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THE LAGRANGIAN IN QUANTUM MECHANICS. 

By P. A. M. Dirac. 
(Received November 19, !932). 

Quantum mer.hanics was built up on a foundation of ana
logy with the Hamiltonian theory of classical mechanics. 
This is because the classical notion of canonica1 coordinates 
and momenta was found to be one with a very simple quan
tum analogue, as a result of which the whole of the classi
cal HamUtonlan theory, which is just a structure built up 
on th'ls notion, could be taken over ln all its details tnto 
quantum ~echanics. 

Now therl' i.s an alternative formulation for classical 
dynamlcs, provided by the Lagrangian. 'rhis requires one 
to work in terms of c.oordinates and velocities instead of co
Ol'dinatcs and momenta. 'fhe two formulations are, of course, 
closely related, but there are reasons for believing that the 
Lagrangian one ls the more fundamental. 

In the first place the Lagrangian method allows one to 
collect together all the equations of motion and express them 
as the stationary property of a certain action function. (This 
action funct1on ls just the time - integral of the Lagrangian). 
'l'here is no correspou,Jing action principle in terms of 
tb.e coordinates and momenta of the Hamiltonian theory. 
Secondly the Lagrangian method can easily be expressed 
ielativistlcally, on account of the action function being 
a relativ.istic invariant; whlle the Hamiltonian method is 
essentially non - relativistic in form, since it marks out a 
particular time variable as the canonical conjugate of the 
Hamil ton tan function. 

For these reasons it would seem desirable to take up the 
question of what corresponds in the quantum theory to the 
Lagrangian method of the classical theory. A little con
sideration shows, however, that one cannot expect to be ablt> 
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to take over the classical Lagrangian equations in any very 
~iirect way. These equations involve partial derivatives of 
the Lagrangian with respect to the coordinates and velocities 
and no meaning can be given to such derivatives in quan
tum mechanics. The Ollly differentiation process that can 
be carried out with respect to the dynamica1 variables of 
quantum mechanics is that of forming Poisson brackets 
and this process leads to the Hamiltonian theory. 1 

We must therefore seek our quantum Lagrangian theory 
in an indirect way. We must try to take over the ideas of 
the classical Lagrangian theory, not the e qua ti on s of the 
-classical Lagrangian theory. 

Contact Transformations. 

Lagrangian theory is closeiy connected with the theory 
of contact transformations. We shall therefore begin with 
a discussion of the analogy between classical and quantum 
contact transformations. Let the two sets oi variables be 
Pr, q,. and Pr, Qr, (r = 1, 2 ... n) and suppose the q's and 
Q's to be all independent, so that any fundion of the dyna
mical variables can be expressed in terms of them. It is well 
known that in the classical theory the transformation equa
tions for this case can be put in the form 

as as 
Pr=-, P,.=- ,lQ, (1) oq,,. u ,. 

where Sis some function of the q's and Q's. 

1 Proeesses for partial differentiation with respect to matl'ices bave 
been given by B o r n, H e is en b e r g and J o r d an (ZS. f. Physlk 35, 
561, 1926) but these processes do not give us means. of differentiation 
with respect to dynamical variables, since they are not independent or 
the representation chosen. As an example of the difCiculties lnvolvetl in 
,differentiation with respect to quantum dynamical variahles, consider the 
three components of an angular momentum, satisfying 

m 1,:,1n!I - mymx = ihm 3, 

We have here mz expressed explicitly as a function or ma, and my, but 
we can give no meaning to its partial derivative with respect to mz 
{)r my. 
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In the quantum theory we may take a representation in 
wbich the q's are diagonal, and a second representation in 
which the Q's are diagonal. There will be a transformation 
function (q' IQ') connecting the two representations. We shalJ 
now show that this transformation f11Ilction is the quantum 
analogue of e<srh. 

If a is any function of the dynamical variables in the 
quantum theory, it will have a ,,mixed" representative 
(q' I a! Q'), which may be defined in terms of either of the 
usual representatives (q'lalq''), (Q'lalQ'') by 

(q' la IQ')= J (q' I a I q")dq" (q" IQ')= f (q' IQ'') dQ'' (Q'' la IQ'). 
From the first of these definitions we obtain 

(q' I qr IQ')= q; (q' I Cl) 

(q' IPrl Q')=-ih i)~~ (rt IQ') 

and from the second 

(q' IQ .. i Q') = ~(rt IQ') 

(q' I Pr IQ')= ih d~~ (q' IQ')• 

Note the difference in sign 1n (3) and (5). 

(2) 

(3) 

(4) 

(5) 

Equations (2) and (4) may be generalised as follows. Let 
f(q) be any function of the q's and g(Q) any function of th~ 
Q's. Then 

(q' I f(q) lllQ)I Q')= J f (q' I f(q) I q") dq' (q" I Q')dQ" (Q" I g (Q)I Q') 

= f (q') u (Q')(q' IQ'). 

Further, if f,,, (q) and gk(Q). (k= 1, 2 ... , m) denote two sets. 
of functions of .the (js and Q's respectively, 

(q' I ~k {k(q)gk( Q) I Q') = Lk {k( q') {lk ( Q') · ( q' IQ'). 

Thus if a is any function of the dynamical variables and we 
suppoi3e it to be expressed as a function a(qQ) of the q's and 
Q's in a ,, wr.11 - ordered u way, that is, so that it consists of 
a sum of terms of the form f (q) g (Q), we shall have 

(q' I (J; (qQ) IQ')= a(</ Q') (q' IQ'). (6) 
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This is a rather remarkable equation, giving us a connectlon 
between et (qQ), which is a function of operators, and 
et(q'Q'), which is a function of numerical variables. 

Let us apply this result for et= p,. Putting 
(q' IQ')= e' Ufh, (7) 

where U is a new function . of the q''s and Q"s we get 
from (3) 

(q' IP, I Q') = a ~(~'Q') (q' I (!). 
q, 

By comparing this with (6) we obtain 
iJ U(qQ) 

Pr= dq,. 

as an equation between operators or dynamical variables, 
which holds provided a U/oq, is well- ordered. Similarly, by 
applying the result (6) for et= P.,. and using (5), we get 

p =- iJU(qQ) 

,. dQ,. , 

provided a U/oQ,. is well - ordered. These equations are of 
the same form as (1) and show that the U defined by (7) is 
the analogue of the classical function S, which is what we 
had to prove. 

Incidentally, we have obtained another theorem at the
same time, namely that equations (1) hold also in the quan
tum theory provided the right - ba.ncl sides are suitably inter~ 
preted, the variables being treated classically for the pur
pose of the differentiations and the derivatives being then. 
well- ordered. This theorem has been previously proved by 
Jordan by a different method. 1 

T h e L a g r a n g i an a n d t h e A c ti o n P r in c i p 1 e. 

The equations of motion of the classical theory cause th& 
<lynamical variables to vary in such a way that their values qt, 

Pt at any time t are connected with their values qT, Px. at 
any other time T by a contact transformation, which may be 
put into the form (1) wlth q, p = q,, p,; Q, P = qT, PT and 
S equal to the time integral of the Lagrangian over the range 

1 .I o r d a n, ZS. f. Phys. 38, !>13, 1926. 
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T to t. In the quantum theory the qt, Pt will still be con
nected wlth the qT, PT by a contact transformation and there 
will be a transformation function (qt I qp) connecting the two 
representations 1n which the q, and the qp are diagonal re
spectively. The work of the preceding section now shows that 

t 

(qt I qp) corresponds to exp [i J Ldt/h] , (8) 
T 

where L is the Lagrangian. If we take T to differ only infin
itely little from t, we get the result 

(qt-t-,ttlqt) corresponds to exp[iLdt/h]. (9) 

The transformation functions in (8) and (9) are very fun
damental things in the quantum theory and it is satisfactory 
to find that they have their classical analogues, expressible 
simply in terms of the Lagrangian. We have here the na
tural extension of the well- known result that the phase of 
the wave function corresponds to Hamilton's principle func
tion 1n classical theory. 'J'he analogy {9) suggests that we 
ought to consider the classical Lagrangian, not as a function 
of the coordinates and velocities, but rather as a function 
of the coordinates at time t and the coordinates at time t + dt. 

For simplicity in the further discussion in this section 
we shall take the case of a single degree of freedom, although 
the argument applies also to the general case. We shall use 
the notation 

t 

exp [i ! L dt/h] = A (tT), 

so that A(t T) is the classical. analogue of (qtl qr). 
Suppose we divide up the time interval T ..... t into a large 

number of small sections T-+ti, t1 --t 2, ... , tm-i ~t,,., t,,. -.t by 
the introduction of a. sequence of intermediate times t1, 

t2, . . . tm, Then 

A (t T) = A (ttm) A (tmt,n-1) ... A (t2t1) A (t1T), (10) 

Now in the quantum theory we have 

(qt I QT}= f (qt I qn,) dqm(qml qm-1) dq.,._1 .. • (q,I q1)dq1 (q, lqT ), (11) 



317 

The Lagrangian ln Quantum Mechanics. 

where qk denotes q at the intermediate time t1c, (k = 1, 2 ... m). 
Equation (11) at first sight does not seem to correspond pro
perly to equation (10), since on the right-hand side of (11) 
we must integrate after doing the multiplication whlle on 
the right -hand side of ( 10) there is no integration. 

Let us examine this discrepancy by seetng what becomes 
of (11) when we regard t as extremely small. From the re
sults (8) and (9} we see that the integrand in (11) must be 
of the form e•Ffh where F ls a function of qr, q1, q2 .. . qm, qt 
which remains finite as h tends to zero. Let us now pic
ture one of the intermedhi.te q's, say q,., as varying conti
nuously while the others are fixed. Owtng to the smallness 
of h, we shall then in general have F1h varying extremely 
rapidly. This means that e•F/h will vary periodically with a 
very high frequency about the value zero, as a result of 
which its integral will be practically zero. The only impor
tant pa.rt in the domain of integration of q" ls thus that for 
wh'ich a cornparattvely large variation in q1c produces only 
a very small variation in F. This part is the neighbourhood 
of a point for which F is stationary with respect to small 
variations in q1c. 

We can apply this argument to each of the variables of 
integration in the right -hand side of (11) and obtain- the 
result that the only important part in the domain of integ
ration ls that for which. F is stationary for small variations 
in all the intermediate q's. But, by applying (8) to each of 
the small time sections, we see that F has for its classical 
analogue 

t t,,. t, t, t 

f L dt + J L dt + ... + f L dt + f L dt = f L dt, 
tm t,,n-J t, T T 

wh'ich is just the action function which classical mechanics 
requires to be stationary for small variations in all the in
termediate q's. This shows the way in which equation ( 11} 
goes over into classical results when h becomes extremely 
small. 

We now return to the general case when h is not small. 
We see that, for comparison with the quantum theory, equa-
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tion (10) must be interpreted in the following way. Each of 
the quantities A must be considered as a function of the q's 
at the two times to which it refers. The right- hand side 
is then a function, not only of qr and q1,, but also of q1, q2, 

... Qm, and in order to get from it a function of Qr and qt 
only, which we can equate to the left -hand side, we must 
substitute for q1, q2 ••• qm their values given by the action 
principle. This process of substitution for the intermediate 
q's then co1Tesponds to the process of integration over all 
values of these q's in (11). 

Equation (11) contains the quantum analogue of the action 
principle, as may be seen more explicitly from the following 
argument. From equation (11) we can extract the statement 
(a rather trivial one) that, if we take specified values for qr 
and Qt, then the importance of our considering any set of 
values for the intermediate q's is determined by the impor
tance of this set of values in tlte integration on the right
hand side of (11). If we now make h tend to zero, this state
ment goes over into the classical statement that, if we take 
specified values for Qr and Qt, then the importance of our 
considering any set of values for the intermediate q's is zero 
unless these values make the action function stationary. 
This statement is one way of formulating the classical action 
principle. 

App 1 i cat lo n to F 1 e 1 d' Dynamics. 

'\Ve may treat the problem of a vibrating medium in the 
classical theory by Lagrangian methods which form a natu
ral generalisation of those for particles. We choose as our 
coordinates suitable field quantities or potentials. Each co
ordinate· is then a function of the four space - time variables 
x, y, z, t, corresponding to the fact that in particle theory 
it is a function of just the one variable t. Thus the one in
dependent variable t of particle theory is to be generalised 
to four independent variables x, y, z, t. 1 

1 It is customary in field dynamics to regard the values of a field 
quantity for two different values of (x, y, z) but the same Ya)ue of t as 
two dlfferent coordinates. instead of as two values of the same coordi-
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We introduce at each point of space - time a Lagrangian 
denslty, which must be a function of the c-0ordinates and 
their first derivatives with respect to z, y, z- and t, corre
spond1ng to the Lagrangian in particle theory being a func
tlon of coordinates and velocities. The integral of the La
grangian density over any (four -dimensional) region of space
time must then be stationary for all small variations of the 
coordinates inside the region, provided the coordinates on the 
boundary remain invariant. 

It is now easy to see what the quantum analogue of all 
this must be. If S denotes the integral of the classical La
grangian density over a particular region of space - time, we 
should expect there to be a quantum analogue of e's11a. cor
responding to the (qt I qr) of particle theory. This (qt I qr) is 
a function of the values of the coordinates at the ends of 
the time interval to which it refers and so we should expect 
the quantum analogue of eiS/'h to be a function (really a func
tional) of the values of the coordinates on the boundary of 
the space- time region. This quantum analogue will be a soft 
of ,,generalized transformation function". It cannot in general be 
interpreted, like (qt I qT), as giving a transformatlon between 
one set of dynamical variables and another, but it is a four
dimensional generalization of (qt I qr) in the following sense. 

Corresponding to the composition law for (qt I qr) 

(qtlqT)= J(qtlqi)dq1(q1 lqT), {12) 

the generalized transformation fw1ct1on (g.t.f.) wlll have 
the following composition law. Take a given region of space
time and divide it up into two parts. Then the g.t.f. for 
the whole region will equal the product of the g.t.f.'s for 
the two parts, integrated over aJl values for the coordinates 
on the common boundary of the two parts. 

Repeated application of (12) gives us (11) and repeated 
application of the corresponding law for g.t.f.'s will enable 
nate !or two dlf!erent points ln the domain o! Independent variables, and 
ln this w11.y to keep to the idea o! a single Independent variable t. This 
point of view Is necessary for the Hamlltonlan treatment, but !or the 
Lagrangian treatment the point of view adopted ln the text seems pre
ferable on account of its greater space• time symmetry. 
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us in a similar way to connect the g.t.f. for any region 
with the g.t.f.'s for the very small sub-regions into wh1ch 
that region may be divided. This connection will contain 
the quantum analogue of the action principle applied to 
fields. 

The square of the modulus of the transformation function 
(qt I qT) can be interpreted as the probability of an observa
tion of the coordinates at the later time t giving the result 
qt for a state for which an observation of the coordinates at 
the earlier time '1.' is certain to give the result qT. A cor
responding meaning for the square of the modulus of tho 
g.t.f. wi.U exist onl_y when the g.t..f. refers to a region of 
space - time bounded by two separate (three -dimensional) 
surfaces, each extending to infinity in the space dlroctlons 
and lying entirely outside any light- cone having its vertex 
on the surface. The square of the modulus of the g. t. f. 
then gives the probability of the coordinates havlng speci
fied values at all points on the later surface for a state for 
which they are given to have definite values at all points 
on the earlier surface. The g.t.f. may in this case be con
sidered as a transformation function connecting the values. 
of the coordinates and momenta on one of the surfaces with 
their values ou the. other. 

'Ne can alternatively consider I (q, I qT) 12 as giving the
relative a priori probability of any state yielding the re
sults qT and qt when observations of the q's are made at 
time T and at time t (account being taken of the fact that the 
earlier observation w1ll alter the state and affect the later 
observation). Correspondingly we can consider the square 
of the modulus of the g.t.f. for any space - time region as. 
giving the relative a priori probability of specified results. 
being obtained when observations are made of the coordina
tes at all points on the boundary. This interpretation is 
'IlOre general than the precedlng one, since it does not re
quire a restriction on the shape of the space- time region_ 
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