in the final state. This explana- 
tion of the temporal asymmetry of macroscopic 
radiation processes is not merely analogous to but 
formally identical with the explanation of temporal 
asymmetry in thermodynamics. The qualitative dis- 
tinction between the retarded and advanced descrip- 
tions of macroscopic radiation processes thus hinges 
on the thermodynamic properties of the matter with 
which the radiation interacts. The preceding argument 
was adumbrated by Einstein (1909). 

Let us now turn our attention to the fields Fin, Fout, 
which are solutions of the homogeneous wave equa- 
tion. Consider a finite system of charged particles in a 
region F bounded by a surface S. Call this region “the 
observable universe.” For the sake of definiteness, let 
us use the retarded description. Then it is clear that we 
could in principle choose the incident radiation field 
^in so as to make the electromagnetic arrow point in 
the opposite direction from the thermodynamic 
arrow. For example, we could devise incident fields 
that would excite oscillating currents in antennas. 
Thus the initial conditions responsible for the thermo- 
dynamic arrow are necessary but not sufficient to 
generate a consistent electromagnetic arrow. If we 
wish to recover conventional electromagnetic theory 
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from a description based on equation (2.1a), we must, 
as is well-known, impose a suitable condition on the 
incident field Fin. That is, we must introduce an 
assumption about the action of the unobservable 
universe on the observable universe. As discussed in 
§ lia, such an assumption is also needed to derive the 
thermodynamic arrow: one must assume that per- 
turbations by the unobservable universe do not con- 
spire to produce anti-entropic behavior in observable 
systems. 

The Sommerfeld radiation condition Fin = 0 elimi- 
nates by fiat all fields that do not arise from sources 
within the observable universe. The effects of such 
fields may in fact be negligible for most purposes. 
From a theoretical standpoint, however, the Sommer- 
feld condition is too strong. For example, it would 
rule out the cosmic microwave background, which 
(a) exists and (b) is compatible with the electromag- 
netic arrow. 

Once it is recognized that cosmological considera- 
tions are relevant to both the thermodynamic and 
electromagnetic arrows, the conventional division of 
electromagnetic (and gravitational) fields into com- 
ponents associated with observed and unobserved 
regions is seen to be inappropriate. The very existence 
of the thermodynamic and electromagnetic arrows— 
the fact that thermodynamics and electromagnetic 
theory adequately describe macroscopic phenomena in 
the observable part of the Universe—places an impor- 
tant constraint on the “unobservable” part of the 
Universe. As in classical relativistic cosmology, we 
can avoid the troublesome and artificial question of 
boundary conditions by making appropriate symmetry 
postulates. The simplest postulate of this kind, dis- 
cussed in greater detail in § III, is that of statistical 
spatial3 homogeneity and isotropy. This symmetry 
postulate requires the fields that figure in equations 
(2.1a, b) to be statistically homogeneous and isotropic. 
Now, the retarded description (2.1a) requires that the 
positions and velocities of all charged particles, as well 
as the radiation field, be specified at some “initial” 
instant t0. Then the fields Fret, F&áy, and Fln can be 
evaluated everywhere at all “subsequent” times. If 
microscopic information is not needed to specify the 
initial state, then it will be needed to specify the initial 
state in a time-reversed description based on equation 
(2.1b). 

The “standard model” of the early Universe in- 
cludes a primordial radiation field assumed to be in 
thermodynamic equilibrium.4 Thus microscopic infor- 
mation is not needed to specify Fln. In the (non- 
standard) cold universe, 0 as ¿ 0. 

d) Arguments Based on the Absorber Theory of 
Radiation 

Suppose that in a given (bounded or unbounded) 
region of spacetime every photon has both an emitter 

3 As is well known, this symmetry postulate is itself the 
basis for a unique decomposition of spacetime into space and 
time. 

4 More precisely, the primordial radiation field is assumed 
to be asymptotically thermal in the limit i 0. 

and an absorber. Then the source-free fields Fin and 
Font both vanish, and Fis given by the time-symmetric 
formula 

F = i 2 + iW*) . (2.3) A 3*i 

A theory that takes this formula as its starting point 
was developed by Wheeler and Feynman (1945). In 
this theory the electromagnetic field is not an inde- 
pendent physical entity but merely a convenient 
mathematical construct. An attractive feature of the 
theory is the nonoccurrence of electromagnetic self- 
energy.5 For the purposes of the present discussion, 
we may regard the Wheeler-Feynman theory as a 
special case of the Maxwell-Dirac theory discussed in 
§ lie. Two questions now arise. (1) Given the Wheeler- 
Feynman postulate, Fln = Fout = 0, what is the origin 
of the electromagnetic arrow? (2) Under what 
(cosmological) conditions is this description mathe- 
matically equivalent to the conventional one? The 
two questions are logically independent because the 
Maxwell-Dirac theory, no less than the Wheeler- 
Feynman theory, is inherently time-symmetric. Wheeler 
and Feynman emphasized in their discussion that the 
source of the electromagnetic arrow must be the same 
in both theories, namely, interaction between radiation 
and “entropie” matter. In the Wheeler-Feynman 
theory no additional restriction needs to be imposed 
on source-free fields because they never occur. 

Wheeler and Feynman confined their discussion of 
the second question to the hypothetical case of a 
macroscopically uniform, infinite, nonexpanding uni- 
verse. In such a universe every emitted photon is 
ultimately absorbed and every absorbed photon has 
an emitter; the model is opaque to electromagnetic 
radiation of all frequencies in both time-directions. 
Hogarth (1962), followed by Hoyle and Narlikar (1962) 
and Sciama (1963), discussed the Wheeler-Feynman 
theory in expanding world models. Open relativistic 
world models present an obvious difficulty: owing 
to the ever-decreasing matter density, an open Fried- 
mann universe ultimately becomes transparent and 
hence contains emitted but nonabsorbed photons. It 
follows that the Wheeler-Feynman theory cannot 
reduce to conventional electrodynamics in an open 
Friedmann universe. In the steady-state universe, on 
the other hand, every emitted photon is ultimately 
absorbed, and one can formulate a description of 
radiation processes that satisfies the requirements of 
the Wheeler-Feynman theory.6 Hogarth (1962) and 

5 Divergent contributions to the electron’s self-energy arise 
from a term KFret

(i) + Fadv(i)) that has simply been omitted 
from equations (2.1a, b). In the Wheeler-Feynman theory such 
terms never arise. 

6 This is true only if one does not insist on including the 
cosmic microwave background in the description. The thermal 
character of this radiation field demands that the visible 
universe be opaque to photons of the appropriate frequencies 
at some stage in the history of the field. This condition cannot 
be met in a steady-state universe. 
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Hoyle and Narlikar (1962) made the additional argu- 
ment that the steady-state universe is partially trans- 
parent in the direction of the past, owing to the 
blueshifting of photons propagating backward in time 
(the forward time-direction being defined by the 
cosmic expansion). From this they concluded that the 
steady-state cosmology is compatible with a retarded 
description of radiation processes but not with an 
advanced description. They concluded that the 
electromagnetic arrow is determined not by thermo- 
dynamics but by cosmology. 

This argument was criticized informally by Feyn- 
man* who remarked that the absorption cross section 
for y-rays approaches a finite value with increasing 
energy. Hence the free path of a photon traveling 
backward in time in a steady-state universe is finite. 

There is an even more fundamental difficulty with 
the Hogarth-Hoyle-Narlikar argument. For the sake 
of the argument, let us grant the assumption that the 
steady-state universe is partially transparent in the 
direction of the past. We have seen that in any case 
there is a description—the retarded description—in 
which every emitted photon is ultimately absorbed and 
every photon has an emitter. In the time-reversed 
(advanced) description, then, every absorbed photon is 
“ultimately” emitted and every photon has an absor- 
ber. This is merely a restatement of the condition that 
holds in the retarded description. In both descriptions 
every photon has both an absorber and an emitter; 
time-reversal merely interchanges the roles of absorber 
and emitter. (See the discussion by Gold 1967.) But 
how can we reconcile the conclusion that, in the 
advanced description, every photon has an absorber 
with the assumption that the model is partially 
transparent in the direction of the past? The answer is 
that, in the advanced description, photons are emitted 
in such a way that none of them slips through (to 
¿ = — oo) although each has a finite probability of 
doing so. The advanced fields converge on the particles 
“destined” to absorb them (the particles that emit 
photons in the retarded description). The essential 
distinction, then, between the retarded and the 
advanced descriptions is that a vast quantity of 
microscopic information must be contained in the 
advanced description, whereas such information must 
not be present in the retarded description. (If micro- 
scopic information were allowed in the initial state of 
the retarded description, one could program the 
postulated matter-creation process to generate anti- 
entropic episodes like the spontaneous excitation of 
macroscopically organized electric currents in an- 
tennas. The nonoccurrence of such episodes is a 
consequence of the tacit assumption that the spon- 
taneous creation of matter postulated in steady-state 
cosmology can be completely characterized by 
macroscopic parameters.) So once again we are led 
back to the conclusions reached at the end of § I : The 
time-asymmetry of macroscopic physics is a conse- 
quence of the initial conditions that characterize 
natural systems. The relevant aspects of these initial 
conditions are {a) the absence of microscopic infor- 
mation, (b) the presence of macroscopic information. 

A theory of macroscopic irreversibility must predict 
these initial conditions and must assign objective 
meanings to “absence (presence) of microscopic 
(macroscopic) information,” and to the distinction 
microscopic/macroscopic. The theory outlined below7 

addresses these problems. 

III. THE STRONG COSMOLOGICAL PRINCIPLE 
AND COSMIC INDETERMINACY 

In a finite or bounded physical system microscopic 
information can always be specified in principle, how- 
ever difficult it may be to obtain in practice. In this 
section, I shall argue that in an infinite universe with a 
sufficiently high degree of spatial symmetry, micro- 
scopic information is unobtainable in principle. This 
conclusion will be used later to argue that certain 
kinds of microscopic information are objectively 
absent in newly formed astronomical systems. 

Consider a Poisson distribution of identical point- 
masses along an infinite straight line. This one- 
dimensional “universe” is characterized by a single 
macroscopic parameter, «, the mean density of mass- 
points. Suppose we knew that the separation between 
a given pair of mass-points was precisely 1 cm. This 
information would distinguish {a) the given realization 
from any other realization of a Poisson distribution 
with the same statistical parameter, and (6) the given 
pair of mass-points from every other pair of mass- 
points. For the probability that the interval X 
between any pair of successive mass-points lies 
between x and x + dx may be expressed in the form 
Fr{x < X < x + dx} = p(x)dx, where p(x) is a 
bounded function. Hence it is almost certain (i.e., it is 
true with probability 1) that no member of a countably 
infinite set of intervals assumes some specified real 
value. 

The quantity of information needed to specify the 
precise separation between two mass-points is 
log2 2xo = X0j where X0 is the cardinal number of 
the set of integers. Now, it is a consequence of basic 
quantal principles that only a finite quantity of 
information is needed to specify completely the state 
of a finite system. For example, to specify the state of 
a gas that occupies a finite volume of phase space, we 
need to specify the occupation numbers of a finite 
number of cells of volume h3. To achieve a more 
realistic microscopic description of our one-dimen- 
sional model universe, we therefore divide the line into 
equal cells of length h and specify the occupation 
number of each cell. A microscopic description of a 
given realization is then specified by a countably infinite 
set of occupation numbers . . . n_2n^1nQn1n2 The 
statistical distribution of occupation numbers is a 
Poisson distribution with mean occupation ñh = ñh. 
The Strong Law of Large Numbers implies that the 
average occupation number of a sample containing N 
cells converges with probability 1 to ñh as N->co. 
Thus a single realization contains enough information 
to specify its defining statistical parameter with 

7 Earlier and less complete discussions are given in Layzer 
(1967, 1970, 1971a, 1974). 
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arbitrary precision. (It also contains enough informa- 
tion to verify with arbitrary precision any other 
statistical property of the Poisson distribution.) 

On the other hand, a single realization, specified by 
a countably infinite set of occupation numbers, con- 
tains no microscopic information. For such information 
would distinguish between different realizations having 
identical statistical properties. Suppose we are given 
two such realizations. Consider a sequence of occupa- 
tion numbers of length N in the first realization. The 
same sequence occurs infinitely often in the second 
realization (since any finite sequence has a finite 
probability of occurrence). This is true for all values of 
N. But if the two realizations were distinguishable, 
there would exist some value of N for which the 
matching could not be carried out. Hence any two 
realizations that have the same statistical properties 
are microscopically indistinguishable.8 

These considerations can easily be extended to 
statistically homogeneous but nonuniform discrete 
distributions of mass-points on a line. Such distribu- 
tions may be characterized by a random function p(x) 
representing a variable probability density (Layzer 
1956, 1976). The statistical properties of this random 
function (for example, its mean, its variance, and its 
autocorrelation function), all of which are independent 
of x, constitute macroscopic information about the 
distribution. If the autocorrelation function /p(x) -> 0 
as x-^ co, the distribution is ergodic, according to a 
well-known theorem of Birkhoff and Khinchin (see, 
e.g., Gnedenko 1962). The ergodicity of the distribu- 
tion ensures that its statistical parameters can be 
approximated with arbitrary precision by spatial 
averages. Precisely analogous considerations apply to 
statistically homogeneous distributions in three- 
dimensional position space and six-dimensional phase 
space. We conclude that a complete statistical descrip- 
tion of an infinite, unbounded, statistically homoge- 
neous, ergodic distribution determines a unique set of 
occupation numbers.9 Conversely, any realization of 
such a distribution, specified by a given set of occupa- 
tion numbers, serves to define its macroscopic param- 
eters completely. 

The infinite statistical distributions that we have 
been discussing are microscopically indeterminate in 
an absolute, objective sense; that is, it is impossible, 
even in principle, to acquire information that would 
permit one to distinguish between realizations with 
the same statistical properties. The probabilities of the 
individual microstates k are defined by the condition 
H = 7/max, where H is given as a function of the 
probabilities pk by equation (1) and //max is to be 
calculated under the constraints contained in a com- 
plete statistical description of the distribution. Thus 
the condition H — i/max expresses the microscopic 
indeterminacy of the distribution. The ergodicity of 
the distribution allows probabilities to be identified 

8 This inference presupposes that the logic underlying our 
description is ^-consistent. 

9 The specification of the occupation numbers is understood 
to include a definite scheme for ordering them, as well as a 
specification of the cell size. 

with limits of spatial frequencies. For any finite 
subsystem S there is a definite probability pk associated 
with each possible microstate Sk of S. If the system S 
is effectively closed, we can then argue, as in the 
classical discussions of Boltzmann and Gibbs, that 
microscopic states that lead to an apparent decrease of 
entropy are highly improbable (and hence occur very 
infrequently) if the number of degrees of freedom of 
the system is large. The present discussion adds to the 
classical one (a) a prescription for calculating the 
probabilities10 /»^ and (b) an objective interpretation of 
these probabilities. According to that interpretation, 
microscopic indeterminacy is both objective and 
irreducible. 

I use “strong cosmological principle” to denote the 
assumption that no statistical property of the Universe 
defines a preferred position or direction in space. (The 
cosmological principle, as it is usually formulated, 
merely asserts that the Universe is uniform and iso- 
tropic apart from local irregularities.) According to 
the preceding discussion, an infinite universe that 
satisfies the strong cosmological principle and in 
which all correlation distances are finite admits a 
complete statistical description—a description that 
neither contains nor can be supplemented by micro- 
scopic information. (The assumption of statistical 
isotropy is not needed to establish the completeness of 
the statistical description, but plays an important part 
in the subsequent discussion.) 

Strictly interpreted, the strong cosmological prin- 
ciple seems at first sight to be inconsistent with a 
closed universe, for any finite system has distinguish- 
able microscopic states that correspond to the same 
statistical description. If, however, successive cycles 
are causally disjoint but have macroscopically identical 
(or statistically independent) initial states, then micro- 
scopic information about a given cycle no longer 
figures in a complete description. In these circum- 
stances distinct cycles are analogous to the observable 
universes of observers so far apart that their event 
horizons do not intersect. 

IV. THE ORIGIN OF MACROSCOPIC INFORMATION 

It is widely believed that the second law of thermo- 
dynamics implies that the Universe was initially more 
highly ordered than it is now and that the order 
initially present is gradually being dissipated by 
irreversible processes. For example : “In the ‘ big bang’ 
cosmology, the universe must start with a marked 
degree of thermodynamic disequilibrium and must 
eventually run down” (Hoyle and Narlikar 1967). I 
shall argue that, under certain conditions, the cosmic 
expansion generates information as well as entropy 
and that the second law does not require the initial 
state of the Universe to have been highly structured, 
or indeed to have had any structure at all. 

An example will illustrate the general argument. 

10 This prescription was first proposed as a basis for statis- 
tical thermodynamics by Jaynes (1957a, b). Jaynes, however, 
advocated a subjective interpretation of entropy and of the 
probabilities that figure in its definition. 
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Consider a uniform mixture of nonrelativistic gas and 
radiation, which at time t0 is in thermodynamic 
equilibrium at temperature T0. The internal-energy 
density e = eg + er and the pressure p = pg + pr, 
where the suffixes g and r refer to the gas and radiation, 
respectively, satisfy the cosmological energy equation 

d[(eg + er)V] 
dt 

dV 
+ (Pg + Pr)-£ = Q , (12) 

where F, the volume of any co-expanding region, is 
proportional to the cube of the cosmic scale factor 
a{i). As the mixture expands (or contracts) away from 
the initial state of thermodynamic equilibrium, it will 
not in general remain in equilibrium. For example, if 
the expansion (contraction) rate greatly exceeds the 
rate of thermalization, each component of the mixture 
will expand (contract) nearly adiabatically. Since the 
adiabatic exponents are different for the two com- 
ponents, a temperature difference develops between 
them. More generally, eg and er satisfy the following 
pair of equations : 

d(egV) dV 
dt dt 

SQ 
8t ’ 

(13a) 

d(erV) , n dV_J_Q 
dt dt St (13b) 

Suppose for the sake of illustration that each com- 
ponent maintains an approximately thermal distribu- 
tion, so that we may write 

St ±9 dt Ir dt ’ (14) 

where S (the thermodynamic entropy) = kBH (kB = 
Boltzmann’s constant, H = the macroscopic 
entropy11). (This would be a more realistic assumption 
for a mixture of relativistic electrons and nonrelativistic 
protons.) Then the rate of change of S is given by 

dS _ l \ 1\ SQ 
dt \Tg Tr) St (15) 

Thus the cosmic expansion (contraction) generates 
entropy unless the thermalization rate is much smaller 
or much larger than the expansion (contraction) rate. 
In the first case SQjSt = 0; in the second, Tg = Tr. 

Unless the thermalization rate greatly exceeds the 
expansion (contraction) rate, information is also 
generated. The information I is defined by 

1 = H-rnav H . (16) 

11 For any definition of macrostates (§ I6[ii]), maximizing 
the corresponding H under appropriate constraints yields a 
system of relations formally identical with classical thermo- 
dynamics. Under given experimental conditions, a particular 
grouping of microstates into macrostates and a particular 
choice of constraints will be appropriate, and other groupings 
and constraints will be inappropriate. For a clear discussion of 
this point and related considerations, see Jaynes (1965). 

where denotes the maximum value of the entropy 
H subject to given constraints. The information 
present at any moment is thus equal to the entropy 
that would be generated if the mixture were to relax 
instantaneously to a state of thermodynamic equi- 
librium. Notice that the rates of entropy generation 
and information generation are not simply related. 
The rate of information generation assumes both its 
maximum and minimum values when the rate of 
entropy generation vanishes. 

This example suggests the general rule that in- 
formation is generated whenever the expansion 
(contraction) rate exceeds the rate of a local equi- 
librium-maintaining process.12 Nucleogenesis during 
the early stages of the cosmic expansion is the most 
familiar and the most thoroughly investigated example 
of this process. 

More generally, if the approach to equilibrium is 
mediated by two-particle interactions, then its rate is 
proportional to the mean density p. The rate at which 
the macroscopic parameters are changing is com- 
parable in general to the expansion rate H(t\ which is 
proportional to p112 during the early stages of the 
expansion. Thus the thermalization rate decreases 
faster with decreasing density than the expansion rate. 
If the expansion rate is initially smaller than the rate of 
some equilibrium-maintaining reaction, we may expect 
the two rates to become comparable at some later 
moment. The equilibrium concentrations that prevail 
at this moment will tend to persist through the subse- 
quent expansion. 

Analogous considerations apply to the formation 
of self-gravitating systems by gravitational clustering 
(Layzer 1911b, 1976). The gravitational-energy spec- 
trum associates a binding energy e(M) with fluctua- 
tions of mass M. Under certain conditions that need 
not be specified here, e(M) remains constant as the 
Universe expands. The role of thermalizing interac- 
tions is here played by tidal interactions between 
neighboring fluctuations, whose strength varies as p213. 
Eventually the self-energy of a condensation exceeds its 
interaction energy, and fluctuations of that mass begin 
to separate out. This theory, whose details are given 
in the references cited above, provides a concrete illus- 
tration of the growth of macroscopic structure and 
information in an expanding universe.13 

12 These considerations are closely related to the following 
argument of Jaynes (1965). Suppose that a system in thermo- 
dynamic equilibrium at time t0 undergoes an adiabatic change 
of state, then relaxes into a new state of thermodynamic 
equilibrium, which it reaches at time ii. During the entire 
process, the total (Gibbs) entropy (eq. [1]) remains constant. 
Hence 

kB~1S(t0) = Hmax(t0) = H(t0) 
= H(ti) < Hm&x(ti) = kB~1S(t\) . 

Thus the thermodynamic entropy is nondecreasing (under the 
stated conditions). The argument also shows that an irreversible 
adiabatic change of state from an initial state of thermodynamic 
equilibrium generates information : Ffmax(ii) — #(ii) > 0. 

13 The gravitational potential energy discussed here is not 
to be confused with the quantity discussed by Tolman (1934) 
in a related context. Tolman argued that both the energy and 
entropy of an oscillating Friedmann universe would increase 
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The present discussion of entropy generation in the 
cosmos supports the orthodox view that the second 
law of thermodynamics is truly universal; if all local 
macroscopic processes generate entropy, it follows 
from the cosmological principle, that the total entropy 
of any region large enough for the inflow of entropy to 
balance the outflow to a high degree of approximation 
must continually increase. On the other hand, the 
present discussion of information-generation in 
expanding or contracting cosmic mass-distributions 
differs in essential respects from earlier discussions 
(known to me) of the same problem. Thus Davies 
(1974, p. 106) writes: “From the cosmological point 
of view it is most satisfactory that one may expect an 
accumulation of structure in the universe on thermo- 
dynamic grounds.” Davies does not explicitly state the 
“thermodynamic grounds” in question. Indeed his 
discussion does not make clear why “the accumulation 
of structure in the universe” is to be “expected” at all. 
On the contrary, he remarks (Davies 1974, p. 107)— 
quite correctly—that “at the present stage of the 
[hot big-bang] theory it appears that appropriate 
amplitude perturbations must simply be postulated as 
initial conditions to explain the existence of galaxies.” 

Davies also appeals to the notion criticized in 
footnote 11, that the cosmic medium “possesses an 
infinite reservoir of negative entropy,” which he says 
(Davies 1974, p. 108) “is significant in two separate 
ways. The first is the possibility of local departures 
from homogeneity due to gravitational growth of 
density perturbations .... The second ... is that the 
cosmological fluid itself is partaking of the general 
cosmological expansion, and so finds itself in a 
changing gravitational field on the global scale. The 
increase of entropy through irreversible processes may 
be thought of as being ‘paid for’ by the gravitational 
field of the universe.” Let us consider these points in 
turn. (1) An unbounded, statistically uniform thermal 
distribution of (idealized) gravitating particles is in no 
sense unstable against the growth of astronomically 

from cycle to cycle owing to irreversible entropy-generation. 
He suggested that the increased thermal energy of the cosmic 
medium (gas and radiation) would be supplied by the “poten- 
tial gravitational energy” of the uniform fluid. This argument 
is elaborated by Davies (1974, pp. 19ÍM91). In fact, the con- 
cept of (specific) gravitational potential energy of a uniform 
cosmic fluid has never been defined in the context of Einstein’s 
theory of gravitation. Einstein’s energy-momentum pseudo- 
tensor, mentioned in Tolman’s discussion, does not provide 
an acceptable definition of potential energy because it is not a 
true tensor. There is one well-known exception to this state- 
ment: For a finite system asymptotically embedded in 
Minkowskian spacetime, one can derive, from the conserva- 
tion equation satisfied by the energy-momentum pseudotensor, 
a Lorentz-invariant conservation law for the total energy and 
momentum. Tolman’s question, Where does the extra thermal 
energy come from ? rests on a false premise : that the principle 
of energy conservation applies to a statistically homogeneous 
universe governed by Einstein’s theory of gravitation. The 
gravitational potential energy discussed in the text (Layzer 
1963, 19716, 1976) is an extensive quantity defined for any 
statistically homogeneous mass-distribution having a finite 
density-autocorrelation scale. 

significant density fluctuations.14 Thus there seem to 
be only two ways of trying to account for the locally 
nonuniform structure of the Universe : to assume that 
substantial nonthermal density-fluctuations are present 
initially; or to postulate that the initial state has zero 
temperature. It has been argued (Layzer 1976) that 
the internal energy per unit mass of an initially cold 
universe ultimately becomes negative, and that the 
cosmic medium then becomes unstable (in the strict 
thermodynamic sense) against the growth of density 
fluctuations. This instability depends on nongravi- 
tational forces, as well as on the cosmic expansion; it 
would not occur in a cosmic medium composed of 
idealized gravitating particles. It also depends on the 
postulated initial condition T-^0. (2) Entropy- 
generation in a universe expanding from an initial 
state of local (or global) thermodynamic equilibrium 
takes place not because the Universe has “an infinite 
reservoir of negative entropy” and hence “unlimited 
capacity to increase its entropy” but because, as 
explained in the text, the cosmic expansion generates 
information. The essential points in this connection are 
{a) that information and negative entropy are not the 
same thing, and (p) that, because the cosmic expansion 
has a finite rate, it is nonadiabatic and hence generates 
departures from thermodynamic equilibrium. 

V. THE INITIAL STATE OF THE UNIVERSE 

We have seen that macroscopic information may be 
generated by cosmic expansion or contraction from an 
initial state of thermodynamic equilibrium. The 
preceding discussion of reaction rates shows that local 
thermodynamic equilibrium may be expected to prevail 
asymptotically in the limit ¿ 0, p-^oo, and only in 
that limit. It follows that the temporal direction in 
which entropy and information are generated coincides 
—at least initially—with the temporal direction in 
which the Universe expands. The reason is simply that 
the temporal direction from the state in which micro- 
scopic information is postulated to be absent—the 
singular state—necessarily coincides with the direction 
of cosmic expansion. From any other cosmic state 
there are two distinguishable temporal directions; 
from the singular state there is only one. 

The assumption that the Universe is initially in a 
state of local thermodynamic equilibrium leaves open 
the question of macroscopic information in the initial 
state. Is the entropy per baryon finite or zero? Is the 
density field uniform or nonuniform ? These questions 
cannot be settled by general considerations, but require 
a detailed cosmogonic theory that would describe the 

14 Lifshitz (1946) showed that the largest mass that could 
have condensed from thermal fluctuations present at the epoch 
When the mean cosmic density was comparable to nuclear 
density is of order 106 g. Layzer (1976) has derived an upper 
limit of 10"22 Mo for the mass of gravitationally coherent 
thermal density-fluctuations. One cannot, however, rule out 
the possibility that an unbounded, statistically uniform, 
thermal distribution of gravitating masses is absolutely stable 
against the growth of density fluctuations; the upper bound 
just mentioned comes from a consideration of necessary 
conditions for the growth of thermal fluctuations. 
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transformation of initial macroscopic information and 
the generation of new macroscopic information in the 
course of the cosmic expansion. Such a theory would 
describe the genesis of astronomical systems and would 
supply the information needed to characterize their 
initial states. It would thus provide a detailed answer 
to the first of the two questions raised at the end of § I : 
What is the origin of the initial conditions postulated 
by current theories of irreversible behavior in many- 
particle systems? The second question, What is the 
objective significance of these initial conditions? was 
answered in § III. 

VI. CONCLUSIONS 

Four classes of physical processes distinguish 
between the directions of the past and the future: 
(1) entropy-generating processes at the macroscopic 
and cosmological levels; (2) information-generating 
processes in open macroscopic systems and in the 
Universe as a whole; (3) the cosmic expansion; and 
(4) the decay of neutral kaons. Each set of processes 
may be said to define its own arrow: the thermo- 
dynamic arrow, the historical arrow, the cosmological 
arrow, and the microscopic arrow, respectively. Only 
the first three of these arrows have figured in the 
preceding discussion.15 The most widely accepted 
interpretation of thermodynamic irreversibility attri- 
butes it to certain properties of the initial states of 
naturally occurring systems.16 For specific classes of 
many-particle systems it has been shown (by van Hove, 
Bogoliubov, and others) that the macroscopic entropy 
is nondecreasing with time if microscopic information 
is absent in the initial state. The precise definition of 
“microscopic information” (which also yields the 

15 Ne’eman (1970) and Aharony and Ne’eman (1970) have 
discussed the cosmological implications of the microscopic 
arrow under the assumption that the temporal direction in 
which entropy increases always coincides with the direction 
in which the Universe expands. Under this assumption, if CP 
invariance is violated but CPT invariance is preserved, the 
contracting phase of a closed Friedmann universe is indistin- 
guishable from the expanding phase, except that the definitions 
of matter and antimatter are interchanged. If CPT invariance 
is violated, however, the physical laws governing the decay of 
kaons are different in the expanding and contracting phases. 
According to the theory developed in the present paper, the 
thermodynamic and cosmological arrows are not linked in the 
way assumed by Ne’eman. In a closed Friedmann universe, 
entropy continues to be generated during the contracting phase. 
The present theory therefore implies (in the light of Ne’eman’s 
discussion) that the microscopic arrow has no direct cosmo- 
logical implications. 

16 A nominally closed system may be said to come into 
being when its interaction with the outside world first satisfies 
some arbitrary criterion. The world lines of any nominally 
closed system thus originate on a more or less well defined 
surface t = constant in the finite past (finite because the cosmic 
expansion imposes an upper limit on the age of any nominally 
closed system defined in this way). 

definition of macroscopic entropy) depends on the 
system under consideration. The present theory 
supplements this explanation of thermodynamic irre- 
versibility by supplying objective interpretations for 
microscopic indeterminacy and macroscopic informa- 
tion. Microscopic indeterminacy has been shown to 
be an objective and irreducible feature of a universe 
satisfying the strong cosmological principle. This kind 
of indeterminacy depends on basic quantal principles 
but is distinct from quantal indeterminacy. Unlike 
quantal indeterminacy, which is absolutely irreducible, 
the indeterminacy resulting from the strong cosmo- 
logical principle is irreducible only in the Universe as 
a whole; in finite subsystems it can be reduced through 
the expenditure of free energy. 

The initial conditions for nominally closed finite 
subsystems of the Universe are connected by a cosmo- 
gonic theory to initial conditions for the Universe as a 
whole. For physical reasons, it is natural to consider 
the singular state of a Friedmann universe as the initial 
state and to assume that local thermodynamic equi- 
librium prevails in its neighborhood. This assumption 
establishes the initial distinction between microscopic 
and macroscopic information. Thenceforth, cosmo- 
gonic processes generate only macroscopic informa- 
tion (by definition). It has been shown that, with this 
initial condition, the cosmic expansion generates both 
entropy and information. Since a Friedmann universe 
necessarily expands from the singular state, the arrows 
defined by the generation of entropy and of informa- 
tion coincide initially with the arrow defined by the 
cosmic expansion. In a closed Friedmann universe, 
however, entropy continues to increase during the 
contraction phase, since the thermodynamic and 
cosmological arrows are linked only by an initial 
condition. 

The full set of initial conditions for the Universe— 
and hence the cosmogonic theory linking these initial 
conditions to the initial conditions of astronomical 
systems—is still a matter of conjecture. The standard 
model of the early Universe postulates a finite value 
of the entropy per baryon, as well as a spectrum of 
primordial density fluctuations (Novikov and Zel’- 
dovich 1973). But it may be possible to account for the 
properties of self-gravitating systems and of the 
microwave background by a cosmogonic theory that 
postulates an initial state in global thermodynamic 
equilibrium at zero temperature (Layzer and Hively 
1973; Layzer 1971&, 1976). In either case the present 
discussion links the thermodynamic arrow in a natural 
way to the historical and cosmological arrows and 
shows how all three can be derived from a simple and 
general postulate concerning the spatial symmetry of 
the Universe. 

I thank Dr. P. C. W. Davies for valuable comments 
on an earlier draft of this paper. 
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