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The Statistical Interpretation of quantum theory is formulated for the purpose of providing a sound interpretation 
using a minimum of assumptions. Several arguments are advanced in favor of considering the quantum state description 
to apply only to an ensemble of similarity prepared systems, rather than supposing, as is often done, that it exhaustively 
represents an individual physical system. Most of the problems associated with the quantum theory of measurement 
are artifacts of the attempt to maintain the latter interpretation. The introduction of hidden variables to determine the 
outcome of individual events is fully compatible with the statistical predictions of quantum theory. However, a theorem 
due to Bell seems to require that any such hidden-variable theory which reproduces all of quantum mechanics exactly 
(i.e., not merely in some limiting case) must possess a rather pathological character with respect to correlated, but spacially 
separated, systems.
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INTRODUCTION

1.0 Preface and Outline

This article is not a historical review of how the 
quantum theory and its statistical interpretation came 
to be. That task has been admirably carried out by 
Max Jammer (1966) in his book The Conceptual 
Development of Quantum Mechanics, and also by van 
der Waerden (1967). Our point of departure can 
conveniently be introduced by considering the follow
ing statement made by Peierls (1967) in a review of 
Jammer’s book:

“Chapter 7 • • • is headed ‘The Copenhagen Inter
pretation.’ • • • the phrase suggests that this is only one 
of several conceivable interpretations of the same 
theory, whereas most physicists are today convinced 
that the uncertainty relations and the ideas of comple
mentarity are essential parts of the structure of quan
tum mechanics • • •. A discussion of alternative inter

pretive attempts is promised for a later volume. 
• • • pBut] even the cautious word ‘attempts’ may be 
too positive a description for what are only pro
grams • • • that are not yet clear even in outline.”

If, as appears to be the case, the latter remarks by 
Peierls refer to the models known as hidden-variable 
theories (see Sec. 6), we agree that these should be 
treated as new theories, and that they are not new 
interpretations of quantum mechanics “any more than 
quantum mechanics is a new interpretation of classical 
physics.” However we shall show, contrary to the view 
expressed by Peierls, that the Copenhagen interpreta
tion contains assumptions which are not “essential 
parts of the structure of quantum mechanics,” and that 
one such assumption is at the root of most of the 
controversy surrounding “the interpretation of quantum 
mechanics.” It is the assumption that the quantum 
state description is the most complete possible descrip
tion of an individual physical system.

An interpretation which is more nearly minimal in the 
sense of including all verifiable predictions of quantum 
theory, but without the contestable features of the 
Copenhagen interpretation, we shall call the Statistical 
Interpretation. The distinction between these inter
pretations (which share many features in common) 
will be made in the following sections. Suffice it to say, 
for now, that if we identify the Copenhagen Inter
pretation with the opinions of Bohr, then the Statistical 
Interpretation is rather like those of Einstein. Contrary 
to what seems to be a widespread misunderstanding, 
Einstein’s interpretation corresponds very closely with 
the one which is almost universally used by physicists 
in practice; the additional assumptions of the Copen
hagen interpretation playing no real role in the applica
tions of quantum theory.

The outline of this paper is as follows. First we give a 
brief summary of the mathematical formalism of 
quantum theory in order to distinguish the formalism, 
which we accept, from the physical interpretation, 
which we shall examine critically. We then consider
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different interpretations, and expound the Statistical 
Interpretation in detail.

The Secs. 2, 3, and 4 could be prefaced by Appendix 
*xi of Popper (1959) on the proper use of imaginary 
experiments, in which he points out that Gedanken 
experiments can be used to criticize a theory but not to 
justify or prove a theory. Our discussions of the Gedanken 
experiment of Einstein, Podolsky, and Rosen, of the 
uncertainty principle, and of the measurement process 
are undertaken to criticize the assumption that a state 
vector provides a complete description of an individual 
system. Although arguments of this type can refute the 
hypothesis being criticized, they cannot, of course, 
“prove” the Statistical Interpretation but can only 
illustrate its advantages.

Sections 5 and 6 deal with two concepts (joint 
probability distributions for position and momentum, 
and hidden variables) which have often been thought 
to be incompatible with quantum theory. That belief, 
however, was based in an essential way upon the above 
hypothesis which we criticize and reject. I t turns out 
that, within certain limits, the formalism of quantum 
theory can be extended (not modified) to include these 
concepts within the Statistical Interpretation.

Finally we summarize our conclusions.

1.1 Mathematical Formalism of Quantum Theory

Quantum theory, and indeed any theory, can be 
divided [[see Prugovecki (1967), or Tisza (1963)] 
into:

(a) A mathematical formalism consisting of a set of 
primitive concepts, relations between these concepts 
(either postulated or obtainable by given rules of 
deduction), and a dynamical law.

(b) Correspondence rules which relate the theoretical 
concepts of (a) to the world of experience.

This division is not absolute—'dearly one must have 
a formalism in order to make correspondence rules, but 
unless one has at least some partial idea of corre
spondence rules, one would not know what one was 
talking about while constructing the formalism— 
nevertheless it is convenient for the present task.

The mathematical formalism of quantum theory is 
well known and can be abstracted from any of several 
textbooks (Dirac, 1958; Messiah, 1964). The primitive 
concepts are those of state and of observable.
FI An observable is represented by a self-adjoint 
operator on a Hilbert space. It has a spectral repre
sentation,

R=ZrnPn, (1.1)
n

where the Pn are orthogonal projection operators 
related to the orthonormal eigenvectors of R by

Pn = ’£ \ a , r n)(a,rn \. (1.2)
a

Here the numbers rn are the eigenvalues of R , and the 
parameter a labels the degenerate eigenvectors which 
belong to the same eigenvalue of R. The sums become 
integrals in the case of continuous spectra. Equation 
(1.1) is equivalent to the statement that an observable 
must possess a complete orthogonal set of eigenvectors.

F2 A state is represented by a state operator (also 
called a statistical operator or density matrix) which 
must be self-adjoint, nonnegative definite, and of unit 
trace. This implies that any state operator may be 
diagonalized in terms of its eigenvalues and eigenvectors,

p — ̂ L,Pn | 4*11) (<t>n I y
n

(1.3a)

with
0<P„<1 (1.3b)

and

’ 
s M

 
3s II H-* (1.3c)

This state operator formalism is reviewed by Fano 
(1957).
F3 A pure state can be defined by the condition p2=p. 
I t follows that for a pure state there is exactly one 
nonzero eigenvalue of p, say,

p»=l, pn' = 0 for n ^n '. (1.4)
In this case we have

P^ i I? (1.5)
and so a pure state may be represented by a vector in 
the Hilbert space. A general state which is not pure is 
commonly called a mixed state.
F4 The average value of an observable R in the state 
p is given by

( R ) =  Tr(ptf ),  (1.6)

where Tr means the trace of the operator in parentheses. 
For a pure state represented by the normalized vector 
\xp), (1.6) reduces to (R)= (p | R | p). By introducing 
the characteristic function (e^'R)j we can obtain the 
entire statistical distribution of the observable R in the 
state p. It follows that:

F5 The only values which an observable may take on 
are its eigenvalues, and the probabilities of each of the 
eigenvalues can be calculated. In the case of a pure 
state represented by the normalized vector \ p), the 
probability of eigenvalue rn of R  is X) | (p | a, rn) |2. 
This is a generalization of Born’s (1926) famous 
postulate that the square of a wave function represents 
a probability density.

So far we have only given necessary, but not sufficient, 
conditions for the mathematical representations of 
observables and of states. To complete the specification, 
the following is usually postulated:
F6 The Hilbert space is a direct sum of coherent



subspaces, within each of which (almost) every vector 
may represent a pure state. This is a formal statement 
of the superposition principle with allowance being 
made for superselection rules.1 The set of all mixed 
states can be constructed from the set of all pure states 
using (1.3).

F7 Any self-adjoint operator which commutes with 
the generators of superselection rules, or equivalently, 
all of whose eigenvectors lie within coherent subspaces 
of F6, represents an observable. This postulate may be 
criticized on the grounds that it is difficult to imagine a 
procedure for observing a quantity like (x2p^-\-pxzx2) , 
which should be an observable according to this 
postulate. The general form of F7 is unnecessary 
in most, if not all practical applications, but it is used 
in Von Neumann’s theorem (Sec. 6.1).

F8 The dynamical law or equation of motion depends 
in detail upon the physical system under consideration 
(i.e., number of degrees of freedom, whether relativistic 
or nonrelativistic), but in every case it can be written 
in the form,

pit) = Up(to) U~l (1.7a)
in general, or

I *(*>)> (1.7b)
for a pure state, where U — U(t, t0) is a unitary operator.

The above is not intended to be an axiomatization of 
quantum theory, but merely a compact summary of 
the mathematical formalism of the theory as it exists at 
present and in practice. Except for the reservation 
noted in F7 it should be noncontroversial. Such is not 
the case with the correspondence rules.

1.2 Correspondence Rules

The correspondence rules must relate the primitive 
concepts of state and observable to empirical reality. 
In so doing they will provide a more specific inter
pretation for the averages and probabilities introduced 
in F4 and F5.

The natural requirement placed upon an observable 
is that we should be able to observe it. More precisely, 
an observable is a dynamical variable whose value can, 
in principle, be measured. For canonically conjugate 
variables the corresponding operators are obtained 
through Dirac’s canonical commutation relation,

qp—pq=fii. (1.8)
There is no general rule for constructing a unique 
operator to represent an arbitrary function f(q ,p) 
because of the noncommutability of q and p (Shewell, 
1959). Fortunately the most general case does not seem

1A superselection rule (Wick et at., 1952; Galindo et at., 1962) 
is a restriction on the superposition principle. For example, a 
vector which is a linear combination of integer and half-integer 
angular momentum eigenvectors cannot represent a physical 
state. A coherent space is one in which the superposition principle 
has unrestricted validity.

to arise in practice. We can, for example, unambiguously 
determine the Hamiltonian operator for any finite 
number of particles interacting through velocity- 
independent potentials in the presence of an arbitrary 
external electromagnetic field.

The different interpretations of quantum theory are 
most sharply distinguished by their interpretations of 
the concept of state. Although there are many shades of 
interpretation (Bunge, 1956), we wish to distinguish 
only two:

(I) The Statistical Interpretation, according to which 
a pure state (and hence also a general state) provides 
a description of certain statistical properties of an 
ensemble of similarily prepared systems, but need not 
provide a complete description of an individual system.

This interpretation is upheld, for example, by Einstein 
(1949), by Popper (1967), and by Blokhintsev (1968). 
Throughout this paper the capitalized name “Statistical 
Interpretation” refers to this specific interpretation 
(described in detail in Sec. 1.3).

(II) Interpretations which assert that a pure state 
provides a complete and exhaustive description of an 
individual system (e.g., an electron).

This class contains a great variety of members, from 
Schrodinger’s original attempt to identify the electron 
with a wave packet solution of his equation to the 
several versions of the Copenhagen Interpretation.2 
Indeed many physicists implicitly make assumption II 
without apparently being aware that it is an additional 
assumption with peculiar consequences. It is a major 
aim of this paper to point out that the hypothesis II is 
unnecessary for quantum theory, and moreover that it 
leads to serious difficulties.

1.3 The Statistical Interpretation

The term, Statistical Interpretation, will be used 
throughout this paper in the specific sense here ex
pounded, and should not be confused with the less 
specific usage of this term by other writers (e.g., 
Messiah, 1964, Chap. IV) who do not distinguish it 
from the Copenhagen interpretation.

Of primary importance is the assertion that a quantum

2 Bohr (1935, 1949) argued against Einstein, who rejected II. 
Heisenberg’s position is somewhat unclear. One reference (1930, 
p. 33) contains a statement fully in accord with the Statistical 
Interpretation; however, in a later writing specifically in defense 
of the Copenhagen interpretation (1955, p. 26) he states “an 
individual atomic system can be represented by a wave func
tion . .  . ” . His interpretation of probability (1958, Chap. 3) was 
based on the Aristotelian notion of “potentia”, which is quite 
different from the Statistical Interpretation. Messiah (1964) is 
quite explicit (p. 152, 158) in favoring II over I. Although both 
claim orthodoxy, there now seems to be a difference of opinion 
between what may be called the Copenhagen school represented 
by Rosenfeld, and the Princeton school represented by Wigner 
(see Rosenfeld, 1968 and references therein). But since both fac
tions appear to accept hypothesis II, our criticism will apply to 
both.
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state (pure or otherwise) represents an ensemble of 
similarly prepared systems. For example, the system 
may be a single electron. Then the ensemble will be the 
conceptual (infinite) set of all single electrons which 
have been subjected to some state preparation tech
nique (to be specified for each state), generally by 
interaction with a suitable apparatus. Thus a momen
tum eigenstate (plane wave in configuration space) 
represents the ensemble whose members are single 
electrons each having the same momentum, but dis
tributed uniformly over all positions. A more realistic 
example which occurs in scattering problems is a finite 
wave train with an approximately well-defined wave
length. It represents the ensemble of single electrons 
which result from the following schematically described 
procedure—acceleration in a machine, the output from 
which can take place in only some finite time interval 
(due to a “chopper”), and collimation which rejects 
any particle whose momentum is outside certain limits. 
We see that a quantum state is a mathematical repre
sentation of the result of a certain state preparation 
procedure. Physical systems which have been subjected 
to the same state preparation will be similar in some of 
their properties, but not in all of them (similar in 
momentum but not position in the first example). 
Indeed the physical implication of the uncertainty 
principle (discussed in detail in Sec. 3) is that no state 
preparation procedure is possible which would yield an 
ensemble of systems identical in all of their observable 
properties. Thus it is most natural to assert that a 
quantum state represents an ensemble of similarily 
prepared systems, but does not provide a complete 
description of an individual system.

When the physical system is a single particle, as in 
the above examples, one must not confuse the ensemble, 
which is a conceptual set of replicas of one particle in 
its experimental surroundings, with a beam of particles, 
which is another kind of (many-particle) system. A 
beam may simulate an ensemble of single-particle 
systems if the intensity of the beam is so low that only 
one particle is present at a time.

The ensembles contemplated here are different in 
principle from those used in statistical thermodynamics, 
where we employ a representative ensemble for cal
culations, but the result of a calculation may be com
pared with a measurement on a single system. Also 
there is some arbitrariness in the choice of a repre
sentative ensemble (microcanonical, canonical, grand 
canonical). But, in general, quantum theory predicts 
nothing which is relevant to a single measurement 
(excluding strict conservation laws like those of charge, 
energy, or momentum), and the result of a calculation 
pertains directly to an ensemble of similar measure
ments. For example, a single scattering experiment 
consists in shooting a single particle at a target and 
measuring its angle of scatter. Quantum theory does 
not deal with such an experiment, but rather with the 
statistical distribution (the differential cross section)

of the results of an ensemble of similar experiments. 
Because this ensemble is not merely a representative or 
calculational device, but rather it can and must be 
realized experimentally, it does not inject into quantum 
theory the same conceptual problems posed in statistical 
thermodynamics.

In general quantum theory will not predict the result 
of a measurement of some observable R. But the 
probability of each possible result rn, calculated ac
cording to F5, may be verified by repeating the state 
preparation and the measurement many times, and 
then constructing the statistical distribution of the 
results. As pointed out by Popper (see Korner, 1957, 
p. 65, p. 88), one should distinguish between the 
probability, which is the relative frequency (or measure) 
of the various eigenvalues of the observable in the 
conceptual infinite ensemble of all possible outcomes of 
identical experiments (the sample space), and the 
statistical frequency of results in an actual sequence of 
experiments. The probabilities are properties of the 
state preparation method and are logically independent 
of the subsequent measurement, although the statistical 
frequencies of a long sequence of similar measurements 
(each preceded by state preparation) may be expected 
to approximate the probability distribution. If hy
pothesis I is adopted, we may say simply that the 
probabilities are properties of the state.

The various interpretations of a quantum state are 
related to differences in the interpretation of proba
bility (see Popper, 1967 for a good exposition of this 
point). In contrast to the Statistical Interpretation, 
some mathematicians and physicists regard probability 
as a measure of knowledge, and assert that the use of 
probability is necessitated only by the incompleteness 
of one’s knowledge. This interpretation can legitimately 
be applied to games like bridge or poker, where one’s 
best strategy will indeed be influenced by any knowledge 
(accidentally or illegally obtained) about an opponent’s 
cards. But physics is not such a game, and as Popper 
has emphasized, one cannot logically deduce new and 
verifiable knowledge—statistical knowledge—literally 
from a lack of knowledge.

Heisenberg (1958), Chap. 3, combined this “sub
jective” interpretation with the Aristotelian notion of 
“potentia.” He considers a particle to be “potentially 
present” over all regions for which the wave function 
p(r) is nonzero, in some “intermediate kind of reality,” 
until an act of observation induces a “transition from 
the possible to the actual.” In contrast, the Statistical 
Interpretation considers a particle to always be at some 
position in space, each position being realized with 
relative frequency | \p(r) |2 in an ensemble of similarily 
prepared experiments. The “subjective” and Aristotelian 
ideas are primarily responsible for the suggestion that 
the observer plays a peculiar and essential role in 
quantum theory. Whether or not they can be con
sistently developed, the existence of the Statistical 
Interpretation demonstrates that they are not necessary,



and in my opinion they bring with them no advantages 
to compensate for the additional metaphysical com
plication.

If the expression “wave-particle duality” is to be 
used at all, it must not be interpreted literally. In the 
above-mentioned scattering experiment, the scattered 
portion of the wave function may be equally dis
tributed in all directions (as for an isotropic scatterer), 
but any one particle will not spread itself isotropically; 
rather it will be scattered in some particular direction. 
Clearly the wave function describes not a single scat
tered particle but an ensemble of similarily accelerated 
and scattered particles. At this point the reader may 
wonder whether a statistical particle theory can account 
for interference or diffraction phenomena. But there is 
no difficulty. As in any scattering experiment, quantum 
theory predicts the statistical frequencies of the various 
angles through which a particle may be scattered. For a 
crystal or diffraction grating there is only a discrete set 
of possible scattering angles because momentum 
transfer to and from a periodic object is quantized by a 
multiple of Ap = h/d, where Ap is the component of 
momentum transfer parallel to the direction of the 
periodic displacement d. This result, which is obvious 
from a solution of the problem in momentum repre
sentation, was first discovered by Duane (1923), 
although this early paper ha,d been much neglected 
until its revival by Lande (1955, 1965). There is no 
need to assume that an electron spreads itself, wavelike, 
over a large region of space in order to explain diffrac
tion scattering. Rather it is the crystal which is spread 
out, and the electron interacts with the crystal as a 
whole through the laws of quantum mechanics. For a 
longer discussion of this and related problems such as 
the two-slit experiment, see Lande (1965).3 In every 
case a diffraction pattern consists of a statistical 
distribution of discrete particle events which are 
separately observable if one looks in fine enough detail. 
In the words of Mott (1964, p. 409), “Students should 
not be taught to doubt that electrons, protons and the 
like are particles • • • The wave cannot be observed in 
any way than by observing particles.”

Although we shall discuss his work in greater detail 
below, we should emphasize here the great contribution 
of Einstein to this subject. His “Reply to Criticisms” 
(Einstein, 1949), expressed very clearly his reasons for 
accepting a purely statistical (ensemble) interpretation 
of quantum theory, and rejecting the assumption that 
the state vector provided an exhaustive description of 
the individual physical system.

31 note in passing that Lande’s ambitious program to derive 
all of quantum theory from a few simple principles has not yet 
been completely successful. Reviewers of his book (Shimony, 
1966; Witten, 1966) have pointed out additional assumptions 
implicit in his argument which are virtually equivalent to assum
ing some of the results he wishes to derive. However, these criti
cisms do not detract from his discussion of diffraction scattering.

2. THE THEOREM OF EINSTEIN, PODOLSKY, 
AND ROSEN

The tenability of hypothesis II, Sec. 1.2, was chal
lenged in a paper by Einstein, Podolsky, and Rosen 
(1935) (abbreviated EPR) entitled “Can Quantum- 
Mechanical Description of Reality Be Considered 
Complete?” Their argument is often referred to as the 
Paradox of EPR, as though it ought to be capable of 
resolution as, say, Zeno’s paradox. £Rosenfeld (1968) 
has scurrilously referred to it as the EPR fallacy.] We 
shall show however that, properly interpreted, it is a 
well defined theorem, paradoxical only to the extent 
that the reader may not have expected the conclusion.

In order to precisely answer the question posed in 
their title, EPR introduce the following definitions:

D1 A necessary condition for a complete theory is that 
“every element of physical reality must have a counterpart 
in the physical theory.”
D2 A sufficient condition for identifying an element of 
reality is, “//, without in any way disturbing a system, 
we can predict with certainty (i.e., with probability equal 
to unity)4 the value of a physical quantity, then there 
exists an element of physical reality corresponding to this 
physical quantity.”

Their argument then proceeds by showing, through 
consideration of a thought experiment, that two non
commuting observables should, under suitable condi
tions, both be considered elements of reality. Since no 
state vector can provide the value of both of these 
observables, they conclude that the quantum state 
vector cannot completely describe an individual 
system, but only an ensemble of similarily prepared 
systems.

2.1 A Thought Experiment and the Theorem

The experiment described below was introduced by 
Bohm (1951, p. 614ff). By considering measurements of 
spins rather than of particle positions and momenta 
(as in the original EPR experiment), we avoid any 
unnecessary complications with the position-momentum 
uncertainty principle which may arise from the mini
mum degree of particle trajectory definition needed to 
perform an experiment.

Two particles of spin one-half are prepared in an 
unstable initial state of total spin zero. The pair 
separates, conserving total spin, and one of the par
ticles (which are chosen to be distinguishable, for 
convenience) passes through the inhomogeneous mag
netic field of a Stern-Gerlach apparatus (see Fig. 1).

4 As a nearly pedantic refinement, we would prefer to replace 
this phrase by with probability 1—e, where e may be made arbi
trarily small. This allows for arbitrarily accurate approximations 
to problems which may not be formally solvable, and it allows 
one to avoid certain irrelevant criticisms. (See Footnote 5).
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The uncertainty principle is trivially satisfied since we 
require only that px—pz — 0 approximately, and that 
Ay be small enough so we know which particle has 
entered the magnetic field.

The translational motion of the particles can be 
treated classically, and the spin can be described by a 
spin Hamiltonian in which the magnetic field at the 
position of the particle is treated as a function of time,

H= Viz+ V h- (2.1)
Here V\2 — V (r12,Oi, or2) is the interaction between the 
two particles, and Vh is the interaction with the 
magnetic field.

Vn{t)=zH'(jiz, for 0 < t< ry
= 0, for /<0  or t>r, (2.2)

where t  is the transit time of the particle through the 
magnetic field which is of gradient H' and is directed 
along the z axis.

Omitting the position-dependent factors, we can 
write the initial state vector, a spin singlet, as

P(0) = {*+(1)^(2) —«u.(l)«+(2) }/v2. (2.3)

Here u+ and u._ are the two-component spinors corre
sponding to the eigenvalues ±1 of crz, and the argu
ments 1 or 2 refer to the two particles. Since

m  = exp { ( -  - )  jT* iZ'(O), (2.4)

the effect of the interparticle interaction V\2 will be 
negligible if

I V1 2 1 1, (2.5)
a condition which can be realized by making the transit 
time r short enough.5 By | V12 | we mean the modulus 
of the relevant matrix elements of Vi2 in (2.4).

....^

u )

Fig. 1. Schematic illustration of the apparatus for the 
Einstein, Podolsky, and Rosen experiment.

8 This overcomes the objection of Sharp (1961) that any inter- 
action (even gravitational) would prevent us from writing p(t) 
as a product of two factors; one for particle 1, and one for par
ticle 2. Such an objection is quite irrelevant because any state 
vector can be expressed as a linear combination of product-type 
basis vectors, and the interaction only affects the time depend
ence of the expansion coefficients which we treat to an arbitrary 
degree of precision.

At time t=r, after the particle has interacted with 
the magnetic field, the state vector will be
p(r) — {exp ( — iH,rz1/fb)u+(l)u-.(2)

— exp (iH'rZi/fi)u^(l)u+(2) }/V2. (2.6)

The result of the interaction is to produce a correlation 
between s components of momentum and spin of 
particle 1, and spin of particle 2. If p\z— — H'r, then 
d\z = +1, and cf2z — — 1; or if pu = H'r then criz = — 1 and 
(j2z — +  1. It is only necessary to make the magnetic 
field gradient H ' large enough so that the two values of 
piz are unambiguously separated.

We have thus shown that the 2 component of the 
spin of particle 2 can be determined to an arbitrarily 
high degree of accuracy by a measurement which, 
because of the spacial separation and negligible effect 
of V12, does not in any way disturb particle 2. Thus 
according to definition D2, a2z is an element of reality.

However the initial singlet state is invariant under 
rotation, and can equally be expressed as

*(0) = M l> - ( 2 )  —fl_(l)»+(2) }/V2, (2.7)

where the spinors v+ and vu are eigenvectors of ax. If 
the Stern-Gerlach magnet were rotated so that the 
field was directed along the x axis, then by an identical 
argument we would conclude that a2x was an element 
of reality. Since no state vector can provide a value for 
both of the noncommuting observables a2x and a2z, 
EPR conclude, in accordance with Dl, that the state 
vector does not provide a complete description of an 
individual system.

One might try to avoid this conclusion by adopting 
an extreme positivist philosophy, denying the reality 
of both (j\z and a2z until the measurement has actually 
been performed. But this entails the unreasonable, 
essentially solipsist position that the reality of particle 
2 depends upon some measurement which is not con
nected to it by any physical interaction.

In any case, the conclusion can be stated, as was 
first done by Einstein (1949, p. 682), as the following 
theorem:

The following two statements are incompatable:

(1) The state vector provides a complete and 
exhaustive description of an individual system;

(2) The real physical conditions of spatially separated 
(noninteracting) objects are independent.
Of course one is logically free to accept either one of 
these statements (or neither). Einstein clearly accepted 
the second, while Bohr apparently favored the first. 
The importance of the EPR argument is that it proved 
for the first time that assuming the first statement 
above demands rejection of the second, and vice versa, 
a fact that was not at all obvious before 1935, and which 
may not be universally realized today.
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2,2 Discussion of the EPR Theorem
It should be emphasized that the result of the EPR 

experiment is in no way paradoxical. The implication 
of (2.6) in the Statistical Interpretation is that if the 
experiment is repeated many times we should obtain 
the result pu — —H't, ori2= +  l, 0-2z= —1 in about 
one-half of the cases, and the opposite result in the 
other half of the cases. This correlation between the 
spins of the two particles will be the same no matter 
which components are measured.

Another essential point, which has not always been 
realized, is that the EPR theorem in no way contradicts 
the mathematical formalism of quantum theory. It was 
only intended to exhibit the difficulties which follow 
from the assumption that the state vector completely 
describes an individual system; an interpretive assump
tion which is not an integral part of the theory. In his 
famous reply to EPR, Bohr (1935) said, “Such an 
argumentation [as that of EPR], however, would 
hardly seem suited to affect the soundness of quantum- 
mechanical description, which is based on a coherent 
mathematical formalism • • •.” I t would appear that 
Bohr failed to distinguish between the mathematical 
formalism of quantum theory, and the Copenhagen 
interpretation of that theory. Einstein’s criticism was 
directed only at the latter, not at the former. Con
versely the self-consistency and empirical success of 
the former are no defense against specific criticism of 
the latter. Such an erroneous perception of the EPR 
paper as being an attack on quantum theory itself may 
explain (psychologically) the often repeated statement 
that Bohr had successfully refuted their argument. In 
fact Bohr’s paper offers no real challenge to the validity 
of the EPR theorem as stated above, nor does the EPR 
theorem pose any “paradox” or threat to the validity of 
quantum theory.

Bohr’s reply to EPR is really a criticism of their 
definitions of completeness and physical reality, but it is 
of a rather imprecise character. A satisfactory pursuit 
of this line of attack should first admit the validity of 
the EPR theorem with their definitions. Second it 
should propose alternative definitions with arguments in 
favor of the superiority of the new definitions. Finally 
it should show that the state vector provides a complete 
description of physical reality in terms of the new 
definitions. Bohr has done none of these.

In the succeeding years numerous comments on the 
EPR paper have been published, many of which are 
less than satisfactory. A discussion of a paper by Furry 
(1936) is given in Footnote 13, Sec. 4.3 of this paper. 
Breitenberger (1965) has criticized many authors for 
contributing to confusion, including Bohr for suggesting 
that the observation of particle 1 “creates” the physi
cally real state of particle 2—a position approaching 
the absurdity of solipsism.6 Breitenberger correctly

61 have not found an explicit statement to this effect in Bohr’s 
writings, although essentially this position has been taken by 
some followers of Bohr.

emphasizes that there is nothing paradoxical about the 
EPR experiment, which is a prototype for many 
coincidence experiments, but he seems to forget the 
original purpose of the EPR argument.

Several people have proposed experiments similar in 
principle to that of EPR (Day, 1961; Inglis, 1961; 
Bohm and Aharonov, 1957). While these experiments 
are interesting in their own right, it should be em
phasized that their results will not distinguish between 
Einstein’s and Bohr’s interpretations of quantum 
theory. If the results of experiments were to differ 
from the theoretical predictions, this would contradict 
the formalism of quantum theory itself, not just one of 
the interpretations.

3. THE UNCERTAINTY PRINCIPLE

3.1 Derivation

To a given state there will, in general, correspond a 
statistical distribution of values for each observable. 
A suitable measure of the width of the distribution for 
an observable A is the variance,

(2L4)*=<64-<il»*>, (3.1)

where A A is known as the standard deviation of the 
distribution. Although states exist (at least as mathe
matical idealizations) for which the variance of the 
distribution for any one observable is arbitrarily small, 
it can easily be shown, as was first done by Robertson 
(1929) and Schrodinger (1930), that the product of 
the variances of the distributions of two observables 
A and B has a lower bound,

(A A )\U 3 Y > {h {A B + B A )-{A ){B )y+ \{C )\  (3.2)

where AB—BA — iC. The first term may vanish, but 
for canonically conjugate observables [see Eq. (1.8)] 
we must always have

AqAp>h/2. (3.3)

The meaning of these results is unambiguous. The 
averages of quantum theory (postulate F4) are realized 
by performing the same measurement on many similarly 
prepared systems (or equivalently by performing the 
measurement many times on the same system which 
must be resubmitted to the same state preparation 
before each measurement). In order to measure A A 
(or AB) one must measure A (or B) on many similarily 
prepared systems, construct the statistical distribution 
of the results, and determine its standard deviation. 
The results (3.2) and (3.3) assert that for any par
ticular state (i.e., state preparation) the product of the 
widths of the distributions of A measurements and of B 
measurements may not be less than some lower limit. 
A term such as the statistical dispersion principle would 
really be more appropriate for these results than the 
traditional name, uncertainty principle. A discussion 
similar to this is given by Margenau (1963).
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3.2 Relation to Experiments

There exist many widespread statements of the 
uncertainty principle which are different from the one 
that is derived from statistical quantum theory. Very 
common is the statement that one cannot measure the 
two quantities q and p simultaneously without errors 
whose product is at least as large as fi/2. This statement 
is often supported by one or both of the following 
arguments:

(i) A measurement of q causes an unpredictable and 
uncontrollable disturbance of p, and vice versa. [This 
was first proposed by Heisenberg (1927) and is widely 
repeated in text books].

(ii) The position and momentum of a particle do not 
even exist with simultaneously and perfectly well 
defined (though perhaps unknown) values (Bohm, 
1951, p. 100).

Clearly the statistical dispersion principle and the 
common statement of the uncertainty principle are not 
equivalent or even closely related. The latter refers to 
errors of simultaneous measurements of q and p on one 
system, and it is plausible that one of these measure
ments could cause an error in the other. On the other 
hand, the former refers to statistical spreads in ensembles 
of measurements on similarily prepared systems. But 
only one quantity (either q or p) is measured on any 
one system, so there is no question of one measurement 
interfering with the other. Furthermore the standard 
deviations Aq and Ap of the statistical distributions 
cannot be determined unless the errors of the individual 
measurements, 8q and 8p are much smaller than the 
standard deviations (see Fig. 2). These points have been 
emphasized by Margenau (1963) and by Popper 
(1967). Prugovecki (1967) has pointed out that, far 
from restricting simultaneous measurements of non
commuting observables, quantum theory does not deal 
with them at all; its formalism being capable only of 
statistically predicting the results of measurements of 
one observable (or a commutative set of observables). 
In order to deal with simultaneous measurements he 
proposes an extension of the mathematical formalism, 
to which we shall return in Sec. 5 of this paper.

We now consider to what extent the common state
ment of the uncertainty principle may be true, even
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Fig. 2. Illustration of the uncertainty principle. The two histo
grams represent the frequency distributions of independent meas
urements of q and p  on similarly prepared systems. There are, in 
principle, no restrictions on the precisions of individual measure
ments 8q and 8p, but the standard deviations will always satisfy 
AqAp>h/2.

X1 x?
Fig. 3. An experimental arrangement designed to simultane

ously measure y  and py, such that the error product 8y8pv can 
be arbitrarily small.

though it is not derivable from quantum theory. 
Argument (ii) is easily seen to be unjustified. I t  is 
based on the obvious fact that a wave function with a 
well defined wavelength must have a large spacial 
extension, and conversely a wave function which is 
localized in a small region of space must be a Fourier 
synthesis of components with a wide range of wave
lengths. Using de Broglie’s relation between momentum 
and wavelength, p = h/ \ , it is then asserted that a 
particle cannot have definite values of both position 
and momentum at any instant. But this conclusion 
rests on the almost literal identification of the particle 
with the wave packet (or what amounts to the same 
thing, the assumption that the wave function provides 
an exhaustive description of the properties of the 
particle). The untenable nature of such an identification 
is shown by the example of a particle incident upon a 
semitransparent mirror with detectors on either side. 
The particle will either be reflected or transmitted 
without loss of energy, whereas the wave packet is 
divided, half its amplitude being transmitted and half 
reflected. A consistent application of the Statistical 
Interpretation yields the correct conclusion that the 
division of the wavepacket yields the relative proba
bilities for transmission and reflection of particles. But 
there is no justification for assertion (ii).

Argument (i) must be considered more seriously 
since Heisenberg (1930) and Bohr (1949) have given 
several examples for which it is apparently true. How
ever, Fig. 3 shows a simple experiment for which it is 
not valid. A particle with known initial momentum 
p passes through a narrow slit in a rigid massive screen. 
After passing through the hole, the momentum of the 
particle will be changed due to diffraction effects, but 
its energy will remain unchanged. When the particle 
strikes one of the distant detectors, its y coordinate is 
thereby measured with an error 8y. Simultaneously 
this same event serves to measure the y component of 
momentum, py—p sin 6, with an error 8py which may be 
made arbitrarily small by making the distance L



arbitrarily large. Clearly the product of the errors 8py 
need not have any lower bound, and so the common 
statement of the uncertainty principle given above 
cannot be literally true. One may raise the objection 
that py has not been measured, but only defined in the 
above equation. Plowever this method of measuring 
momentum by means of geometrical inference from a 
position measurement is universally employed in 
scattering experiments. It rests upon the assumption of 
linear motion in a field-free region (Newton’s First 
Law), which remains valid in quantum mechanics 
(at least for L much greater than a de Broglie wave
length) .

The distinction between experiments which satisfy 
and which violate the uncertainty principle can be 
clarified with the help of the concepts of state preparation 
and measurement; the distinction between these having 
been emphasized by Margenau (1958, 1963) and by 
Progovecki (1967).

State preparation refers to any procedure which will 
yield a statistically reproducible ensemble of systems. 
The concept of state in quantum theory (see Sec. 1.3) 
can be considered operationally as an abbreviation for a 
description of the state preparation procedure.7 Of 
course there may be more than one experimental 
procedure which yields the same statistical ensemble, 
i.e., the same state. An important special case (which is 
sometimes incorrectly identified with measurement) 
is a filtering operation, which ensures that if a system 
passes through the filter it must immediately afterward 
have a value of some particular observable within a 
restricted range of its eigenvalue spectrum.

On the other hand, measurement of some quantity R 
for an individual system means an interaction between 
the system and a suitable apparatus, so that we may 
infer the value of R (within some finite limits of 
accuracy) which the system had immediately before 
the interaction (or the value of R which the system 
would have had if it had not interacted, allowing for the 
possibility that the interaction will disturb the system).

The essential distinctions between the two concepts 
are that state preparation refers to the future, whereas 
measurement refers to the past; and equally important, 
that measurement involves detection of a particular 
system, whereas state preparation provides conditional 
information about a system if it passes through the 
apparatus.

The statistical dispersion principle (3.2, 3.3), which 
follows from the formalism of quantum theory, is a 
statement about the minimum dispersion possible in 
any state preparation. It is significant that experiments 
which satisfy the uncertainty principle can be employed 
as state preparations, whereas experiments which 
violate the uncertainty principle cannot.

Consider, for example, Heisenberg’s (1930, p. 21)

7 Lamb (1969) has described an idealized method of preparing 
an arbitrary single-particle state.

famous microscope for measuring the position of an 
electron. If the angular aperture of the microscope is 
e and the wavelength of light used is X, then the accuracy 
of the position measurement will be limited to

8x= \/sine, (3.4)

by the resolving power of the instrument. (We use the 
symbol 8 to indicate the uncertainty or error in an 
individual measurement, while A refers to the standard 
deviation of an ensemble of similar measurements). 
Because the direction of the scattered photon is un
known within a cone of angle €, the x component of 
momentum of the electron will be changed by some 
unknown increment in the range d=sine(V^)- Note 
that this experiment is not an example of simultaneous 
measurement of x and px. Only x is measured here.

Suppose now that we have a state preparation 
apparatus which will produce an ensemble of electrons 
with a negligible spread in momentum (i.e., Apxtt0 ). 
Suppose that we try to select from this ensemble a 
sub ensemble which has as small as possible a spread 
Ax. We do this by measuring the x coordinate of each 
particle and selecting those which fall within the 
minimum resolvable range 8x of a particular value, say, 
xr. Thus our sub ensemble will have a spread

Ax=X/sine. (3.5)

Because the recoil momentum absorbed by an electron 
may vary, the spread in momentum among the members 
of this sub ensemble will be

Apxt t  sin e(h /\) . (3.6)

Hence the ensemble which we have selected will have 
statistical dispersion of magnitude AxApxtth .

Contrast the above result with the experiment 
illustrated in Fig. 3. In this case we are able to determine 
the values of the position and momentum of a particle 
to an accuracy 8y8py<£h. But this information refers to 
the motion of the particle during a certain interval 
before the measurement. We cannot use it to generate 
an ensemble of particles with statistical spreads 
AyApy<<S% because the scattering of the particles by the 
detector will cause a spread of momentum in the final 
ensemble, ApfS>8py. If we try to avoid this scatter by 
removing one of the detectors from the array at the 
plane x=x2, and inferring from a negative response of 
all the remaining detectors that the particle passed 
through the hole, then the momentum spread of the 
ensemble formed in this way will not be 8py (the error of 
measurement described above). Rather it will be 
Apytt8y/% (due to diffraction effects). The spread of 
particle positions in the ensemble will be Ay£̂ <5y (the 
size of the hole), and so the statistical dispersion 
principle will be satisfied.

In conclusion, the uncertainty principle restricts the 
degree of statistical homogeneity which it is possible to 
achieve in an ensemble of similarly prepared systems,
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and thus it limits the precision which future predictions 
for any system can be made. But it does not impose 
any restriction on the accuracy to which an event can 
be reconstructed from the data of both state preparation 
and measurement in the time interval between these 
two operations. Heisenberg (1930, p. 20) made nearly 
this distinction in his statement, “ • • • the uncertainty 
relation does not refer to the past.” His subsequent 
remark, “I t is a matter of personal belief whether • • • 
the past history of the electron [as inferred from an 
experiment like that of Fig. 3] can be ascribed any 
physical reality or not,”—based on the fact that it 
cannot be reconfirmed by any other future measure
ment, seems unduely cautious. In fact, the majority of 
real physical measurement are of just this type. Indeed 
for every future oriented experimental operation which 
yields verifiable information, there must be another 
past oriented operation whose function is not to be 
verifiable but to verify (Popper, 1967, pp. 25-28). It 
is just this essential fact which is emphasized by the 
distinction between state preparation and measurement.

3.3 Angular and Energy-Time Relations

An apparent contradiction of the uncertainty prin
ciple, which is frequently rediscovered by bright 
students, concerns the polar angle ip and the z component 
of angular momentum Lz. If Lz is represented by 
— ihd/dipy then it would appear that \jp, Lz] = ifty from 
which it would follow that

AipALz>%/2 (wrong). (3.7)

But (3.7) is obviously wrong since ALz can be arbitrarily 
small, and <p has a meaningful range of only 2w radians; 
hence, A(p<2ir.

The resolution of the apparent paradox, as pointed 
out by Judge and Lewis (1963) and by Susskind and 
Glogower (1964), lies in the observation that the 
operator ~ifi(d/dip) is Hermitian only on the space of 
functions of <p which have period 2t , and multiplication 
by ip destroys this periodicity property. In order to 
deduce a correct uncertainty relation, one must replace 
the coordinate ip by some periodic function. This can be 
done in many ways but the most convenient seems to be 
the use of cos <p and sin ip (Carruthers and Nieto, 
1968), from which it can be shown that

(AL^)2[(A cos ip)2+  (A sin ip)2]
> (ft/2)2((sin <p)2+  (cos <p)2) . (3.8)

The derivation of the energy-time uncertainty 
relation cannot follow the standard form (3.2) because 
time is not usually represented by an operator. In fact 
one can show (Susskind and Glogower, 1964) that, if the 
energy spectrum has a lower bound, then there does 
not exist a Hermitian operator which is canonically 
conjugate to the Hamiltonian in the sense of (1.8). 
However, the following result can be deduced from

(3.2) (Messiah, 1964, p. 319),
A A AE>^% | d(A)/dl |, (3.9)

where A is an arbitrary observable, and the averages 
are calculated for an arbitrary time-dependent state. 
If one defines a characteristic time for the system and 
the state as

t— min^) {AA | d(A)/dt |'_1}, (3.10)

then one may write
rAE>yh. (3.11)

Clearly this result does not imply that one cannot 
measure the energy of a system exactly at an instant of 
time, as is sometimes stated, but rather that the spread 
of energies associated with any state is related to the 
characteristic rate of change associated with the same 
state.8

4. THE THEORY OF MEASUREMENT

The desirability of an analysis of the measurement 
process by means of quantum theory was perhaps first 
indicated through Bohr’s insistence that the “whole 
experimental arrangement,” (Bohr, 1949, p. 222), 
object plus all apparatus, must be taken into account 
in order to specify well-defined conditions for an 
application of the theory. However he never carried 
this program to its logical conclusion; the description of 
both the object and the measuring apparatus by the 
formalism of quantum theory. Such an analysis is 
useful for several reasons.

It has frequently been asserted that the acts of 
measurement or observation play a different role in 
quantum theory than in the rest of physics. Such 
claims should be critically analyzed.

Because the measurement apparatus usually 
(always?) contains a final stage to which classical 
mechanics is applicable, the measurement of a auantal 
(i.e., essentially nonclassical) object by such an 
apparatus involves the union of micro and macrophysics 
in an essential way. Any proposed revisions at the 
microscopic level, of the concept of physical reality or 
of the role of the observer will meet a critical test here. 
It is widely believed that Ehrenfest’s theorem (Messiah, 
p. 216) proves the consistency of quantum theory with 
the classical limit, but this is only partly true. Ehrenfest’s 
theorem demonstrates that the average values of 
observables obey the classical equations of motion 
provided the quantum state function is such that 
statistical deviations of the basic observables (co
ordinates and momenta) from their averages are 
negligible. But this leaves open the question of whether 
or not the state of a macroscopic object coupled to 
microscopic objects, as calculated from the quantal 
equation of motion for realistic but general initial

8 After completion of this manuscript, a paper by Allcock (1969) 
containing a fuller discussion of energy-time relations appeared.



conditions, will necessarily possess this property. As 
will be shown, this appears not to be so in the case 
of measurement.

It is not the compatibility of the classical and quantal 
equations of motion (in the appropriate limit) which 
concerns us but rather the compatibility of the classical 
and quantal concepts of state. Thus an analysis of 
measurement will be very helpful in deciding the ques
tion raised in Sec. 1.2, that is whether a quantum state 
describes an individual system (object plus apparatus 
in this case), or whether it must refer only to an 
ensemble of systems.

4.1 Analysis of the Measurement Process

The essence of a measurement is an interaction 
between the object to be measured and a suitable 
apparatus so that a correspondence is set up between 
the initial state of the object and the final state of the 
apparatus. This interaction may or may not change the 
value of the observable being measured, the final state 
of the object being of no significance to the success of 
the measurement.

Suppose we wish to measure the observable R of the 
object I, for which there must be a complete set of 
eigenvectors,

R 11;r) = r | I;r>.

Denote a set of states for the apparatus II by | II; a), 
where the eigenvalue a is the appropriate “pointer 
position” of the apparatus, and | II; 0) is the initial 
premeasurement state. The interaction between the 
object and the apparatus ideally should, if it is to 
function as a measurement, set up a unique corre
spondence between the initial value of r and the final 
value of a, ar, for example. That is, if the initial state 
for the system I + I I  is | I; r) | II; 0), then the equation 
of motion must lead to the final state

U | I; r> | II; 0>= | I; r) | II; ar\  (4.1a)

if the observable R is not changed by the interaction9-10; 
or in the general case

J7 11; r> | II; 0>= | I; fr) | II; ar), (4.1b)

where U is the time-development operator for the 
duration of the interaction between I and II. Note that 
the vectors |I;<£r) need not be orthogonal since or-

9 Many authors give the unwarranted impression that this 
highly special case is general.

10Araki and Yanase (1960) have shown that unless R com
mutes with all universal additively conserved quantities, then 
no interaction exists which could satisfy (4.1a). However, they 
also show that this equation can nevertheless be satisfied to an 
arbitrary degree of accuracy, provided the apparatus is made 
arbitrarily large. This fact is illustrated in the measurement of 
the z component of spin by a Stern-Gerlach apparatus (Sec. 
2.1) ,  which used an external magnetic field to break the conser
vation of Sx and Sy. The source of this magnetic field is rigidly 
fixed to the earth, and so the apparatus is effectively infinite, as 
it must be to satisfy the theorem of Araki and Yanase. See also 
Yanase (1961).

thogonality of the final states corresponding to different 
r values is guaranteed by the fact that ar̂ a r, for

Suppose now that the initial state of the object is 
not an eigenvector of R, but rather some linear com
bination

|I;*>  = E |I ;r> < r |* > . (4.2)
r

From (4.1) and the linearity of the equation of motion, 
the final state for the system must be

U\I;t)\II; 0 > = X >  | *> 11; 4>r)| II; a,)
r

= | I+ I I ; / ) ,  say. (4.3)
A specific illustration of this general analysis is provided 
by the EPR experiment discussed in Sec. 2.1. We may 
consider the measured quantity R to be the spin of 
particle 2, and the “pointer” of the apparatus to be the 
momentum of particle 1 (assuming that two detectors 
are placed so as to determine its sign).

According to the Statistical Interpretation and F5 
of the formalism, the probability of the apparatus 
“pointer” being ar at the end of an experiment is
j (r | \p) |2. That is to say, if the experiment were
repeated many times, always preceded by the same state 
preparation for both object and apparatus, the relative 
frequency of the value ar would be | {r | \//) |2. That this 
should be identical with the probability of the object 
having had the value r for the dynamical variable R 
immediately before interacting with the apparatus II, 
is just the criterion that II functions as a measuring 
apparatus for R.

4.2 The Difficulties of the “Orthodox” Interpretation
The discussion of the analysis of measurement 

according to the Statistical Interpretation was so simple 
and natural that further comment almost seems 
redundant. But if instead of the basic assumption of the 
Statistical Interpretation that a state vector char
acterizes an ensemble of similarily prepared systems, 
one assumes that a state provides a complete description 
of an individual system, then the situation is quite 
different. Unfortunately this assumption has been 
made so frequently, more often tacitly than not, that 
it and the resulting point of view have come to be 
considered “orthodox”.

The “orthodox” quantum theory of measurement 
was formalized by J. Von Neumann (1955) and has 
been clearly reviewed by Wigner (1963). The first 
difficulty encountered is that if one tries to interpret the 
final-state vector (4.3) as completely describing one 
system (object plus apparatus), then one is led to say 
that the pointer of the apparatus has no definite posi
tion, since (4.3) is a coherent superposition of vectors 
corresponding to different values of a. But the pointer 
can be a quite classical object and it makes no sense to 
say that it has no position at any instant of time, 
especially since the different values of ar are macro-
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scopically distinguishable. Thus if we attribute the 
state vector to an individual system, we are inevitably 
led to classically meaningless states for a classical 
object.11

To circumvent this difficulty, the “orthodox” theory 
assumes that, in addition to the continuous evolution 
of the state vector according to the equation of motion, 
there is also an unpredictable discontinuous “reduction 
of the state vector” upon “measurement,” from (4.3) to

I !;<£>•') I I I ; oLr') , ( 4 . 4 )
where aT> is the pointer position which is actually 
observed. Proponents of this point of view also usually 
assume that the value of the observable R is not 
changed by measurement, so that in place of (4.4) 
they would obtain

11; O  I i i;  <*,')> (4.4')
but this point is not essential. The word “measure
ment” is enclosed in quotes because its use in this 
peculiar context of the “orthodox” theory is not 
equivalent to the more physical definition of measure
ment given in Sec. 3.

It should be emphasized that this reduction cannot 
arise from the equation of motion. The form of (4.3), 
involving a superposition of macroscopically distinct 
pointer positions, depends only upon the linearity of the 
equation of motion and not upon any of our simplifying 
assumptions. For example, one might object that the 
pointer position eigenvalue a is not sufficient to label a 
unique state vector for the apparatus, since there are a 
huge number of commuting observables. But this 
means only that each vector | II; a) must be replaced 
by a set of vectors, all the sets being mutually or
thogonal. Komar (1962) has shown that even with 
these extra degrees of freedom, a final state of the form
(4.4) is not possible.11 12 If the reduction of the state vector 
is to enter the theory at all, it must be introduced as a 
special postulate (often called the projection postulate).

If one merely applied the projection postulate to the 
object I, one would say that upon “measurement” the 
state changes discontinuously from (4.2) to 11; r')y 
where rf is the “measured” value of the observable R . 
On the other hand, the analysis of the interaction 
between the object I and the apparatus II leads to the 
state (4.3). To avoid a direct contradiction, Von

11 This was first pointed out by Schrodinger (1935), who pro
posed the following hypothetical experiment. A cat is placed in 
a chamber together with a bottle of cyanide, a radioactive atom, 
and a device which will break the bottle when the atom decays. 
One half-life later the state vector of the system will be a super
position containing equal parts of the living and dead cat, but 
any time we look into the chamber we will see either a live cat 
or a dead one. A literal translation of “Schrodinger’s cat paradox”, 
as this is called, has been given by Jauch (1968, p. 185), but his 
discussion of the paradox is not adequate, and his volume and 
page reference is incorrect.

12 His conclusion that no theory consistent with quantum me
chanics can account for the occurrence of events in nature, how
ever, is not true if one drops the assumption that a state vector 
describes completely an individual system.

Neumann introduced the observer III, who supposedly 
performs a “measurement” on I + I I  (this “measure
ment” however is merely an observation), and thus 
reduces the state vector to (4.4) or (4.4'). He then 
shows that it makes no difference whether the apparatus 
II is considered to be part of the observer or part of the 
object being observed.

Von Neumann's theory of measurement is very 
unsatisfactory. I t suggests that the passive act of 
observation by a conscious observer is essential to the 
understanding of quantum theory. Such a conclusion is 
without foundation, for we have seen that the Statistical 
Interpretation does not require any such considerations. 
Moreover, the atoms of the observer's body may, in 
principle, be treated by quantum theory, and the 
resulting state vector will be similar to (4.3) (with 
I replaced by I+ II , and II replaced by III). Von 
Neumann's theory would require another hypothetical 
observer IV to observe III, and so reduce the state 
vector. But this can only lead to an infinite regression, 
which, in an earlier era might have been taken as a 
proof of the existence of God (the Ultimate Observer) I 
No one seems to have drawn this unfounded conclusion, 
but the equally unfounded conclusion that the con
sciousness of an observer should be essential to the 
theory has, unfortunately, been taken seriously 
(Heitler, 1949, p. 194; Wigner, 1962).

Because of the difficulties inherent in the projection 
postulate, we must critically examine the reasons given 
in support of its introduction. Dirac (1958, p. 36) 
argues that a second measurement of the same ob
servable immediately after the first measurement 
must always yield the same result. Clearly this could 
be true at most for the very special class of measure
ments that do not change the quantity being measured. 
A statement of such limited applicability is hardly 
suitable to play any fundamental role in the foundations 
of quantum theory. In fact this argument is based on 
the implicit (and incorrect) assumption that measure
ment is equivalent to state preparation, the contrasting 
definitions of which were given in Sec. 3. The necessity 
for distinguishing between these two concepts has been 
pointed out by Margenau (1958; 1963). For example, 
a polaroid filter placed in the path of a photon beam 
constitutes a state preparation with respect to the 
polarization of any transmitted photons. A second 
Polaroid at the same angle has no further effect. But 
neither of these processes constitutes a measurement. 
To measure the polarization of a photon one must also 
detect whether or not the photon was transmitted 
through the polaroid filter. Since the detector will 
absorb the photon, no second measurement is possible.

I t has also been claimed (Messiah, 1964, p. 140) that 
a discontinuous reduction of the state vector is a 
consequence of an alleged uncontrollable perturbation 
of the object by the measuring apparatus. A counter 
example to this claim is provided by the EPR experi
ment (Sec. 2.1), in which the spin of particle 2 is



measured indirectly, without any disturbance of that 
particle whatsoever. In general the apparatus will 
interact with the object, but the effect of this is not 
such as to bring about the hypothetical reduction. We 
do not consider as credible the occasional statement 
(Dirac, 1958, p. 110) that a mere observation (i.e., an 
experimenter looking at his apparatus) could affect the 
state of the system in a manner incompatible with the 
equation of motion.

Although it is not essential to the theory, Popper 
(1967) has pointed out that the reduced state vector
(4.4) can be interpreted in a natural way. According 
to the Statistical Interpretation, the state vector (4.3) 
represents, not an individual system, but the ensemble 
of all possible systems (object plus apparatus), each of 
which has been prepared in a certain way and then 
allowed to interact. The state vector (4.4) represents 
the subensemble whose definition includes the additional 
specification that the result of the measurement (pointer 
reading) be ar>. There is no question of reduction of the 
state vector being a physical process.

Margenau (1963, p. 476) has taken a more sym
pathetic attitude toward Von Neumann’s theory of 
measurement on the grounds (gathered from personal 
conversation) that he regarded his projection postulate 
as convenient but not necessary. In reply I would say 
that I find no evidence of this interpretation in Von 
Neumann’s writings. Moreover, the great amount of 
confusion generated, as well as the theoretical effort 
expended trying to explain the reduction of the state 
vector, suggest that the projection postulate has been 
much more of an inconvenience than a convenience.

4.3 Other Approaches to the Problem of 
Measurement

An enormous number of papers have been written on 
the problem of measurement in quantum theory. 
Margenau (1963), lists over 60 separate articles, and 
promises a list of about 200 on request. The reader can 
shorten his task greatly by ignoring all papers which 
try, without modifying quantum theory, to accomodate 
a reduction of the state vector, and which also assume the 
state vector to describe an individual system. The 
preceding arguments have demonstrated the impossi
bility of such programs.

Bohm and Bub (1966) propose a nonlinear modifica
tion of the Schrodinger equation of motion which is 
supposed to be effective only during the measurement 
process, and which causes the reduction. However we 
do not consider that the postulation of a new interaction 
peculiar to measurement should be taken seriously. 
Moreover, the simplicity of the account of measure
ment provided by the Statistical Interpretation under
mines the motivation for any drastic modification of 
the mathematical formalism.

To discuss the next approach it is convenient to 
restate the results of our analysis in the language of 
state operators (or statistical operators). After the

interaction between the object I and .the apparatus II, 
the final state operator for the combined system I+ I I  
will be the pure state

p/=  I i+ H ;/ ) ( i+ i i ; / l>  (4.5)

I i + H ; / ) = Z a  11; <£r> | II; oir),(4.3')
r

where cr=(r\\p) in the notation of (4.3). Now the 
mixed state formed f r o m v e c t o r s  of the type (4.4),

k  |211; <!>,) | II; ar)(I; <f>r | <11; «r I (4.6)
r

is not equivalent to p/. Even though they both yield the 
same probability distribution for the position of the 
apparatus “pointer” a, their predictions for other 
observables may disagree.13 Because time development 
is effected by a unitary transformation (1.7a), which 
preserves the pure state condition p2 = p, it is impossible 
for the pure state (4.5) ever to evolve into the mixed 
state (4.6).

Realizing this fact, many authors (Feyerabend, 1957; 
Wakita, 1960, 1962; Daneri et al., 1962; Jauch, 1964) 
have proposed that, nevertheless, (4.5) and (4.6) may 
be equivalent for all practical purposes. Specifically, 
they suggest that if the macroscopic nature of the 
apparatus and its relevant observables are taken into 
account, then the average of any macroscopic ob
servable M  will be the same for these two states. With 
the abbreviated notation | <j>r, ck)= 11; <j>r) | II; a), these 
averages are, respectively,

Tr (p/M) = cT-cr*{fa <v), (4.7)
r ,r '

Tr (pmM) = X) I Or |2k ,  0LV I M  I (hr, ar). (4.8)
r

The problem is then whether these expressions are equal 
under sufficiently general circumstances.

Now if M  commutes with A (the pointer position, 
whose eigenvalues are ar), it will be diagonalizable in 
this representation, and the interference terms (r^r') 
will be absent from (4.7). Hence the two expressions 
will be equal. However, (contrary to Jauch’s assump
tion) the set of macroscopic observables is not Abelian 
(consider the pointer momentum, which does not 
commute with A), so the macroscopic nature of M  is 
not sufficient to guarantee equality of (4.7) with (4.8).

In the case where the observable M  belongs entirely

13 A proof of this fact is contained in a paper by Furry (1936). 
But his comments on the work of Einstein, Podolsky, and Rosen 
(Sec. 2) are based upon a misconception. Furry interprets the 
EPR conclusion that certain dynamical variables such as o-2Z in 
our Eq. (2.6) are elements of reality, as meaning that the state 
of the system after interaction between the object and the appa
ratus is a mixture of eigenstates of the element of reality; i.e , a 
mixed state related to (2.6) in the same way as (4.6) is related 
to (4.5). But EPR do not claim that the equation of motion 
yields the wrong quantum state, as Furry has misinterpreted 
them, but rather that no quantum state, pure or mixed, can 
provide a complete description of an individual system. This 
makes Furry’s argument irrelevant.
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to the measurement apparatus II (i.e.; if M= 1(8)Mu) ,14 
then

(4>r, Oir I M  | 4>r', 0Lr' )
= (I; <#>r 11; <M<H; ar | Mu | II; cv). (4.9)

Thus if the states |I;</v) are mutually orthogonal, 
which would be true, in particular, if the measurement 
of R did not change the value of R, (| I; <j>r) then becomes 
| I; r )) , then there would be no difference between 
(4.7) and (4.9). Clearly a similar result holds for 
observables belonging entirely to the object I, but of 
course no such result is valid for observables which 
belong to I and II jointly.15

Daneri, Loinger, and Prosperi (1962, 1966) (DLP) 
consider the pure state (4.5) or equivalently (4.3) to 
be the final state of the combined system immediately 
after interaction between the object and the apparatus. 
They then concentrate on the amplification aspect of 
the measurement necessary for a microscopic object to 
trigger a macroscopic response in the apparatus, and 
invoke the ergodic theory of quantum statistical 
mechanics in order to treat the transition of the appa
ratus from its initial “metastable”16 condition to 
equilibrium. They claim, in essence, that the equilib
rium state can be represented by the mixed state 
operator (4.6).

The attitude of DLP is well expressed in the words of 
Rosenfeld (1965, p. 230), who endorses their approach: 
“The reduction of the initial state of the atomic system 
has nothing to do with the interaction between this 
system and the measuring apparatus: in fact, it is 
related to a process taking place in the latter apparatus 
after all interaction with the atomic system has ceased.” 
Rosenfeld also emphasizes the view that the presence or 
absence of a conscious human observer is irrelevant to 
the problem.17

The above remarks show that DLP and Rosenfeld 
explicitly reject the “orthodox” interpretation discussed 
in Sec. 4.2 (as does the present author), but they do so 
without actually confronting the question of whether 
the state operator (or vector) represents a single system 
or an ensemble of similarily prepared systems.

The analysis of generalized quantum amplification 
devices by DLP is interesting and correct, at least to 
the extent that their ergodic hypothesis is valid. But it 
does not constitute the essence of measurement in 
general. To paraphrase an example given by Jauch

14The tensor product notation A ® B  means that A operates 
on the 11) vectors, and B operates on the | I I ) vectors.

15 This illustrates the fact that the state of a two-component 
system cannot be uniquely determined by measurements on each 
component separately. Jauch (1968, Secs. 11-7 and 8) gives a 
good discussion of the mathematical aspects of this problem, and 
in particular of the tensor product formalism.

16 As pointed out in DLP (1966), this is not necessarily the 
thermodynamic definition of metastability.

17 On this point Rosenfeld seems to have modified his earlier
views, as expressed in a discussion exchange with Viger (see 
Korner, 1957, pp. 183—6).

(1968, p. 169), if the measuring device is a photographic 
plate, then the essence of measurement may be per
formed by a single silver-halide complex. The am
plification process does not take place until the plate is 
developed, which may be months later. Although 
interesting in its own right, the DLP theory does not 
answer the questions which lead us to study the theory 
of measurement.

4.4 Conclusion—Theory of Measurement

This section on measurement theory is lengthy 
because of the great length of the literature on this 
subject. However, the conclusions are quite simple. The 
formal analysis of a measurement has been undertaken 
not for its own sake, but only to test the consistency of 
alternative interpretations of quantum theory. Using 
only the linearity of the equation of motion and the 
definition of measurement, we see that the interaction 
between the object and the measuring apparatus leads, 
in general, to a quantum state which is a coherent 
superposition of macroscopically distinct “pointer 
positions.” In the Statistical Interpretation this dis
persion of pointer positions merely represents the 
frequency distribution of the possible measurement 
results for a given state preparation.

But if one assumes that the state vector completely 
describes an individual system, then the dispersion 
must somehow be a property of the individual system, 
but it is nonsensical to suppose that a macroscopic 
pointer has no definite position. None of the attempts 
to solve this problem using some form of reduction of 
the state vector are satisfactory. No such problem arises 
in the Statistical Interpretation, in which the state 
vector represents an ensemble of similarily prepared 
systems, so it must be considered superior to its rivals.

We have neglected the frankly subjective inter
pretation (Sussmann, 1957; Heisenberg, 1958), ac
cording to which the quantum state description is not 
supposed to express the properties of a physical system 
or ensemble of systems but our knowledge of these 
properties, and changes of the state (such as the sup
posed reduction of state during measurement) are 
identified with changes of knowledge, not so much 
because it is wrong as because it is irrelevant.18 One can, 
of course, study a person’s knowledge of physics rather 
than studying physics itself, but such a study is not 
germane to this paper. For example, someone’s knowl
edge of a certain system can change discontinuously as 
a result of a blow to the head which causes amnesia, 
as well as through the receipt of new information from a

18 Another area in which the subjective interpretation causes 
confusion is the relationship between entropy and information. 
It is true that the aquisition of information requires a corre
sponding increase of entropy (Brillouin, 1962); hence the associa
tion of information with negative entropy is useful. But the con
verse proposition that entropy is nothing but a measure of our 
lack of information is a fallacy. Entropy also has a thermody
namic meaning, d S = d Q /T , which is valid regardless of the exist
ence or nonexistence of Maxwell’s demon.
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measurement, although the subjectivists tend to ignore 
the former while stressing the latter.

5. JOINT PROBABILITY DISTRIBUTIONS
In contrast to the previous sections, which were 

concerned entirely with interpretation of the existing 
formalism (summarized in Sec. 1.1), this section and 
the next consider possible extensions of the formalism. 
These will not be modifications of the established 
formalism, but additions to it which are compatible 
with both the established formalism and the Statistical 
Interpretation.

As discussed in Sec. 3 with regard to the uncertainty 
principle, quantum theory is not inconsistent with the 
supposition that a particle has at any instant both a 
definite position and a definite momentum, although 
there is a widespread folklore to the contrary. Of course 
we are not compelled either to accept or to reject this 
supposition, but it is of interest to explore it on a 
tentative basis.

Our first problem is to construct, for the noncom
muting observables q and p , a joint probability dis
tribution P(q, p;\p) for any state | \p),19 such that the 
single variable distributions constructed from it agree 
with the established formalism, i.e.,

SF (l> P'> P) dp=P(q; = | | |2, (5.1) 
fP(q,P; *) dq=P(p; = | |2. (5.2)

Additional conditions will be considered later.
Let us first consider the method by which the single 

observable probability distribution function can be 
constructed. The characteristic function for the dis
tribution of an arbitrary observable A is given by

M(£-,p) = (exp (i£A))
= /exp  atA )P (A  (5.3)

hence P (A ; xp) is equal to the inverse Fourier transform 
of M (£; p) . By expanding the exponential

00 (iP)n
M ( f ,P ) = j : —  (5.4) 

» -0  n\
we see that a knowledge of the characteristic function is 
equivalent to a knowledge of all the moments of the 
distribution. According to the formalism (see F4), 
these are given by20 * *

{An)= (p| A n| p).(5.5)

By analogy we may introduce a characteristic 
function for the joint probability distriubtion

M{e, \- ,p) =
n,m=0 n\m\ <<TPm>, (5.6)

19 We shall consider only pure states since these illustrate the 
essential problems. The generalization to mixed states is straight
forward.

20 In this section it is necessary to distinguish between a phys
ical observable and the mathematical operator which represents
it. The operators will be distinguished by a circumflex.

from which, by a Fourier inversion, we obtain,

P(<L P;t)
= (27r)“2//M (0, X; \p) exp [ —i(6q-\-\p)]  ddd\. (5.7)

As long as the moments (qn) and (pm) are given by
(5.5), then (5.7) will automatically satisfy (5.1) and 
(5.2)•

The difficulty now evident is that that there is no 
unique way in which to take products of noncommuting 
operators. For example q2p2 may be represented by 
h(q2p2+V2qr), \  (qp+pq)2,Ump+pqpq), or any of
several other forms. In these examples we have already 
used the additional plausible restrictions that the 
product be a self-adjoint operator, and that it be sym
metric under interchange of q and ft. Shewell (1959) 
has considered several correspondence rules which have 
been proposed, and found none to be fully satisfactory. 
Some of the rules do not yield a unique operator, while 
others yield an operator for a power of the Hamiltonian, 
[_H(q, p)~]n, which is not equal to (H )n. Each such 
possible choice will yield a different joint probability
distribution which satisfies (5.1) and (5.2). 

If one chooses

exp [‘i(6qA~Xp) ]—> exp (idq-\-iXft), (5.8a)
or equivalently

n (n\qnpm_^2- n I )qn~ lftmq\ 
z=o \l 1

(5.8b)

then one obtains (Moyal, 1949)

p(?, p a )
= (2-n-)-1/(V' I q—hr%) exp (— {q+\rh \ p) dr,

(5.9)

which was first introduced by Wigner (1932). Because 
this expression may become negative it cannot be 
interpreted as a genuine probability distribution, and 
Wigner proposed it only as a calculational device. 
Another distribution which suffers from the same defect 
has been derived by Margenau and Hill (1961) using 
the correspondence

qnpm~*\ (qnftm+ftmqn) • (5.10)

Since every correspondence rule which associates an 
operator with a classical function of q and p,

g(q,p)->6(q,p), (5.11)

provides a joint probability distribution, it is possible to 
formulate the most general form of P(q> p;p) which 
will satisfy (5.1) and (5.2). We refer to the original 
papers for details (Cohen, 1966; Margenau and Cohen, 
1967). These authors investigated the possibility of 
constructing a joint probability distribution such that

(P\G(q,p) \P)=ffg(q,p)P(q,p;P) dqdp, (5.12)
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and also such that for any function K
(* I p) ) | *>= / /* ( ? ( ? ,p) fi; +) dqdp.

(5.13)
In other words, they asked whether there exists a joint 
probability distribution such that the averages of all 
observables can be calculated by a phase-space average 
as in classical statistical mechanics.21

Their answer was negative. Although it is always 
possible to satisfy (5.12), (5.13) could be simul
taneously satisfied only if the correspondence

K(g(q,p))-+K(.G(q,p))(5.14)

can be satisfied for all functions K  with the same 
correspondence rule as that leading to (5.11). This 
they prove to be impossible.22 With the wisdom of 
hindsight, we should not be surprised that (5.12) and 
(5.13) cannot be satisfied, for if it were otherwise, then 
quantum mechanics could be expressed as a special 
case of classical mechanics.

To deal with simultaneous values of position and 
momentum variables in a logically consistent fashion 
we need only require that a joint probability dis
tribution exists which satisfies (5.1) and (5.2), and

P(q,p-, t)>0  (5.15)

for all quantum states. These conditions are obviously 
satisfied by the function

P(q,P;t)  = I <* I ?> I21 <>H |2, (5.16)
but this form is probably not unique. Indeed, it cannot 
be applicable to scattering experiments (see Fig. 3), 
where, merely by geometry, there must be a close 
correlation between position and momentum at large 
distances from the scattering center. The investigation 
of possible joint probability distributions is clearly not 
complete.

Bopp (1956, 1957) has undertaken not only to 
represent quantum mechanics in terms of ensembles in 
phase space, but also to derive the statistical equations 
from simple principles—an a priori derivation—not 
merely a translation from the vector-operator formalism 
of quantum theory. Bopp’s work differs from the above 
in that his joint probability distribution does not satisfy 
(5.1) and (5.2). Nevertheless, there is a definite relation 
between the averages calculated in Bopp’s theory and 
those of quantum theory (denoted by subscripts B and 
Q). For example,

{q )b = (q )q, (p )b = (p )q, 
(q2)B=(q*)Q+ l2/ 4,

_________   (P2)b=(P*)q+W/P.
21 Because (5.1) and (5.2) are satisfied, this will clearly be 

true for any function of q only, or of p  only.
22 It would seem inevitable that arbitrary functional relations 

involving q and p cannot be preserved by any quantal operator 
correspondence rule, since the equation qp—pq =  0 for classical 
variables becomes qp—pq = ih in quantum theory. Clearly one 
cannot map zero onto ih in a consistent fashion.

Here I is some constant with dimensions of length 
(interpreted by Bopp as the finest accuracy of a 
position measurement).

The problem of defining a satisfactory joint proba
bility distribution for position and momentum may not 
be entirely mathematiced, for we must also decide on 
“the empirical definition of the concept ‘simultaneous 
values of position and momentum/ ” according to 
Prugovecki (1967). To this end he studies various 
operational methods of measuring both these observables 
simultaneously on the same individual system, not 
merely on different individual systems representative of 
the same state preparation. He suggests that the 
irreducible errors in individual measurements ought to 
be taken into account in a generalized formalism (in 
addition to the statistical fluctuations in an ensemble of 
similar measurements, which are treated in the estab
lished formalism). It should be emphasized that 
simultaneous measurement of noncommuting ob
servables, even with a finite precision, has no counter
part in the established formalism which treats only 
measurement of a single observable (or a commuting 
set of observables) .23 Now to experimentally determine 
a probability distribution, one must perform a number 
of measurements and construct a histogram of the 
results (see Fig. 2). Each point on the curve will have a 
vertical uncertainty due to the statistical uncertainty 
of using a finite sample, and a horizontal uncertainty 
due to the error involved in a single measurement. 
(In the case of simultaneous measurement of q and p, 
a single measurement would be a pair of numbers 
(q, p), and the error would be an area in the qp plane). 
If the latter cannot be reduced to zero, we cannot 
determine a probability distribution exactly, even if we 
eliminate statistical uncertainties by repeating the 
measurement an arbitrarily large number of times.

To deal with such a circumstance Prugovecki defines 
a complex probability distribution, P^q'v{I{K h), with 
the following properties: the real part of P represents 
the probability that q will be in the interval, h  and 
simultaneously p will be in the interval 12, where

/i={X:gi<X<fc},

/*= {v>'-pi<v<p2}, (5.17)
and the imaginary part of P represents the uncertainty 
associated with the previous statement. Certain 
conditions must be satisfied in order for this inter
pretation to be sensible. Since q and p are certain to be 
somewhere in their spectra, we must have R eP—»1, 
and Im P—>0, as h  and / 2 are enlarged to include the 
entire spectra from — 00 to +  00 . If /1  and / 2 are smaller 
than the irreducible errors in a single measurement,

23 The naive interpretation (Matthews, 1968, Chap. 3) of the 
operator product as corresponding to a measurement of B 
followed by a measurement of A is refuted by the example of the 
Pauli spin operators for which <rx(Ty—icrz. A measurement of <rv 
followed by a measurement of <rx is in no way equivalent to a 
measurement of



then Im P should be very large because one cannot 
determine whether or not a measured value of (q, p) 
lies within such a small region of phase space, and 
therefore one cannot determine the relative frequency 
(probability) of such an event. Of course the complex 
probability distribution must reduce to the real proba
bility distribution of the established formalism in the 
case of commuting operators.

The specific expression proposed by Prugovecki for 
the complex probability distribution is

P ^ i E X h )  = (P | E ^ I M h )  | *>, (5.18)

where E\ and E2 are projection operators which project 
onto the subspaces spanned by the eigenvectors of q 
corresponding to the spectral interval / 1, and of p 
corresponding to h,  respectively. This form, although 
perhaps the most obvious choice, may not be satis
factory because he shows that for any nontrivial 
intervals Ii and 12 there exist states for which Re P<0, 
This would be tolerable if simultaneously we had a 
large value for Im P, so that we could say that the 
probability was not well defined in such a case. But in 
fact one obtains Im P = 0  for that state which makes 
Re P  most negative. Since a “well defined” but negative 
probability makes no sense, some modification of either 
(5.18) or the interpretation seems in order (such as, 
perhaps, a restriction on the states \p which are to be 
considered physically realizable). This objection does 
not necessarily invalidate the concept of a complex 
probability distribution, but the usefulness of such a 
distribution is yet to be determined.

6. HIDDEN VARIABLES

Quantum theory predicts the statistical distribution 
of events (i.e., the results of similar measurements 
preceded by a certain state preparation). But if the 
prepared state does not correspond to an eigenvector of 
the particular observable being measured, then the 
outcome of any individual event is not determined by 
quantum theory. Thus one is led to the conjecture that 
the outcome of an individual event may be determined 
by some variables which are not described by quantum 
theory, and which are not controllable in the state 
preparation procedure. The statistical distributions of 
quantum theory would then be averages over these 
“hidden variables.”

The entirely reasonable question, “Are there hidden- 
variable theories consistent with quantum theory, and 
if so, what are their characteristics?,” has been un
fortunately clouded by emotionalism. A discussion of 
the historical and psychological origins of this attitude 
would not be useful here. We shall only quote one ex
ample of an argument which is in no way extreme 
(Inglis, 1961, p. 4), “Quantum mechanics is so broadly 
successful and convincing that the quest [for hidden 
variables] does not seem hopeful.” The vacuous charac
ter of this argument should be apparent, for the success

of quantum theory within its domain of definition (i.e., 
the calculation of statistical distributions of events) 
has no bearing on the existence of a broader theory 
(i.e., one which could predict individual events).

The question of hidden variables has also been 
subject to a genuine confusion (i.e., not merely due to 
the conflicting personalities or metaphysical ideas of the 
principal characters in the debate), for Von Neumann 
proved a theorem from which he concluded that no 
hidden-variable theory could reproduce all of the 
statistical predictions of quantum theory. Although his 
mathematical theorem is correct, his physical conclusion 
is not, and the first example of a hidden-variable model 
was published by Bohm (1952). However, a clear 
analysis of the nature of Von Neumann’s theorem and 
its relation to hidden variables was not achieved until 
much later (Bell, 1966), and the 14 year interval 
between these papers yielded many inconclusive dis
cussions pro and con, as well as some “improved 
proofs” of the impossibility of hidden variables. We 
shall expound briefly the content of Von Neumann’s 
theorem, and the reason why it does not rule out hidden 
variables in quantum theory. Other relevant theorems 
will also be discussed.

The Statistical Interpretation, which regards quan
tum states as being descriptive of ensembles of similarily 
prepared systems, is completely open with respect to 
hidden variables. It does not demand them, but it 
makes the search for them entirely reasonable [this 
was the attitude of Einstein (1949)]. On the other 
hand, the Copenhagen Interpretation, which regards a 
state vector as an exhaustive description of an in
dividual system, is antipathetic to the idea of hidden 
variables, since a more complete description than that 
provided by a state vector would contradict that 
interpretation.

F" 6.1 Von Neumann’s Theorem

Von Neumann’s mathematical theorem concerns the 
average of an observable, represented by a Hermitian 
operator, in a general ensemble subject only to a few 
conditions. The original derivation (Von Neumann, 
1955, pp. 305-325) is lengthier than necessary, and we 
shall follow the more concise version given by Albertson 
(1961). Von Neumann makes the following essential 
assumptions which in his book are identified by the 
symbols in brackets:

(i) D] If an observable is represented by the 
operator P, then a function /  of that observable is 
represented by f ( R ) .

(ii) [II] The sum of several observables represented 
by R, S, • • • is represented by the operator P +  5 +  • • •, 
regardless of whether these operators are mutually 
commutative.

(iii) [p. 313, not identified] The correspondence 
between Hermitian operators and observables is one 
to one.
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(iv) [A'] If the observable R is nonnegative, then
<*>>o.

(v) [B'J For arbitrary observables R, S, • • • and 
arbitrary real numbers a, b* • •, we must have

(aR+bS+ • • • ) = a(R)+b(S)+ • • • (6.1)

for all possible ensembles (or states) in which the 
averages may be calculated.

An arbitrary Hermitian operator R may be written as

R= X  I n)Rnm(m |
m,n
= Z U ^ R nn
n

+  £  {V ^ R .eR „ m+ W ^ I m R mn}, (6.2)
m,n;m<.n

where Rnm=Rmn* = (n | R | m) is a number, and
EA»>= |»)<»|,

F (nm) = | n)(m | +  | |,
W(nm)= —i(\n)(m\  — | m)(n |) (6.3)

are Hermitian operators. According to assumption
(iii) these operators are all to be regarded as observables, 
and hence (ii) and (v) may be applied to obtain

(R )= Z(U ^)Rnn
n

+  £  { (y&m)> Re Rmn-\-) Im (6.4)

This result may be rewritten as
(R)= £  pnJRmn= Tr (pi?), (6.5)

m,n
if we define the matrix elements of the statistical 
operator p to be

Pnn=(U^),
Pmn = h (v (nm))+  hi(W<»"> )
Pnm=UV(nm)) - i i ( W ^ )  (m<n) . (6.6)

Since the averages of observables are real, the operator 
p is Hermitian by construction, and assumption (iv) 
implies that it is nonnegative definite (($ | p | <£)>0 
for all <£).

This completes the theorem of Von Neumann, which 
may be summarized by saying that the statistical 
operator representation of states (F4 of our Sec. 1.1) 
need not be introduced as a postulate, but may instead 
be derived from assumptions (i) • • • (v). This theorem, 
which is clearly of interest outside of the question of 
hidden variables, is discussed in more detail in Chapter 
5 of Jordan (1969).

Hidden variables are, by definition, hypothetical 
variables whose values must be specified in addition to 
the values of a complete commuting set of observables 
in order to uniquely determine the result of any meas
urement on a system. Quantum states, with their 
characteristic statistical distributions, would represent

ensembles of systems with different values of the hidden 
variables, but if all hidden variables were fixed, the 
resultant subquantal ensemble would be dispersionless. 
That is,

<(22-<*»*> = 0, (6.7a)
or equivalently

(R2)=(R)2, (6.7b)
for all observables R , since by hypothesis every quantity 
would have a unique value. Applying the result (6.5) 
to (6.7b) for the case of R — | </>)(<£ |, where (<£ | <£)= 1, 
yields

(<PIPI <t>)= IPI <£)2 (6.8)
for all normalized vectors | 4>). This implies (4> | p j <£)= 1 
or 0 for all | <£), and since this expression varies con
tinuously with ! 4>), the constant—T or 0—must be the 
same for all | <£). Hence we must have either

p = l or p = 0 (6.9)

for dispersion-free ensembles.
The case p = 0  is ruled out because it would imply 

(R) = 0 for all R in any subquantal ensemble, and so 
averages of these could never yield the correct averages 
in quantum ensembles. The case p = 1 does not in fact 
yield a dispersionless ensemble if the vector space is 
greater than one dimensional. In this case

(1)= Tr (6.10)
d being the dimensionality of the space (usually oo), 
and the left-hand side of (6.7a) becomes

(R2)—2(R)2-\- (R)2(l) (6.11)

which is not zero. Thus Von Neumann concludes that, 
provided his assumptions (i)-(v) are accepted, there 
are no dispersion-free ensembles, and hence there can 
be no hidden variables. Since these assumptions are 
generally considered to be a part of quantum theory, 
he states “It is therefore not, as is often assumed, a 
question of a reinterpretation of quantum mechanics,—• 
the present system of quantum mechanics would have 
to be objectively false •••,” in order for even hy
pothetical hidden variables to be introduced in a
logically consistent fashion.

The above conclusion is incorrect, but before we dis
cuss the reasons why, let us dispose of two minor 
points of confusion. Albertson (1961, 1962) makes 
misleading and incorrect statements to the effect that 
Von Neumann’s theorem does not assume the existence 
of noncommuting observables, and that the theorem is 
independent of, and additional to, the uncertainty 
principle. But the assumption (iii), which Von Neumann 
did not distinguish by any symbol, in effect assumes the 
existence of an infinite number of noncommuting 
observables, and this assumption plays a very central 
role in the proof.24 If one assumed that all observables

24 Oddly enough, Jammer (1966) repeats Albertson’s incorrect 
statement on p. 369, while on p. 370 he mentions Von Neumann’s 
assumption that every projection operator is an observable, with
out being aware of the contradiction!



were commutative, then a simultaneous eigenvector of 
all the observables would represent a dispersion-free 
ensemble.

The second minor point concerns the observation 
that (iii) is trivially false if there are superselection 
rules, which divide the full Hilbert space into coherent 
subspaces such that no observable may have matrix 
elements between vectors of different subspaces and no 
physical state vector may be a superposition of vectors 
from different subspaces (Wick et al., 1952; Galindo 
et al.y 1962). But Von Neumann’s theorem can still be 
proven in each coherent subspace individually, so the 
question of superselection rules is irrelevant.

6.2 BelPs Rebuttal
There is nothing wrong with the mathematics of 

Von Neumann’s theorem. Nevertheless his conclusion 
that no hidden-variable model can be consistent with 
the statistical predictions of quantum theory is false— 
for such models exist (Bohm, 1952). The difficulty lies 
in the relation between the mathematics and the 
physics, as was clearly analyzed by Bell (1966).

The result of Von Neumann’s theorem [Eq. (6.5)] 
seems to imply that any ensemble can be characterized 
by a statistical operator, whether this ensemble is a 
quantum state or a subquantal hidden-variable state. 
But since we know that a statistical operator char
acterizes just a general quantum state, we should 
immediately become suspicious of the assumptions 
which lead to this result. As Bell pointed out, it is 
(6.1) of assumption (v) which is at fault. At first sight 
the requirement that the average of the sum of two 
observables be equal to the sum of the averages of the 
observables separately may seem reasonable. But the 
nontrivial nature of this additivity property becomes 
apparent when we realize that it is not true for in
dividual measurements of noncommuting observables. 
Consider for example the spin components of a particle. 
The measurement of gx can be made with a suitably 
oriented Stern-Gerlach magnet. The measurement of 
ay requires another orientation. There is no way of 
relating a measurement of (Gx-\-ay]) to the results of 
the first two measurements. This requires a third and 
different orientation of the magnet. Moreover, the 
result of the measurement, an eigenvalue of (Gx+ay), 
will not be the sum of an eigenvalue of ax plus an eigen
value of Gy. That the ensemble average of many 
measurements of (gx+gv), ((ovTov)), should be equal 
to the sum of the averages of two other measurements 
involving different experimental arrangements, 
(gx)-\- fay)} is a peculiar and nontrivial property of 
quantum states. But in a hypothetical dispersion-free 
state every observable would have a unique value equal 
to one of its eigenvalues, and since there is no linear 
relationship between the eigenvalues of noncommuting 
observables, in general, it is obvious that (6.1) could 
not possibly be satisfied for dispersion-free states. 
When this impossible condition is removed it is possible

to construct a hidden-variable model which reproduces 
the correct statistical distributions for quantum states, 
as Bell showed by means of a simple example.

Bell also considers the relevance of some more recent 
mathematical work by Jauch and Piron (1968) and by 
Gleason (1957) to the problem of hidden variables, and 
we refer the reader to his paper for very clear dis
cussions. Although the mathematical theorems of Von 
Neumann and the above authors do not in fact exclude 
hidden variables from quantum theory, they are not 
entirely devoid of value. With proper analysis, such as 
Bell provided, they help to point out some of the 
features which a successful hidden-variable model must 
possess.

The work of Gleason (1957) is particularly interesting, 
for he shows that the additivity assumption (6.1) for 
commuting observables only is incompatible with the 
requirement that every projection operator have a 
unique value (either 0 or 1) in a dispersion-free state. 
Bell shows that one may still introduce hidden variables 
by invoking the dependence of a measurement result on 
the “whole experimental arrangement” (Bohr, 1949, 
p. 222) in a very strong way. In his model the particular 
result obtained when measuring a certain observable 
may depend upon which other commuting observables 
are being measured simultaneously.

One undesirable feature of Gleason’s work, in common 
with that of Von Neumann, is the assumption that every 
projection operator represents an observable. Since 
every Hermitian operator is a linear combination of 
commuting projection operators, this is essentially 
equivalent to the assumption that every Hermitian 
operator represents an observable (see F7 of Sec 1.1). 
We are not concerned with the comparatively trivial 
restrictions on observability imposed by superselection 
rules, but with the question of whether an operator such 
as x2pxzx2 really represents an observable quantity. 
One might conjecture, as this author has, that the 
restrictions Gleason’s theorem imposes on hidden 
variables might be met in a less drastic fashion than 
that proposed by Bell, if only essential observables, 
rather than all projection operators, were required to 
have unique values (eigenvalues) in a hypothetical 
dispersion-free state. The problem of enumerating 
“essential observables” has not been seriously con
sidered, but an important example due to Bell (1964), 
to be discussed, indicates that such a proposal would 
not be adequate.

It seems appropriate to reply here to Jauch and 
Piron (1968) and Misra (1967), who have commented 
somewhat unfavorably on the work of Bell (1966). 
Misra (p. 845) states, “The quest for hidden variables 
becomes a meaningful scientific pursuit only if states, 
even physically unrealizable states, are somehow 
restricted by physical condition, • • • ” with the implica
tion that they have done this but that Bell’s analysis is 
only “a drastic ad hoc modification of the notion of 
state” (Jauch and Piron, 1968). While agreeing with
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the first quoted statement above, I would contend that 
Misra’s abstract algebraic approach, and the proposi
tion-lattice theoretic approach of Jauch and Piron, 
fail to meet this requirement in that they impose only 
abstract mathematical conditions whose physical im
plications are obscured by their abstractness. The 
danger inherent in such an approach is underlined by 
the 34 year interval between Von Neumann’s abstract 
attack on the hidden-variable problem and Bell’s 
demonstration that one of his assumptions was physi
cally unreasonable, and even impossible.

6.3 Bell’s Theorem
Although hidden-variable models which reproduce all 

the statistical predictions of quantum theory are known 
to exist, they would be more interesting if they could 
be made to satisfy the very reasonable assumption 
(Einstein, 1949, p. 85) that the real factual situation of 
a system is independent of what is done with some other 
system which is spacially separated from, and not 
interacting with, the former. Bell (1964)25 has con
sidered this problem for the experiment which we 
discussed in connection with the EPR theorem, the 
measurement of arbitrary components of the spins of 
two, spin one-half particles, which were initially 
prepared in a singlet spin state, and which have 
separated.

The spin components ov a  and ovb can both be 
measured by means of two Stern-Gerlach magnets 
oriented along the directions of the unit vectors a and 
b. The results of these two measurements will exhibit a 
statistical correlation, which for the singlet state is 
given by

((ova) (ovb) )= ~ a-b , (6.12)

according to quantum theory.
We now suppose that the results of individual 

measurements, which are not determined by the quan
tum state, are determined by some set of parameters 
denoted X. The result A of measuring err a is deter
mined by a and X, and the result B of measuring ovb is 
determined by b and X; these results necessarily being 
eigenvalues of the operators, i.e.,

A (a, X) = =bl, B(b, X) = ±1 . (6.13)

But in accordance with Einstein’s assumption, the 
result A of measurement on particle 1 should not 
depend on the direction b of the magnet which acts on 
particle 2, and B should not depend on a. If p(X) is the 
probability distribution of the hidden variables X, 
then the average of the product (ova) (ovb) will be 
given by

P(a, b) = JA (a, X)2?(b, X)p(X) dX. (6.14)

Bell then proves that (6.14) cannot be arbitrarily

25 In spite of the publication dates, it is clear from the contexts 
that this paper was written later than Bell (1966).

close to the result of quantum theory (6.12). To avoid 
the possibility that the differences might occur only at 
isolated points, he first averages (6.12) and (6.14) 
over small cones of angles about the mean directions 
of a and b. We may write

| a^b—a-b | <<$, (6.15)

where the bar denotes a smoothed function, with d 
tending to zero with size of the range of angular aver
aging. Suppose that the difference between the smoothed 
functions is bounded,

| P ( a , b ) + r b  | <€. (6.16)

From a straightforward argument based on (6.13)- 
(6.16), Bell deduces the inequality

4 ( e + $ )> v 2 - l ,  (6.17)

from which it follows that as the range of angular 
smoothing, and hence 6, is made arbitrarily small, e 
cannot be arbitrarily small. Hence (6.14) cannot be an 
arbitrarily accurate approximation to the quantum 
theory result (6.12).

Bell shows that it is easy to make a hidden-variable 
model to agree with (6.12) if the result A (a, X) of the 
measurement on particle 1 is allowed to depend also 
upon the direction b of the other magnet. However, if 
Einstein’s hypothesis of independence of separated 
noninteracting systems is accepted, then the above 
theorem demonstrates that no such hidden-variable 
model can agree with all the predictions of quantum 
theory. This result can be interpreted as an illustration 
of Gleason’s theorem as analysed by Bell (1966), 
according to which a hidden-variable model is possible 
only if the result of a measurement of err a depends 
upon which one of the observables ovb (out of all the 
possible directions b) is being measured simultaneously. 
This example appears to rule out the possibility, con
jectured in the previous section, that one might avoid 
the consequences of Gleason’s theorem by narrowing 
one’s attention from all Hermitian operators to only 
“essential observables,” for there seems no doubt that 
ova  and ovb for all a and b are genuine observables.

Note added in proof: Recently Wigner (1970) has 
given a somewhat simpler version of Bell’s argument, 
which yields some insight into its mathematical nature.

We shall not discuss specific hidden-variable theories 
in detail because none seems to be at all definitive, and 
any that reproduce all the results of quantum theory 
exactly must, as a consequence of Bell’s theorem, be 
physically unreasonable (though they may be logically 
self-consistent). This remark would not apply to 
theories which depart from the formalism of quantum 
theory and only agree with it approximately in some 
limit. For descriptions of specific hidden-variable 
theories we refer the reader to a review by Freistadt 
(1957), and an article by Bohm (1962).
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6.4 Suggested Experiments

As emphasized by Bohm, the postulates of quantum 
theory can be tested only if we consider what it would 
mean to contradict them. Therefore, at the very least, 
the study of hidden variables will have served a useful 
purpose if it leads to the suggestion of interesting 
experiments, regardless of whether or not the outcome 
of those experiments is favorable to the hidden-variable 
hypothesis.

The additivity of averages of noncommuting ob
servables in quantum ensembles (6.1) is a very powerful 
assumption, as Von Neumann’s theorem shows, since 
it and a few other postulates allow one to derive (6.5) 
from which all the statistical predictions of quantum 
theory flow. Von Neumann (1955, p. 309, Footnote 
164) suggested an experiment based upon the fact that 
the Hamiltonian operator is the sum of two non
commuting terms, the kinetic and potential energies. 
For some suitable state, one should measure the average 
kinetic energy by measurements of the momentum, 
measure the average potential energy by measurements 
of position, and measure the average energy by spec
troscopic methods (each measurement being preceded 
by the same state preparation). Then the additivity of 
the quantum averages (expectation values) could be 
directly tested. A similar experiment which would 
probably be easier to perform could be based on the 
spin components trx, <ry, and (o-x+ay) =V2 (component 
of o- at 45° to the x and y axes).

The experiment involving the correlation of spin 
components of two particles from an initial singlet state 
is of interest because Bell (1964) showed that, while it 
is easy to construct a hidden-variable theory to repro
duce the results of quantum theory for measurements 
on a single spin, it is not possible to do so for two-spin 
correlations without violating Einstein’s assumption. 
Moreover, from (6.17) we see that the hidden-variable 
prediction must differ from the result of quantum 
theory by at least e>0.10, so a clear cut experimental 
test is possible.

A measurement of the correlation in the polarizations 
of photons emitted from the decay of singlet posi- 
tronium, which is similar in principle to the experiment 
above, has been performed by Wu and Shaknov (1950), 
but only for two angles. As Bell (1964) has pointed out, 
it is easy to make a hidden-variable theory agree with 
quantum theory at certain fixed angles, but not at all 
angles.

The hidden-variable theory of Bohm and Bub 
(1966) has been tested by Papaliolios (1967). Ac
cording to the theory, when a photon from an arbitrarily 
linearly polarized beam is incident on a Polaroid filter 
(whose polarization axis is not exactly parallel to the 
polarization vector of the beam), the photon is or is not 
transmitted depending upon the value of some hidden 
variable. In a normal beam, the hidden variables are 
uniformly distributed, yielding the usual transmission 
probability. In the experiment, the beam is first passed

through two nearly crossed polaroid filters. According 
to the theory, the transmitted beam should then have 
almost unique values for the hidden variables. These 
are presumed to relax once more to a uniform dis
tribution within some relaxation time r, but if the beam 
is incident on a third rotatable polarizer (whose axis is 
at a variable angle 6 to the axis of the second), before 
this relaxation takes place the intensity transmitted 
through it is predicted to deviate from the cos2 6 law in a 
definite fashion. In the experiment, the third polarizer 
was placed as close to the second as possible, but no 
deviations from the cos2 6 law were observed. Papaliolios 
concludes that the hidden variables, if they exist, must 
relax to a uniform distribution in a time r<2.4X10~14 
sec, which is two orders of magnitude smaller than the 
value suggested by Bohm and Bub.

7. CONCLUDING REMARKS
The central theme connecting all of the topics in this 

paper has been the superiority of a purely statistical 
interpretation of quantum theory, in which a state 
vector represents an ensemble of similarly prepared 
systems, as opposed to the stronger assumption that a 
state vector provides a complete description of an 
individual system. By the criterion of logical economy, 
the Statistical Interpretation is preferable because it 
makes fewer assumptions. The stronger assumption 
plays no role in any application of quantum theory, 
and so Occam’s razor may be invoked to discard it.

A more serious argument against the stronger 
assumption above is that it leads to conceptual diffi
culties. One such difficulty is exhibited by the Theorem 
of Einstein, Podolsky, and Rosen (Sec. 2) which 
demonstrates that this assumption is incompatible with 
the physical independence of spacially separated 
objects which may have interacted in the past. Although 
from a purely logical point of view one could retain 
either of these assumptions, it seems most unreasonable 
to discard the independence of separated noninteracting 
objects.

It used to be argued that the peculiarities consequent 
upon the assumption that a system is completely 
characterized by a wave function were confined to the 
microscopic domain, and that these peculiarities were 
justified by “the unavoidable disturbance of the system 
by the measuring apparatus.” The latter of these con
tentions is refuted by the example due to EPR, in 
which it is possible to measure some observable of an 
elementary particle, without the apparatus interacting 
with that particle in any way. It appears (see Witmer, 
1967, p. 45) that Bohr recognized this implication of the 
EPR argument, for he subsequently cautioned against 
such phrases as “disturbing of phenomena by observa
tion” (Bohr, 1949, p. 237), but this lesson has been 
forgotten by some modern authors (e.g., Messiah, 
1964, p. 140; Matthews, 1968, p. 27).

The former contention is refuted by an analysis of a 
measurement of a microscopic object by a macroscopic 
apparatus (Sec. 4). I t follows from very simple con-
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siderations that the final state of the system (object 
plus apparatus) must, in general, be a coherent super
position of macroscopically distinct “pointer positions.” 
If the state vector is assumed to completely describe the 
individual system, i.e., if one assumes that the system 
simply does not have a value for any observable except 
those for which the state is an eigenvector (or perhaps 
those whose dispersion is very small), then one will be 
forced to the absurd conclusion that the “pointer” of 
the apparatus (a macroscopic object) has no definite 
position. The supposed reduction of the state vector, and 
all the difficulties and complications associated with it, 
are only artifacts of the vain attempt to retain the 
above assumption. But to what purpose? Under the 
more modest assumption that a state vector represents 
an ensemble of similarily prepared systems, the measure
ment process poses no particular problem.

The criticisms above also apply to certain hidden- 
variable theories in which a p field is associated with 
each individual system (Bohm, 1952; Bohm and Bub, 
1966). Like Von Neumann’s theory, these theories 
must also invoke a reduction of the p field upon meas
urement, which in the example of the correlated but 
spacially separated systems considered by EPR, would 
necessitate a signal passing instantaneously across the 
macroscopic distances between the systems. Since, as 
we have seen, such a drastic assumption is not necessary 
for a satisfactory interpretation of quantum theory, 
we see no reason for considering it further.

The Uncertainty Principle (Sec. 3) finds its natural 
interpretation as a lower bound on the statistical dis
persion among similarily prepared system (this inter
pretation being deduced, not introduced ad hoc), and 
is not in any real sense related to the possible dis
turbance of a system by a measurement. The dis
tinction between measurement and state preparation 
is essential for clarity. I t  is possible to extend the 
formalism of quantum theory by the introduction of 
joint probability distributions for position and momentum 
(Sec. 5). This demonstrates that there is no conflict with 
quantum theory in thinking of a particle as having 
definite (but, in general, unknown) values of both 
position and momentum, contrary to an earlier inter
pretation of the uncertainty principle.

The Statistical Interpretation does not prejudice the 
possibility of introducing hidden variables which would 
determine (in principle) the outcome of each individual 
measurement (Sec. 6). Although such models exist, 
Bell (1964) showed that they cannot, in general, satisfy 
the requirement that measurements on spacially 
separated noninteracting objects should be independent. 
It is ironic that this requirement which Einstein, 
Podolsky, and Rosen first used to refute the belief that a 
wave function could completely describe an individual 
system (a belief which stood opposed to hidden varia
bles), should also prove disasterous to at least the 
simplest idea of hidden variables.

Many of the ideas expounded in this paper were 
expressed, in essence, by Einstein (1949) in his Reply

to Criticisms. In support of his thesis that a wave 
function must be considered to represent an ensemble 
of systems, and cannot reasonably be assumed to 
provide a complete description of an individual system, 
he considers the decay of a radioactive atom, with an 
automatic recording detector to register the decay 
time.26 This example is a prototype of the one used in 
the Theory of Measurement, and it embodies all the 
essential physical content of the more general argument. 
In this Reply he also restated the conclusion of the EPR 
argument in the form which we have called the Theorem 
of EPR, and gave a brief discussion of the nontrivial 
aspect of the classical limit of the quantal state descrip
tion.

A serious reading of Einstein’s Reply should clear up 
any misconceptions to the effect that he rejected 
quantum theory or misunderstood its foundations. In 
fact, he understood the essentially statistical nature of 
quantum theory as well as any of his contemporaries, 
and better than many. His only objection was against 
the assumption that a wave function or state vector 
could exhaustively describe an individual system, which 
we have seen to be an unwarranted and troublesome 
assumption. This fact, and the fact that Einstein 
advocated a fully viable interpretation of quantum 
theory (essentially the Statistical Interpretation of this 
paper although he expressed himself more briefly), do 
not seem to have been appreciated by his critics.27

The foundations of quantum theory are subject to 
continuous discussion, and two almost coincident 
papers in the American Journal of Physics, taking 
nearly opposite points of view, deserve comment. 
Hartle (1968) has made a novel attempt to derive the 
statistical assertions of quantum theory from a quantal 
description of individual systems. The conceptual basis 
of this attempt is questionable, for, as Hartle admits, a 
quantum state is not an objective property of an 
individual system. That is to say, in the words of 
Blokhintsev (1968, p. 50),

“If [the wave function were a characteristic of a 
single particle^ it would be of interest to perform such a 
measurement on a single particle (say an electron) 
which would allow us to determine its own individual 
wave function. No such measurement is possible.”
But whereas Blokhintsev (and the present author) 
regards the quantum state as describing an ensemble of 
similarily prepared systems, Hartle considers it to 
describe the information possessed by some observer. 
The irrelevance of that interpretation has already been 
commented upon (Sec. 4.4).

26 Messiah’s (1964,p. 158) reply to this argument is essentially 
that there are experimental arrangements from which it is im
possible to determine a definite decay time. (His wording to the 
effect that they are incompatible with the existence of a time of 
decay is an unjustified overstatement). But this is irrelevant. 
The point is that it is sometimes (i.e., with suitable apparatus) 
possible to measure the decay time of a single atom, but this 
decay time is never predicted by quantum theory.

27 See the articles by Pauli, Born, Heitler, Bohr, and Margenau 
in the volume edited by Schilpp (1949). However, Margenau’s 
recent papers are more compatible with Einstein’s views.



On the other hand Park (1968) has carefully studied 
the relations between ensembles and individual systems 
in statistical theories. He shows how one may proceed 
logically from the description of ensembles to individual 
systems in classical statistical mechanics, and how the 
attempt to proceed similarily in quantum statistical 
mechanics to an identification of a pure state operator 
with an individual system fails. The present paper is 
consistent with his conclusion; moreover we have shown 
that such an identification would lead to serious 
difficulties in principle.

Although this article has been concerned primarily 
with a consistent interpretation of quantum theory as 
it is presently formulated, one is naturally led to ask for 
hints of future developments. Except for eliminating 
some false starts, such as theories of wave function 
reduction, such hints are hard to find. Recognition that 
quantum states should refer to ensembles of similarily 
prepared systems would seem to open the door for 
hidden variables to control individual events. On the 
other hand, Bell’s theorem seems to present a severe 
obstacle for any hidden-variable theory which repro
duces exactly all of the predictions of quantum theory, 
but this need not be so for a theory which departs from 
the formalism of quantum theory and recovers it only 
in some limiting case. Presumably the next step must 
be a bold departure from the familiar formalism, as 
Einstein’s theory of gravitation departed from that 
of Newton.
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Charges and Generators of Sym m etry 
T ransform ations in  Q uan tum  Field Theory*
CLAUDIO A. ORZALESIf
Department of Physics, Columbia University, New York, New York

Within the Wightman approach to quantum field theory, we review and clarify the properties of formal charges, defined 
as space integrals for the fourth component of a local current. The conditions for a formal charge to determine an operator 
(generator) are discussed, in connection with the well-known theorems of Goldstone and of Coleman. The symmetry 
transformations generated by this operator—given its existence—are also studied in some detail. For generators in a 
scattering theory, we prove their additivity and thus provide a simple way to characterize them from their matrix elements 
between one-particle states. This characterization allows an immediate construction of the unitary operators implementing 
the symmetry transformations, and implies that all internal symmetry groups are necessarily compact. We also indicate 
how to construct interacting fields having definite internal quantum numbers. The present status of the proof of Noether’s
theorem and of its converse is discussed in the light
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1. INTRODUCTION
Following the results of Goldstone et al. (Goldstone, 

1961; Goldstone, Salam, and Weinberg, 1962) and of 
Coleman (1966), in recent years there has been a 
continual interest in the properties of formal charges. 
A formal charge Q is defined here as the space integral
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t Present address: Department of Physics, New York Uni
versity, New York, N.Y. 10012.

the rather delicate properties of formal charges.

of the zeroth component of a local four-vector current: 
Q(x<>) = S dxjo(x). (1.1)

Quantities of this kind appear in the discussion of 
symmetries and broken symmetries in quantum field 
theory, and are one of the basic tools in the modern 
“ current-algebraic” approach to elementary particle 
physics (Gell-Mann, 1962; Adler and Dashen, 1968).

It has been repeatedly emphasized (Kastler, 
Robinson, and Swieca, 1966; Schroer and Stichel, 1966; 
Dell’Antonio, 1967; Swieca, 1966; Katz, 1966; Fabri and 
Picasso, 1966; Fabri, Picasso, and Strocchi, 1967; and 
De Mottoni, 1967) that equations of the type (1.1) 
have rather delicate convergence properties, and that a 
certain care has to be exercised when considering such 
expressions. This fact limits the extent to which Q can 
be thought of as a generator of symmetry or broken 
symmetry transformations.1 The same convergence 
properties are at the basis of Goldstone’s theorem 
(Goldstone, 1961; Goldstone, Salam and Weinberg, 
1962; Kastler, Robinson and Swieca, 1966), and of 
Coleman’s theorems (Coleman, 1965 and 1966; 
Pohlmeyer, 1966; Schroer and Stichel, 1966; and

1 The nomenclature as well as the mentioned restrictions will 
be clarified later on. For present purposes, a generator of sym
metry transformations is to be identified with a self-adjoint 
operator which commutes with P, the momentum operator, and 
commutes with the 5  matrix. A conserved current leads to an 
exact symmetry if the associated charge is a generator of symmetry 
transformations. Spontaneously broken symmetries occur when 
current conservation does not imply the existence of a symmetry. 
Intrinsically broken symmetries arise when the current is not 
conserved.


