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Quantum mechanics of collision processes (%).
By Max Born in Gottingen.
(Received on 21 July 1926)

Translated by D. H. Delphenich

The Schrddingeiform of quantum mechanics allows one to define the freqyueha state in a natural way
with the help of the intensity of the associated eigbration. This viewpoint leads to a theory of cobisi
processes in which the transition probabilities dée&ermined by the asymptotic behavior of aperiodic
solutions.

Introduction. Collision processes not only yield the most convincixigeeimental
proof of the basic assumptions of quantum theory, but alsm suitable for explaining
the physical meaning of the formal laws of the so-cdligdintum mechanics.” Indeed,
as it seems, it always produces the correct term validse stationary states and the
correct amplitudes for the oscillations that areatet! by the transitions, but opinions are
divided regarding the physical interpretation of the fdasw The matrix form of
quantum mechanics)(that was founded bkleisenbergand developed by him and the
author of this article starts from the thought thaeaact representation of processes in
space and time is quite impossible and that one musttmant oneself with presenting
the relations between the observed quantities, whicloclrbe interpreted as properties
of the motions in the limiting classical cases. Ondtrer handSchrodinger(®) seems
to have ascribed a reality of the same kind that liglntes possessed to the waves that he
regards as the carriers of atomic processes by usirtgtBeoglieprocedure; he attempts
“to construct wave packets that have relatively smimtiensions in all directions,” and
which can obviously represent the moving corpuscle directly.

Neither of these viewpoints seems satisfactory to khere, | would like to try to give
a third interpretation and probe its utility in collisioropesses. | shall recall a remark
that Einsteinmade about the behavior of the wave field and light quahkta said that
perhaps the waves only have to be wherever one needsoto tke path of the
corpuscular light quanta, and in that sense, he spokegifastfield.” It determines the
probability that a light quantum viz., the carrier of energy and impulse — follows a
certain path; however, the field itself is ascribednergy and no impulse.

() A preliminary announcement appeared in Zeit. PBY$1926), 863.

() W. HeisenbergZeit. Phys33 (1925), 879M. BornandP. Jordan ibidem34 (1925), 858M. Born,
W. HeisenbergandP. Jordan ibidem 35 (1926), 557. See ald®. A. M. Dira¢ Proc. Roy. Socl09
(1925), 642110 (1926), 561.

() E. Schrodinger Ann. d. Phys.79 (1926), 361, 489, 734. Cf., the second paper, pp. 499.
Furthermore, Naturwl4 (1926), 664.
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One would do better to postpone these thoughts, wbeplexd directly to quantum
mechanics, until the place of the electromagnetidd fiel the formalism has been
established. However, from the complete analogy betight quanta and electrons,
one might consider formulating the laws of electrastion in a similar manner. This is
closely related to regarding the Broglie-Schrodingewaves as “ghost fields,” or better
yet, “guiding fields.”

| would then like to pursue the following idea heuristigallhe guiding field, which
is represented by a scalar functigrof the coordinates of all particles that are invdlve
and time, propagates accordinglchrodinger'differential equation. However, impulse
and energy will be carried along as when corpuscles électrons) are actually flying
around. The paths of these corpuscles are determined otitg textent that they are
constrained by the law of energy and impulse; moreavdy,a probability that a certain
path will be followed will be determined by the functigh One can perhaps summarize
this, somewhat paradoxically, as: The motion of the qartfollows the laws of
probability, but the probability itself propagates in adowith causal laws').

If one surveys the three levels in the development ofitquatheory then one will
see that the lowest one — viz., that of periodic pE®s is entirely unsuitable for testing
the utility of such a conception. The second levatamely, the level of aperiodic,
stationary processesachieves somewhat more; we would like to concern ogsavith
it in the present paper. However, the third level — Wit of non-stationary evolution —
can actually be decisive; there, one must show whetieerinterference of damped
“probability waves” suffices to explain the phenomémat apparently point to a coupling
that does not relate to space-time.

Making this concept precise is possible only on the basissome further
mathematical development);(therefore, we shall turn to that directly, sottha can
then return to the hypothesis itself later on.

8 1. Definition of the weights and frequencies for periodic systems. We begin
with an entirely formal consideration of the diserettationary states of a hon-degenerate
system. They can be characterizedbjrodinger’differential equation:

[H-W ¢f=0. (1)
Let the eigenfunctions be normalized to’}t (

[ w.(@yn(a) dg = dmn. 2)

Any arbitrary function(q) can be developed in eigenfunctions:

() That means that the knowledge of the state at altgpaira moment will establish the distribution of
states at all later times.

() N. Wienerof Cambridge, Mass. has graciously helped me with ththematical details of this
paper; | would like to express my thanks to him for thatakthowledge that | would not have reached my
goal without him.

() For the sake of simplicity, | shall set the dengityction equal to 1 here.
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@A) = .G, ¥,(0). 3

Up to now, all of the attention has been focusednuthe eigenvibrationg, and the
eigenvaluedV, . The picture that we suggested in the introduactsoclosely related to
the idea of connecting the superposition of funithat is represented in (3) with the
probability that the state will appear with a certbequency in a cloud of identical,
uncoupled atoms.

The completeness relation:

[lg@Fda=3Ic,F (4)

leads to the idea that this integral can be reghadehe number of atoms. It then has the
value 1 for the appearance of a single, normalegdnvibration (or: the priori weight
of the state is 1),d, |* means the frequency of the stateand the total numbers can be
combined additively from these components.

In order to justify this interpretation, we shedinsider, say, the motion of a massive
point in three-dimensional space under the actioth® potential energy(x, y, 2); the
differential equation (1) will then read:

8772,u

Ay + W-=U ¢=0. (5)

If one setsW, ¢ in this equal to an eigenvalu&, and an eigenfunctiong, resp.,
multiplies the equation by, and integrates over all spactSE dx dy dy then one will
obtain:

{80+ 2 -0y ) =
FromGreen’stheorem, and recalling the orthogonality conditi@)s that will give:
dnn Wn J:U{ (gradt/ln Dgradl/ )—U ¢/ ¢/ } (6)

Each energy level can then be regarded as theakpaggral of the energy density of the
eigenvibrations.
If one now defines the corresponding integralaioy function:

m{ |grady, 1+U m} (7)

then if one substitutes the development (3), orleget the expression for this:
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w=>"lc, FW,. (8)

According to our interpretation of the] F, the right-hand side is the total energy of a
system of atoms; this mean value can then be remest as the spatial integral of the
energy density of the functiap.

However, nothing will point to our Ansatz in favofthe others as long as we remain
within the scope of periodic processes.

8 2. Aperiodic systems. We now go on to the aperiodic processes andh®sake
of simplicity, we shall first consider the caseuwfiform, rectilinear motion along the
axis. In that case, the differential equation sead

d%y _ _8ru,,,.
2 +Kw=0, K= = W; (1)

it has all positive valueg/ for its eigenvalues and the eigenfunctions:

+ikx

Yy=ce'

In order to be able to define the weights and feegies, one must, above all, normalize
the eigenfunctions. The integral formula that nslagous to (2) breaks down (i.e., the
integral is divergent); that is why one employs ‘tfrean value” instead of it:

. 1 ¢+a ) ('_:2 +a e i
lim— K, X)F dx=lim—| €&“e™dx=1; 2
lim [ 1@ F dx=lim=— | (2)

it follows from this thatt = 1, and one has tm®rmalized eigenfunctions:
ik, x) =k (3)

Any function ofx can be composed of these. In order to do thatparst choose the
unit for thek-scale — i.e., one must establish which segmeiat tsve the weight 1. For
that, one considers the free motion to be a limitase of a periodic one, namely, the
eigenvibration of a finite piece of theaxis. One then knows that the number per unit

length and per intervak(k + dk) is equal tog—k = A(%} whereA is the wave length.
T
One will then set:

w9 = [ ek 9 &S = [T ek ok (4)
@ T

with
c(-K =c (K %)
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and expect thatdk) f will then be the measure of the frequency for then'xailzi dk
T

For a mixture of atoms for which the eigenfunctions appe the distribution that is
given byc(k), let the number that is analogous to 8§ 1, (4) be repesdy the integral:

[Tlw o dx = (2,17)2 Jf:dX\ [T e dﬁz- (6)

If we take the case in which only the small intékia< k < ko is occupied then:
o fkx % C o ilox _ jkox
j c(k) é w:cj d* dk = = (6" — %),
e k IX
in which € is a mean value. One will then have:

jj:W/(X)lz dx = %Jf:%(ékzx — do)( gt — gk

= ﬂ4'[+°°2(sin2 k=K _ %Tlﬁ F (k2 —ka).

Now, according tale Broglie the impulse of the translatory motion that be®ig the
eigenfunction (8) is equal to:
h h
=—=—k 7

P=2 =2 (7)
It is, perhaps, not superfluous to remark that care also formulate this as a “matrix”;
one must then define the matrices in the contingpestrum here, not by integrals, but
by mean values:

N i Lk 0 22 KX
plk, k) = ——lim — [ ¢k, === dx

= N i L[ ek dex gix,
2]7] a-o 2a -a
h
—k fork=K,
pk, k) =1 27 (8)

0 " kzKk.

If one now replaceAk =k, —k; with 2?”Ap then one will finally have:
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JTlweof dx=1of 22 ©

One then has the result that a cell of lefyth= 1 and impulse extensiakp = h will
have weight 1, in agreement with the AnsatBSatkurand Tetrode(*), which has been
confirmed many times by experiments, and tle&)| [ is the frequency for a motion with

the impulsep = Lk.
2

We now go onto accelerated motion. Here, one cawraigt define a certain
distribution of processes in an analogous way. Howeéhat,is not a rational question to
pose for collision processes. For those processesmaingn will have a rectilinear
asymptote before and after the collision. The parisctben found to be in a practically
free state for a very long time (in comparison to tbeua duration of the collision)
before and after the collision. In agreement with #xperimental statement of the
problem, one thus comes to the following viewpoint: Letdiséribution function (k) [
for the asymptotic motion be known before the collisi@an one calculate the
distribution function after the collision from it?

Naturally, we are speaking only of a stationary perocrrent here. Mathematically,
the problem then comes down to the following one: Theostaty vibration fieldy must
be distributed into ingoing and outgoing waves; they ayenptotically plane waves.
One then represents both of them by means of a Fauotegral of the form (4) and
chooses the coefficient functiafk) for the ingoing waves arbitrarily; it shall then shown
that thec(k) is determined completely for the outgoing waves. idtdg the distribution
into which a prescribed particle mixture will be converaéédr the collision.

In order to see the relationship clearly, we firsatttbe one-dimensional case.

8 3. The asymptotic behavior of the eigenfunctions in a continuous spectrum
with one degree of freedom. Schrodinger'differential equation reads:

dy N 8 u

o (W-Ux) ¢=0, 1)

in whichU(x) means the potential energy. To abbreviate, we se

8’:;/“’ W=1e, 8’:;/“’ U(X) = V(X): )
we will then have:
d*y _
0 +I Y=V y. (3)

() A. SackurAnn. d. Phys36 (1911), 95840 (1913), 67H. Tetrode Phys. Zeit14 (1913), 212; Ann.
d. Phys38(1912), 434.



Born — Quantum mechanics of collision processes.

We examine the asymptotic behavior of the solution atitgfi In order to get a simple
relationship, we assume th&ix) vanishes faster tha@’ at infinity; i.e.:

Ve << @)
X

in whichK is a positive number
We now determine/x) by a process of iteration; let:
Uo(X) = (5)

and letuy(X), ux(x), ... be the solutions of the successive approximations:

d?u,
dx’

+ I Uy =V Uyt

which vanishes as - + .
One then has:

W) = ] U (V@ sinkE - X ¢,

as one can verify directly. One has:

1009 1= [ Tu @ IV €)166

1(KY
|Un(X) |S E(?Xj .

We now show that:

This is correct fon = 0, since it follows from (5) thatup(x) |< 1. We now assume that

is it correct fom — 1:
n-1
1 K
[Un1(é) | £ ——=| — |
(n=-D" k&
it then follows that:

1 1 (KY7 o mene 1(KY
|Un(X)|5E(n_1)!(—kj DK.[XCZ &dé _H(?Xj ,

as was asserted.
As a result, the series:

w9 = 20,09 ©)

() The cases of a pufeoulombfield and a dipole field are excluded by this assumption.
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converges uniformly for every finite interval; it canet be differentiated term-wise
arbitrarily often, and is then, as is easy to ske,desired solution to our differential
equation.

However, since alliy, up, ... vanish ax - + o, the functiong will be asymptotic to
Uo = € at positive infinity. |

In precisely the same way, one shows that theaes@ution that is asymptotic ol
asx - + . Since the general solution has only two constantaugt asymptotically
have the form:

[//+(X) -a ékx + b e—ikX (7)

asx —» + . Here, the degeneracy of the system makes its appeam@very energy
valueW is associated with two valu&s— k and two linearly-independent solutions.
In an entirely similar way, it follows that the geaksolution must have the same
form asx - — oo:
W () =Ad*+Be™* (8)

In this, the amplitudes, B are well-defined functions @, b.
We now decompose the solution into incoming and outgoanges; for that, we add

the time factog*” (ku = ZW:ZFNWJ and set:

a=ce”, A= C &4,
=c g - C &% 9)
b= Cae ) B= Q e .
One will then have:
w+ (X) — Ceé'k(x+ut+¢e) +q e—ik(x—ut+¢a),
w— (X) =C é’k(x+ut+¢a) + Q e—ik(x—ut+¢e). (10)

The real parts of the terms that are denoted vmghihdexe represent the incoming
waves, while the terms that are denoted witl agpresent the outgoing waves.

We are interested in the case in which only oneews incoming ak = + . One
will then haveC, = 0, and one can arbitrarily sgt= 0, moreover. One will then have:

(11)

[/I+ (X) — Ceé'k(xﬂ/t) + (% éik(x—ut+¢a), }
- — Kk (x+ut+®,)
Y (x)=C,¢€ :

We have shown thap ~(x) is determined in terms af *(x) by integration; i.e.A, B are
well-defined functions o&, b. In our caseC. = 0, so we will havd3 = 0, and one thus
has two equations of the form:

A=Na©,}

0=B(a,b). (12)
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One can expredsin terms ofa using the second one, and one will thenAyeixpressed
in terms ofa from the first one. However, that means that thestants of the reflected
wave and the constants of the transmitted wave caraloalated from the amplitude of
the incoming wave.

One can now show that a relation exists betweernntkasities of the three waves.
One obtains it most simply with the help of the gyaheorem.

8 4. Thetheorem of the conservation of energy. In order to derive this theorem,
we return to the form dbchrodinger'differential equation for which the assumption of
vibrations that are purely periodic in time is still moade, so one will have a wave
equation of the form:

Oy _10% _
T T )

In this, v is the wave velocity. One comes3chrodinger'sequation when one, witthe
Broglie, sets {):

hv:W:%u2+U, U= Ay, ;:p:,uu;

one will then have:

2
1 W1 AR EU Ru
v A2hdv? . W2 w2
1 2
?:—‘Q(W—u. 2)

278\

If one now seeks solutions whose time dependengjven by the factog? = eh
then one will get:

dy 8mu
+——(W - =0.
dx? 1§ ( Al
However, we now fix our attention on the generairola (1) and multiply the equation
byoy/ at.
One now has:

Syoy _ i(aw awj_aw o’y
ox?® ot ox\ ox ot ox 0x0t

() We neglect relativity and calculate with classicacimanics.
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_ i(a_wa_wj_gi(a_wjz
ox\ ox ot ) at2\ ox )

If v depends upon onlythen we will get:

2 2
%ﬂ%%&%ﬂ+%wjm @)
ox\ dx dt ) adt| 2\ dax 20°\ 0t

If one integrates over all space then one will get:
+o0 2 2
[6_4[/6_4[/} _O =1 (a_‘/’j +_12(a_¢’j dx = 0. (4)
ox ot | ot 2| 0x v-\ ot

As was pointed out in § 1, the space integral is ghto be interpreted as the total energy
that is present in space. However, its expressams not interest us, since for us it will
enter into the in-streaming and out-streaming enevghich will be represented by
limiting terms. The time mean of the two terms ighas for a temporally periodic
process, and, with the use of the notations thae weroduced in § 3, (7), (8), one will
get:

oy _dy _ oy oy

. 5
1) ot 0x ot ©)

This equation states that the in-streaming enesggqual to the out-streaming energy.
When we substitute the real part of the expres8i8n(10) in this, we will get:

ci-Ci=ci-d, ©)
or, in the cas€. = 0 [as in equation (11), 8 3]:

¢t = +Cl. 7)
However, that means that for any elementary wagwaink, the incoming intensity will
be split into the intensities of the two waves thedtter to the right and left, or, in the
language of the corpuscular theory: If a particiena given energy enters the atom then
it will either be reflected or it will continue onThe sum of the probabilities in these two
outcomes is 1.

The theorem of the conservation of energy then thasconservation of particle
number as a consequence. The basis for thainlidseidegeneracy of the system; any
energy value belongs to several motions, and thikpevrelated to each other.
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8 5. Generalization to three degrees of freedom. Theinertial motion. We now
consider a particle that moves in space under the aatithe potential energy(x, vy, 2).
One then has the differential equation:

1
Aw——ggf =0, 1)

which is analogous to (1), in which is once more given in the approximation of
classical mechanics by (2), 8 4. Here, the coagienv law reads:

div (561/’ gradz//j 9 { grady )+ (aalf/j } 0, (2)
or, when integrated over space:
Wy, 9 oy
R {(gra WY+ (at j }ds 0 ®

in whichdS=dx dy dzanddo is the element of an infinitely-distant, closedface with
exterior normal. For temporally periodic processes, it then f@Hofrom this that the
temporal mean will be:

j WY 5 = 0. (4)
ot ot

For this case, the differential equation reads:

A+ (K -V) =0, (5)

where one has set:

I = 87:;# W, V(X, Y, 2) = 87:;# Uy, 2). (6)

For theinertial motion(viz., V = 0), one has the differential equation:
AY+K ¢=0 (7)
and the solution: _
y=e; (8)
here,t is the vectok, y, z, while the vectot satisfies the equation:

lef =K +K +K =K (9)

and it is equal to the impulse vector:
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h
= —F§, 10
p 5 (10)

up to a factor.
Thede Brogliewave length will be given by /A =p=|p | = ZLk' The solution (8)
T

should be regarded as normalized in the sense of takinmehe [see (2), § 2]. We
briefly denote a function of, y, t by f(r), a function of, ky, k; by f(€), etc. LetdS=dx
dy dz

The most general solution of (7) is:

) = Uo(r) = j c(s) €™ dw, ds =c'(s), (11)

in which s is a unit vector andlw is the element of solid angle. It representstialer
motion in all possible directions with the samergge From our basic principlesg(s) |2
is the number of particles that flow in the direats per unit solid angle.

We now derive an asymptotic representatiorugahat shows clearly how, behaves
at infinity. Although one can obtain the resultywsimply, here, we would like to obtain
it by a general method that can be carried ovehéocases that will be developed later
on. We think of a new rectangular coordinate syste Y, Z that has been introduced
with the help of the orthogonal transformation:

X=a, X+ q,Y+ 8,4 X=X g ¥ &,z
y=a,X+a,Y+ 3,4 Y= ax gy @z (12)
z=a X+, Y+ 834 £ &x &y .z

At equal times, we introduce the new unit ve@grin place of the unit vectar, with the

help of the same orthogonal transformation; thedsamgle elementicwthen goes over
into a newdQ, and one will have:

ts =R G. (13)
We now choose the new coordinate system espesiadly that:

X=0, Y=0; (14)
one will then have:
Z=r=xX*+y’+7. (15)
Our integral will be:
Uo(X, ¥, 2) = Uo(aus Z, @23 Z, ass Z)
= [dQc(3 6, +alS, + ap,, ) &

Moreover, we introduce polar coordinates &ir
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Sy = sind cosy, Sy =singsin g, S, = cos? (16)

and set co# = 1, we will then have:
2 +1 . -
Uo:j0 d¢J_1dﬂC[m(qlcos¢+ a, Sig F u q3,,,i &u

It follows from this by partial integration that:

= é 02nd¢[C(Q3’ D3 %3) é(Z - (ﬁ— Q— 85— %:) —é«z }
1 2 d 5 . o
- EJO d¢d—ﬂc[\/ﬁ(%cos¢+ a, Sip ¥ u %.’“J &4 .

Repeated application of the same process showshthaecond term vanishes IE&. If

one now introduce& = r, a3 = % = 5, ... then one will get the asymptotic
r
representation:
uS"(X, y, Z) = ZLT{C(E’X’_ZJ ékl’ _ c(__x’__y,__zj e—ikr }’ (17)
ikr rrr rr r
or, in real notation, witle = |c | €
\ smk{wy(f J rﬂ
o 7 (X z
Uy (X ¥, 2 = — C(—,l,—j : (18)
k rrr r

That means thaty behaves asymptotically like a spherical wave aithamplitude and
phase that depends upon the direction. The intgers a function of the directian=rt /
r, determines the flux of the particles that flowatigh the solid angle elemeatv with
the axiss:

Do dw= | c(s) F da (19)

8 6. Elagtic collisons. We now go on to the integration of the generalagign (5),
8 b:

A+ (K =V) y=0; 1)

physically, it represents the case in which antedeccollides with an atom that cannot be
excited by that.
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As in 8§ 3, we determing by a process of iteration in which the functignthat we
just introduced in (11), 8 5 will serve as the initial fumet We then calculatey, us, ...
in succession from the approximation equations:

AUy + K Uy =V Uy =Fpg . (2)

Green’stheorem yields the solution that corresponds to theomggvaves with the time

factore“"!in the form of:

—ik[c—t'|

e
'
r—t

ds, (3)

(©) === [ Fo®)

in which " means the vector with the componexitsy’, Z, anddS’ = dx dy dZ. The

convergence of the process can be proved on the dlahe assumption that goes to
zero liker? (*); however, we shall not go into that, but assuia¢ the series:

o) = > 0,(0)

represents the solution.
We investigate the asymptotic behavioug(t). We write, more thoroughly:

e—ik\/(x—X)2+(y— V)2+(z 92

dx dy dz.
Jx=X)2+(y- )2 +(z- 9?

(3.9 == = [Fra(X, Y. 2)

We now once more introduce the rotation of the dmate system that was given in 8 5
and subject the integration variables to that imtat One will then have:

Un (X, Y, 2 =Un (13 Z, a3 Z, ag3 2)
_ik\[X'Z+Y24 72

1 e
=-—|F,(X\Y,Z dX dY dz 4
2P T @

in this, one has:
Foo(XLY,Z) =Fp1 (@u X' +an Y+aizZ), ...). (5)

We now introduce polar coordinates:
X" =psindcosy, Y =psingdsing, Z’' =pcoss.

One will then have:

() The case of ions is excluded from this; for them, woald have to take a hyperbolic path of the
electron as the starting estimate in the approximgtiooess, instead of a rectilinear motion. On tlgs, &
treatise ofl. R. Oppenheimehat will appear soon in Proc. Cambridge Phil. Soc., 261R26.
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e—ik«l p?+22-2pZ cos?d
\/,0 +Zz—2chosz9

Un ——j ¢j pdpj sind dd E_ (osing ;-

Finally, we introduce the integration variablen place of by way of:

\/,02+Zz—2,020039 =Z U,
singdd = z My,
Yo,

the limits of integration will then become:
ﬂ:O;y:‘g—l‘; 19:77;,u:£+1,

and cosd, sin g will be certain functions(p, Z, 1), (o, Z, 1) that will assume the values
c =1,s=0 at the lower limits and the values — 1, s = 0 at the upper ones. One will
then obtain:

_ 1 on = Pu . _ikuz
Uy = EIO d¢jopdpj'§_l F', (o scosd o ssind p c)&* g

As in 8 5, one will obtain the asymptotic repres#ion from this by partial integration:
- 1 —|k(Z+ ) _ _ <ik|Z-p|
n—4—j dgf, pdo-— [ F,(0,0,0)e™ ) — . (0,0-p )" =],

Here, from (5), one has:

X Z
F..(0,0,0) =Fna(auzp, a3 p, 83 p) = Fn- 1('07 %l 'L:—j,

' X Z
F1(0,0-p)=Fn1(-ai3 0 —a3p —as30) = Fn-{—pT,——y,——j :

One will then have:

—ikr
PX PY PZ) ik
F _’_’_ e p
U = 2|kr~['0 P _l(r r rj
Fn—l -

_et _PX g & e LX) gk
2ikr~[0'0d'0F”_l( r’ jé ZKrerdp A

Here, the last integral vanishesras ; if we assume that\ | < a r? there, then due to
the fact that {ip | < b r'*, we will have:
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A
F ’

| Fn—l |S

SO
d,o A

<AJ r

jrmpdp Fn_l(—%,.. je""”

We then finally obtain:

e PX ko _ _PX “ikp
ue = 2|krj P ,0{ (T,...je Fn_l( r,...je } (6)

However, this can be put into a more transparent fdmorder to do that, we introduce
the Fourier coefficients of the functidn-; :

fra(®) = o '[UF_l(t)e”EdS

(277)J rzdr”da)F_l(ts)e"‘(“s) (7)

We determine the asymptotic value from the alreadige-performed process, and

obtain:
1 w rk - rk -
k,k,k)= —— dr | F x e -F | ——x ... |e™|.
_1( X7y z) 4ﬂ2|k '[0 r r|: n—l( k je n—l( k j :|

One will then have:

o | X Y 2 PX ikp _PX ko
fn_{ k=, =k, krj 4772|kj p p{ (r je Fn_l( : jék} €)

If we substitute that into (6) then we will finalbbtain:

W% Y, 2) = 272 fn"il[ k> -kZ - k—zj e )

r’ r r r

If we compare that with the formulas (11) and (b8)8 5 then we will see that an
observer at infinity will see the scattered radiatas a plane wave with the amplitude:

fr,(~ks)| =k

fa(—Ks) ‘ ,

which will depend upon the direction thus, the probability that an electron will be
deflected into an element of solid andl@with the mean directios will be:
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¢ dw= 77K dow. (10)

Z f.°(—ks)
n=0
The total solution has the asymptotic form:
o _ e N w 2T ik (r+3) oo <ikr
Ye=ug Y —?|C(ﬁ)|é +hry £ (k) €9}
n=1 n=1

If one adds the time factog““' to this then formula (4), § 5 will easily give the
“conservation of particle number.”
In the first approximation, one has:

® dw= 7712 | 17 (-ks) | dw, (11)

in which one calculatds, either rigorously from the formula:

— 1 —i (fr)
fo(€) = o j F,(t)e'™dS (12)

or one can employ the asymptotic expression [fr&)j (

1

o (7ke) = i

[ pdplF(ps) €~ F(-ps) €} . (13)

8 7. Inelastic electron collisions. Let an atom (or a molecule; however, we willlstil
say “atom”) be given by thédamiltonian function H3p, q) (*); let Schrodinger's

differential equation for this system be solved,os® knows the eigenvalud¥® and
eigenfunctiongy?(q) that satisfy the equations:

[H*-We] =0 (1)

identically.
An electron collides with this atom; th&amiltonianfunction for the free electron is:

H® = i(loi+ p;+ 1),

the eigenvalues are all positive numbéfs and the eigenfunctions are:

() We briefly writep, g, instead opy, P2, ..., P, 01, ..., G -
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e, 1= Tl v @)

The general solution that corresponds to the inngmiave is:

gi = | (s) € dw; (3)
ts>0

it satisfies the differential equation:
[HE =W, ¢i1=0 or Ay +k%y; =0. (4)

The potential energy:
U(a: x Y, 2 ()

exists between the atom and the electron.
The interaction between the two particles leadbédiamiltonianfunction:

H=H’+AHO,
where
H®=H*+H",
AH® =U. }

The unperturbed system has the solution:
Wn?< = Wna + V\f’ wr?k = w: wli '
We solveSchrodinger'differential equation for the perturbed system:
[H-W¢l=0
by the Ansatz:
Y=g+ AP+ .

We will then get the approximation equations:

[H® =W ¢ =-U gy,

[H®-WE.0il == U g,

whose left-hand sides agree. We write them odetail:

[H @R+ THS @i -Wow ) == U g,
or
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[H?, ‘”]—— WE WS =-U y,,.

We seek to solve this equation by the Ansatz:

v = TUO;

i.e., in terms of a development in only the eigenfions of the unperturbed atom whose
coefficients are undetermined functions of the fomsivectore of the electron.

From (1), one will now have:
[H ¢l = ZU‘”(r)[Ha,wam]
— zu(l)(t)wa

We develop the given function on the right-hana sidthe same way:
Un =Wy =g 3 U0l

the coefficients define the matrix that is assadatvith the potential energy. If we
introduce these expressions into the differentjalagion then we will get:

h2
uD (W2 ———AuY - UD(Wet+ W) == iU, .
;wm{ (t) 8772,U nm nr( m ) %w wk

One obtains a differential equation faf’(t) from this by equating the coefficients of

W if we multiply it by - 87:;#

8 8
V hzlu U, Vom = ?,U Unm, (6)
G, = S e -we e w) = T g, 4 ) )
then we will find that:
Au® + K2 U® = Vo, ¢ (8)

We have then converted the problem into the prelWetieated problem of inelastic
collision; all of the following approximations thelead to the same wave equation.



Born — Quantum mechanics of collision processes. 20

However, the difference between this problem and thedoone is the following: Every
transition(n - m) of the atom corresponds to a special differential Bguavhose right-
hand side is determined from the corresponding matrix elfeofethe potential energy.
Moreover, another valuen, that corresponds to the energy:

h2
WE =
" 8rtu

kom = NV + W )

enters in place of tHevalue of the incoming wave. The basic qualitataxe of electron
collisions already follows from that: The energytbé electron after the collision is, in
general, not equal to the energy before the ootiidbut differs from it by an energy jump

hV;, of the atom. A probability function:

o= 17 K2, | f57 (~K,8) P (10)

belongs to any collision process that one can tkewith the help of formula (12) or
(13), § 6.

8 8. Physical consequences. We next show that our formulas correctly duphctite
gualitative behavior of atoms under collisions, ahds, the fact of “energy jumps,”
which has always been regarded as the basic pfllgmantum theory, as well as the most
egregious contradiction to classical mechanics.

We order the energy levels of the atom by theigmitades:

Wo < WP <Wi< ...
The index 0 then denotes the normal state, andhasie
hv,, =W -W; >0 for n>m

We next consider the case in which the atom iglhjtin the normal state. One then has
that all v, > 0, and it will follow from (9), § 7 that:

Wogm = \Ne_hV:wo-
Now, if W* < h\§, thenW,, would be negative fom > 0, which is impossible; thus, one
must haven = 0, so:

Woo =W

One then finds “elastic” reflection with the profio . If one letS\f increase until:
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hvg, <WF< hig,

then W, will become only positive fom = 0 andm = 1; one then has either elastic

reflection with the profitby, or stimulated resonance with the prafg; .
If WF increases further until:

hvg, <W< his,

then there will be three cases: Elastic reflectiath profit ®qp, stimulation of the first
quantum jump with®g;, stimulation of the second quantum jump with, . One
proceeds further in the same way.
We now fix out attention on the fact that the atormisally in the second quantum
state 1 = 1); one will then haver;, > 0 andv;,, <0 form=2, 3, ...
One then has:
W5 =W+ hvg,
Wi =W,
W =WF-hvy,, m=23, ..

Now, if W* < hv3, then W’ will be negative fom = 2, 3, ...; therefore, there is only
either a collision of the second kind with an energyéase for the electron hyz,, with

a profit of®4p, or elastic reflection with the profi,; .
If one has:

hvg, <WF < hvd,

then the stimulation of the state= 2 with the profit®;, will enter into these processes.
One proceeds further in the same way.

In the general case, if the atom is initially in tsiaten then there will be only
collisions of the second kind for:

W < h\v

n+1,n?

for which, the atom will drop into the states 0, 1,n. 1 and give up the energy values
hva,, hv2 hv? ., to the electron, with the profit®.,, ®n1, ..., Pn, n-1, and the

no’ n1r n,n+1?

elastic reflectior®,m, . If W increases oveh\? . then there will be stimulations with

n+l,n

the profits®n, ne1, P ns2, -.., Pn,m When:

hvd, <W'< hWV

n+1,n m+1,n

The next problem would be to discuss the formula (10),88 ¥e profit; thus, we would
like to content ourselves with an entirely tentativenat truly debatable, consideration.
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We assume that the potentiatan be developed in powersrof; for a neutral atom, one
will then have the dipole terms:

Ux, Y, 2) = ri (Bv) (1)

in the first approximation, wherg(q) is the electric moment of the atom. We then
associate it with the matrig,,,. From (6), 8 7, one will then have:

nm = %zﬂe(mn %j . (2)
r

Naturally, this Ansatz can only be correct for @lens that pass by the atom at the
distance considered. We therefore restrict ousid@nation to electrons for whigh> rq
(*), and thus write, from (13), § 6:

1
4rriK,,,,

fo" (“Koms) = . pdo{F,(p9 €~ F(-pg &3 .

We now assume that that the incoming electronsneeé parallel bundle, which
corresponds to a plane wave; one will then have:

- 81 e e
Fonlr §) = Vam €= LH8 €
h P

Moreover, one will have:

i 7kom £ (K 8) = 477’:11—5 (B 5) A, (3)
for which, withs, = cos9, one will have:

_(~dp

A—jr 7COSE(kCOSI9—knm], (4)
or

A=-C (I’o [k cosd — knm]), (5)

in which Ci(X) means the integral cosin.(
From (10), 8 7, the profit function then becomes:

() The exclusion of the central collisions means #mporary sacrifice of being able to interpret an
especially interesting group of phenomena, namely, the péil#yr of the atom for slow electrons (viz.,
the Ramsaueeffect).

() S. E. JahnkandP. EmdeFunktionentafelnLeipzig, 1909, pp. 19.
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16772,u

chm | anm ’ | . (6)

If one finally takes the mean over all positionstiod atoms then the mean value of the
product of two components 8¥,n» will vanish, and the mean value of the squarehef t

components will be equal t§| Pom ', WhereP means the magnitude of the electric
moment. One thus obtains:
1677 11%e?

3 | Pam [P AZ. (6)

Py, =

We would like to discuss this expression for thafipfunction briefly.

One first sees that in our approximation, the ipisfproportional to Pam [; i.e., for
m# n, to the coefficients of the transition probability, of Einstein’stheory of radiation,
which corresponds to the processes of absorptidrstmulated emission in the radiation

8”“V3m o) ().

The profit for elastic reflection is proportiortal | Pum [, which is a quantlty that is
not optically effective. The diagonal elementgted matrixP,y, will be zero, in general
(®); namely, in addition to the small number of caiseshich a linear Stark effect exist
(as for the hydrogen atom)Pauli has informed me that he could even derive the
vanishing of the diagonal elements of the quadeipold higher moments for tederms
of the alkali metals and the normal states of thielengases and rare earths, which is a
result that represents the exact expression fahargally-symmetric domain of action
of the atom. Our approximation thus does not seffor the calculation of the elastic
reflections, for which, one must carry out the apgnation to one step further. That
should be done next in order to arrive at the fpagyiof testing our theory for the large
body of observationd_énard and others) of free path lengths of electronsnexaited
gases. Without precise calculation, one can tkertlsat the profit will be determined by
terms that are of fourth order . Naturally, these terms are much smaller tRaq?
From that, we can understand that the normal csesson of atomsn(= 0) for slow
electrons is much smaller (with the order of magpet of “gas kinetics”) than it is for fast
electrons, which can be stimulatéj (

The dependency of the profit upon direction wil teetermined by the functiof?
according to (5). It obviously corresponds tdiffraction phenomenaon

This consequence afe Broglie’stheory was pointed out about a year agoVy
Elsasser(*). When he seriously considered the wave pictueesoncluded that the slow

processes (but not with the probabilities of spoetas radiatioa,m =

() Seel. H. van VleckPhys. Rev23 (1924), 330; Journ. Opt. Soc. Am8&r(1924), 27. M. Bornand
P. Jordan Zeit. Phys33 (1925), 479.

(® For the harmonic oscillator, e.g., they are zenbtey are present for the anharmonic oscillator.

() One finds literature on this in the book that app#gust recently byl. FranckandP. Jordan
Anregung von quantenspriingen durch St@&lin, J. Springer, 1926).

() W. ElsasserDie Naturwiss13 (1925), 711. The order of magnitude relationship Eaasser’s
argument founded rests upon tteeBroglieformula for the wave length:
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electrons must be deflected by atoms in such a waythieat distribution after the
collision might correspond to the intensity of the tigimat is diffracted by a small sphere
(). He coupled it with the observationsRémsauepn the free path length of electrons
(®) and the experiments ddavissonand Kunsman(®) in the angular distribution of
electrons that were reflected from a platinum platethe meantime, the validity of the
argument has been confirmed by experiment Dymond (*), who observed the
appearance of interference maxima for reflected elestimmelium directly. A test of
our formula for the general body of observationsigisllt later.

8 9. Concluding remarks. On the basis of the foregoing arguments, | wouldtiike
go into the meaning of the statement that quantum mechallues one to formulate not
only the problem of stationary states, but also thattrahsition processes. The
Schrddingemicture thus seems to be by far the easiest pictucaltolate in; moreover,
it makes it possible to preserve the usual conceptbrspace and time, in which the
events play out in a completely normal way. By castt the proposed theory does not
correspond to the consequences of the causal determindeyinflividual events. In my
tentative communication, | have emphasized this indebtacy in particular, since it
seems to me to be in the best agreement with theiqggadtexperimenters. However, it
is naturally indefensible (if one would not like to rea® oneself) to assume that it will
give further parameters that have still not beerodiced into the theory that would
determine the individual events. In classical mechaties; would be the “phases” of
the motion — e.g., the coordinates of the particles adrmin moment. It seems at first
improbable to me that one could insert quantities intongne theory informally that
would correspond to these phases; howeteenkel has informed me that this can
perhaps happen. Be that as it may, this possibility wechdshge nothing in the practical
indeterminism of collision processes, since one cann@ tie values of the phases;
moreover, they must lead to the same formulas a%ptiase-less” theory that is proposed
here.

| would like to believe that the laws of motion ajHt quanta can be treated in a
completely analogous way)( However, as in the basic problem of the free taxfia
one would not have a temporally-periodic process, butlaealiein process, and thus, not

a=27-_h
Tk Jouw

For 300 volt radiation, one has roughly= 7 010, and thus waves of atomic dimensions.

() SeeK. SchwarzschildSitzungsber. d. Kgl. Bayer. Akad. d. Wiss. (1901), Z93Wlie, Ann. d. Phys.
25 (1908), 377P. Debye Ann. d. Phys30(1909), 57.

() C. RamsauerAnn. d. Phys64 (1921), 513:72 (1923), 345. For further literature sEegebnisse
der exacten Naturawissenschajt@rBd. (Berlin, J. Springer, 1924), the articleRof Minkowskiand H.
Sponey pp. 67.

() DavissorandKunsman Phys. Rev22 (1923), 243.

() Dymond Nature. (To appear; | am grateful for a glimpse af thork in a letter thabymondsent to
J. Franck)

() The complications that have been found up to now regardéinitroduction of “ghost fields” into
optics seem to me to be based, in part, upon theastimption that the center of the wave and the particl
that it determines are at the same place. Howeven, the Comptoneffect, this is certainly not the case,
and indeed will never be true, in general.
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a boundary-value problem, but an initial-value problem ferdbupled wave equations
for the Schrodingery¢~quantity and the electromagnetic field. Finding the ldwhds
coupling is certainly one of the most pressing problemd; @ aware, it has been
addressed in several placés (Once that law has been formulated, it will perhbes
possible to devise a rational theory of the lifetimestates, the transition probabilities
for radiation processes, and the damping and line widths.

() See, e.g., the soon-to-appear treatis@.dflein Zeit. Phys37 (1926), 895.



