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On the Algebra of Logic,

By C. S. Prirce.

Crarter 1. — SyLroarstic.

§ 1. Derivation of Logic.

In order to gain a clear understanding of the origin of the various signs used
in logical algebra and the reasons of the fundamental formulwe, we ought to
begin by considering how logic itself arises.

Thinking, as cerebration, is no doubt subject to the gencral laws of nervous
action.

When a group of nerves are stimulated, the ganglions with which the group
is most intimately connected on the whole are thrown into an active state,
which in turn usually occasions movements of the body. The stimulation con-
tinuing, the irritation spreads from ganglion to ganglion (usually increasing
meantime). Soon, too, the parts first excited begin to show fatigue ; and thus for
a double reason the bodily activity is of a élmnging kind. When the stimulus
is withdrawn, the excitement quickly subsides.

It results from these facts that when a nerve is affected, the reflex action,
if it is not at first of the sort to remove the irritation, will change its char-
acter again and again until the irritation is removed; and then the action will
cease.

Now, all vital processes tend to become easier on repetition. Along whatever
path a nervous discharge has once taken place, in that path a new discharge is
the more likely to take place.

Accordingly, when an irritation of the nerves is repeated, all the various
actions which have taken place on previous similar occasions are the more likely
to take place now, and those arc most likely to take place which have most
frequently taken place on those previous occasions. Now, the various actions
which did not remove the irritation may have previously sometimes been per-
formed and sometimes not; but the action which removes the irritation must
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16 Prirce: On the Algebra of Logic.

have always been performed, because the action must have every time continued
until it was performed. Hence, a strong habit of responding to the given irrita-
tion in this particular way must quickly be established.

A habit so acquired may be transmitted by inheritance.

One of the most important of our habits is that one by virtue of which certain
classes of stimuli throw us at first, at least, into a purely cerebral activity.

Very often it is not an outward sensation but only a fancy which starts the
train of thought. In other words, the irritation instead of being peripheral is
visceral. In such a case the activity has for the most part the same character;
an inward action removes the inward excitation. A fancied conjuncture leads us
to fancy an appropriate line of action. It is found that such events, though no
external action takes place, strongly contribute to the formation of habits of
really acting in the fancied way when the fancied occasion really arises.

A cerebral habit of the highest kind, which will determine what we do in
fancy as well as what we do in action, is called a lelicf. The representation to
ourselves that we have a specified habit of this kind is called a judgment. A
belief-habit in its development begins by being vague, special, and meagre ; it
becomes more precise, general, and full, without limit. The process of this de-
velopment, so far as it takes place in the imagination, is called thought. A judg-
ment is formed; and under the influence of a belief-habit this gives rise to a new
judgment, indicating an addition to belief. Such a process is called an #nference ;
the antecedent judgment is called the premise; the consequent judgment, the
conclusion ; the habit of thought, which determined the passage from the one to
the other (when formulated as a proposition), the leading principle.

At the same time that this process of inference, or the spontaneous develop-
ment of belief, is continually going on within us, fresh peripheral excitations are
also continually creating new belief-habits.  Thus, belief is partly determined by
old beliefs and partly by new experience. Is there any law about the mode of
the peripheral excitations? The logician maintains that there is, namely, that they
are all adapted to an end, that of carrying belief, in the long run, toward certain
predestinate conclusions which are the same for all men. This is the faith of the
logician. This is the matter of fact, upon which all maxims of reasoning repose.
In virtue of this fact, what is to be helieved at last is independent of what has
been believed hitherto, and therefore has the character of reality. Hence, if a
given habit, considered as determining an inference, is of such a sort as to tend
toward the final result, it is correct; otherwise not. Thus, inferences become
divisible into the valid and the invalid; and thus logic takes its reason of
existence.
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PeIRCE: On the Algebra of Logic. 17

§ 2. Syllogism and Diglogism.

The general type of inference is

P
R OR
where .-. is the sign of illation.

The passage from the premise (or set of premises) P to the conclusion C
takes place according to a habit or rule active within us. All the inferences
which that habit would determine when once the proper premises were admit-
ted, form a class. The habit is logically good provided it would never (or in the
case of a probable inference, seldom) lead from a true premise to a false con-
clusion ; otherwise it is logically bad. That is, every possible case of the opera-
tion of a good habit would either be one in which the premise was false or one
in which the conclusion would be true ; whereas, if a habit of inference is bad,
there is a possible case in which the premise would be true, while the conclusion
was false. When we speak of a possible case, we conceive that from the general
description of cases we have struck out all those kinds which we know how to
describe in general terms but which we know never will occur; those that then
remain, embracing all whose non-occurrence we are not certain of, together with
all those whose non-occurrence we cannot explain on any general principle, are
called possible.

A habit of inference may be formulated in a proposition which shall state
that every proposition ¢, related in a given general way to any true proposition p,
is true. Such a proposition is called the leading principle of the class of infer-
ences whose validity it implies. When the inference is first drawn, the leading
principle is not present to the mind, but the habit it formulates is active in such
a way that, upon contemplating the believed premise, by a sort of perception the
conclusion is judged to be true.* Afterwards, when the inference is subjected to
logical criticism, we make a new inference, of which one premise is that leading
principle of the former inference, according to which propositions related to one
another in a certain way are fit to be premise and conclusion of a valid inference,
while another premise is a fact of observation, namely, that the given relation
does subsist between the premise and conclusion of the inference under criticism;
whence it is concluded that the inference was valid.

Logic supposes inferences not only to be drawn, but also to be subjected to
criticism ; and therefore we not only require the form P .. C to express an argu-

# Though the leading principle itself is not present to the mind, we are generally conscious of inferring
on some general principle.
3

This content downloaded from 128.103.149.52 on Wed, 20 Apr 2016 20:31:13 UTC
All use subject to http://about.jstor.org/terms



18 Peirce: On the Algebra of Logic.

ment, but also a form, P; < C;, to express the truth of its leading principle.
Here P; denotes any one of the class of premises, and C; the corresponding con-
clusion. The symbol —<is the copula, and signifies primarily that every state
of things in which a proposition of the class P; is true is a state of things in
which the corresponding propositions of the class C; are true. But logic also
supposes some inferences to be invalid, and must have a form for denying the
leading premise. This we shall write P, — C,, a dash over any symbol signifying
i our notation the negative of that symbol.*

Thus, the form P, — C; implies
cither, 1, that it is impossible that a premise of the class P; should be true,
or, 2, that every state of things in which P; is true is a state of things in which

the corresponding C; is true.

The form P, < C; implies
both, 1, that a premise of the class P, is possible,
and, 2, that among the possible cases of the truth of a P; there is one in which

the corresponding C; is not true.
This acceptation of the copula differs from that of other systems of syllogistic
in a manner which will be explained below in treating of tlie negative.

In the form of inference P .-. C the leading principle is not expressed; and
the inference might be justified on several separate principles. One of these,
however, P, < C,, is the formulation of the habit which, in point of fact, has
governed the inferences. This principle contains all that is necessary besides the
premise P to justify the conclusion. (It will generally assert more than is neces-
sary.) We may, therefore, construct a new argument which shall have for its
premises the two propositions P and P; —< C; taken together, and for its conclu-
sion, C. This argument, no doubt, has, like every other, its leading principle,
because the inference is governed by some habit; but yet the substance of the
leading principle must already be contained implicitly in the premises, because
the proposition P; — C; contains by hypothesis all that is requisite to justify
the inference of C from P. Such a leading principle, which contains no fact not
implied or observable in the premises, is termed a /lgical principle, and the argu-
ment it governs is termed a complele, in contradistinction to an ducomplete, argu-
ment, or enthymene.

The above will be made clear by an example. Let us begin with the enthy-

meme,
Enoch was a man,

.*. Enoch died.

* This dash was used by Boole, but not over other than class-signs.
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Prirce: On the Algebra of Logic. 19

The leading principle of this is, “ All men die” Stating it, we get the complete

argument,
All men die,

Enoch was a man;
.-. Enoch was to die.

The leadine principle of this is nofu nolae est nola rer ipsius. Stating this as a
te)
premise, we have the argument,

Nota nolae est nota rei ipsius,
Mortality is a mark of humanity, which is a mark of Enoch ;
.. Mortality is a mark of Enoch.

But this very same principle of the nofa nofac is again active in the drawing of
this last inference, so that the last state of the argument is no more complete
than the last but one.

There is another way of rendering an argument complete, namely, instead
of adding the leading principle P; —< C; conjunctively to the premise P, to form
a new argument, we might add its denial disjunctively to the conclusion ; thus,

P
.. Either C or P, — C;.

A logical prineiple is said to be an emply or merely formal proposition, because
it can add nothing to the premises of the argument it governs, although it is rele-
vant; so that it implies no fact except such as is presupposed in all discourse, as
we have seen in § 1 that certain facts are implied. We may here distinguish be-
tween logical and extralogical validity ; the former being that of a complele, the latter
that of an incomplete argument. The term logical leading principle we may take to
mean the principle which must be supposed true in order to sustain the logical
validity of any argument. Such a principle states that among all the states of
things which can be supposed without conflict with logical prineiples, those in
which the premise of the argument would be true would also be cases of the truth
of the conclusion. Nothing more than this would be relevant to the logical leading
prineiple, which is, therefore, perfectly determinate and not vague, as we have
seen an extralogical leading principle to be.

A complete argument, with only one premise, is called an @nmediate inference.
Example : All crows are black birds; therefore, all crows are birds. If from
the premise of such an argument everything redundant is omitted, the state
of things expressed in the premise is the same as the state of things expressed
in the conclusion, and only the form of expression is changed. Now, the
logician does not undertake to enumecrate all the ways of expressing facts:
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20 Prircr: On the Algebra of Logic.

he supposes the facts to be already expressed in certain standard or canonical
forms. But the equivalence between different ones of his own standard forms is
of the highest importance to him, and thus certain immediate inferences play the
great part in formal logic. Some of these will not be reciprocal inferences or
logical equations, but the most important of them will have that character.

If one fact has such a relation to a different one that, if the former be true,
the latter is necessarily or probably true, this relation constitutes a determinate
fact; and therefore, since the leading principle of a complete argument involves
no matter of fact (beyond those employed in all discourse), it follows that every
complete and malerial (in opposition to a merely formal) argument must have at
least two premises.

From the doctrine of the leading principle it appears that if we have a valid
and complete argument from more than one premise, we may suppress all premises
but one and still have a valid but incomplete argument. This argument is justi-
fied by the suppressed premises; hence, from these premises alone we may infer
that the conclusion would follow from the remaining premises. In this way,
then, the original argument

PQRST
. C
is broken up into two, namely, 1st,
PQRS
-.T =<0

and, 2d, T-<C
T

.. C

By repeating this process, any argument may be broken up into arguments of two
premises each. A complete argument having two premises is called a syllogism.*

An argument may also be broken up in a different way by substituting for
the second constituent above, the form

T < C

.*. Either C or not T.

In this way, any argument may be resolved into arguments, each of which has
one premise and two alternative conclusions. Such an argument, when complete,
may be called a dialogism.

# The general doctrine of this section is contained in my paper, On the Classification of Arquments, 1867.
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PeircE: On the Algebra of Logic. 21

§ 3. Forms of Propositions.

In place of the two expressions A <7 B and B < A taken together we
may write A = B;* in place of the two expressions A —<B and B — A taken
together we may write A << B or B > A; and in place of the two expressions
A —< B and B—< A taken together we may write A =< B.

De Morgan, in the remarkable memoir with which he opened his discussion
of the syllogism (1846, p. 380), has pointed out that we often carry on reasoning
under an implied restriction as to what we shall consider as possible, which re-
striction, applying to the whole of what is said, need not be expressed. The
total of all that we consider possible is called the universe of discourse, and may
be very limited. One mode of limiting our universe is by considering only
what actually occurs, so that everything which does not occur is regarded as
impossible.

The forms A —<C B, or A implies B, and A —< B, or A does not imply B,
embrace both hypothetical and categorical propositions. Thus, to say that all
men are mortal is the same as to say that if any man possesses any character
whatever then a mortal possesses that character. To say, ¢if A, then B’ is
obviously the same as to say that from A, B follows, logically or extralogically.
By thus identifying the relation expressed by the copula with that of illation,

* There is a difference of opinion among logicians as to whether —< or — is the simpler relation. But
in my paper on the Logic of Relatives, I have strictly demonstrated that the preference must be given to —< in
this respect. The term simpler has an exact meaning in logic; it means that whose logical depth is smaller ;
that is, if one conception implies another, but not the reverse, then the latter is said to be the simpler. Now
to say that A = B implies.that A —< B, but not conversely. Ergo, etc. It is to no purpose to reply that
A —< B implies A = (A that is'B); it would be equally relevant to say that A —< B implies A = A. Con-
sider an analogous case. Logical sequence is a simpler conception than causal sequence, because every causal
sequence is a logical sequence but not every logical sequence is a causal sequence; and it is no reply to this
to say that a logical sequence between two facts implies a causal sequence between some two facts whether the
same or different. The idea that —is a very simple relation is probably due to the fact that the discovery
of such a relation teaches us that instead of two objects we have only one, so that it simplifies our conception
of the universe. On this account the existence of such a relation is an important fact to learn ; in fact, it has
the sum of the importances of the two facts of which it is compounded. It frequently happens that it is more
convenient to treat the propositions A —< B and B—< A together in their form A = B; but it also frequently
happens that it is more convenient to treat them separately. Even in geometry we can see that to say that
two figures A and B are equal is to say that when they are properly put together A will cover B and B will
cover A ; and it is generally necessary to examine these fagts separately. So, in comparing the numbers of two
lots of objects, we set them over against one another, each to each, and observe that for every one of the lot
A there is one of the lot B, and for every one of the lot B there is one of the lot A.

In logic, our great object is to analyze all the operations of reason and reduce them to their ultimate
elements ; and to make a calculus of reasoning is a subsidiary object. Accordingly, it is more philosophical to
use the copula —<, apart from all considerations of convenience. Besides, this copula is intimately related
to our natural logical and metaphysical ideas; and it is one of the chief purposes of logic to show what
validity those ideas have. Moreover, it will be seen further on that the more analytical copula does in point
of fact give rise to the easiest method of solving problems of logic.
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we identify the proposition with the inference, and the term with the proposition.
This identification, by means of which all that is found true of term, proposition,
or inference is at once known to be true of all three, is a most important engine
of reasoning, which we have gained by beginning with a consideration of the
genesis of logic.*

Of the two forms A — B and A —< B, no doubt the former is the more
primitive, in the sense that it is involved in the idea of reasoning, while the
latter is only required in the criticism of reasoning. The two kinds of propo-
sition are essentially different, and every attempt to reduce the latter to a special
case of the former must fail. Boole attempts to express ‘some men are not
mortal,” in the form ¢ whatever men have a certain unknown character » are not
mortal” But the propositions are not identical, for the latter does not imply
that some men have that character »; and, accordingly, fiom Boole’s proposition
we may legitimately infer that ¢ whatever mortals have the unknown character »
are not men’; yet we cannot reason from ‘some men are not mortal’ to ‘some
mortals are not men.’f On the other hand, we can rise to a more general form
under which A < B and A —< B are both included. For this purpose we
write A —Z B in the form A —< B, where X is some-A and B is not-B. This more
general form is equivocal in so far as it is left undetermined whether the propo-
sition would be true if the subject were impossible. When the subject is general
this is the case, but when the subject is particular (i. e., is subject to the modifi-
cation some) it is not. The general form supposes merely inclusion of the subject
under the predicate. The short curved mark over the letter in the subject shows
that some part of the term denoted by that letter is the subject, and that that is
asserted to be in possible existence.

The modification of the subject by the curved mark and of the predicate by
the straight mark gives the old set of propositional forms, viz. :

A a—<b Everyaisb. Universal affirmative.
E. a—<b No aishb. Universal negative.
I. d—<b Some a is b. Particular affirmative.
0. &—< b Some a is not b. Particular negative.

There is, however, a difference between the senses in which these propo-

* In consequence of the identification in question, in 8§ —< P, I speak of S indifferently as subject, ante-
cedent, or premise, and of P as predicate, consequent, or conclusion.

t Equally unsuccessful is Mr. Jevons’s attempt to overcome the difficulty by omitting particular propo-
sitions, ‘ because we can always substitute for it [some] more definite expressions if we like’ The same reason
might be alleged for neglecting the consideration of not. But in fact the form A 2 B is required to enable us
to simply deny A —< B. ~
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PeIRCE: On the Algebra of Logic. 23

sitions are here taken and those which are traditional; namely, it is usually
understood that affirmative propositions imply the existence of their subjects,
while negative ones do not. Accordingly, it is said that there is an immediate
inference from A to I and from Eto O. But in the sense assumed in this
paper, universal propositions do not, while par-
ticular propositions do, imply the existence of their
subjects. The following figure illustrates the pre-
cise sense here assigned to the four forms A, E, I, 0.

In the quadrant marked 1 there are lines
which are all vertical ; in the quadrant marked 2
some lines are vertical and some not; in quadrant
3 there are lines none of which are vertical ; and
in quadrant 4 there are no lines. Now, taking lne
as subject and verfical as predicate,

0
A is true of quadrants 1 and 4 and false of 2 and 3.
E is true of quadrants 3 and 4 and false of 1 and 2
I is true of quadrants 1 and 2 and false of 3 and 4.
O is true of quadrants 2 and 3 and false of 1 and 4.

Hence, A and O precisely deny each other, and so do E and I. But any other
pair of propositions may be either both true or both false or one true while the
other is false.

De Morgan (On the Syllogism, No. I, 1846, p. 381) has enlarged the system
of propositional forms by applying the sign of negation which first appears in
A —< B to the subject and predicate. He thus gets

A —<B. Every A is B. A is species of B.

A —<_B. Some A is not B. A is exient of B.
A-—<_B. NoAisB. A is external of B.
A-—<_B. Some A is B. A is partient of B.

A —<_B. Everything is either A or B. A is complement of B.
A —<_B. There is something besides A and B. A is coinadequate of B.
A —<B. A includes all B. A is genus of B.

A —<B. A does not include all B. A is deficient of B.

De Morgan’s table of the relations of these propositions must be modified to
conform to the meanings here attached to — and to —_.

We might confine ourselves to the two propositional forms S <P and
SZ<P. If we once go beyond this and adopt the form S~ P, we must, for
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24 Prirce: On the Algebra of Logic.

the sake of completeness, adopt the whole of De Morgan’s system. DBut this
system, as we shall see in the next section, is itself incomplete, and requires to
complete it the admission of particularity in the predicate. This has alveady
been attempted by Hamilton, with an incompetence which ought to be extraor-
dinary. T shall allude to this matter further on, but I shall not attempt to say
how many forms of propositions there would be in the completed system.*

§ 4. The Algebra of the Copula.

From the identity of the relation expressed by the copula with that of
illation, springs an algebra. In the first place, this gives us

r—_w (1)
the principle of identity, which is thus seen to express that what we have

hitherto believed we continue to believe, in the absence of any reason to the
contrary. In the next place, this identification shows that the two inferences

x
Y and @ (2)
Ny coy—z
are of the same validity. Hence we have
o —(y—2)} = {y (e =)} (3)

From (1) we have

(x—y) < (e—y),
x—y x

whence by (2)
(4)

is a valid inference.
By (4), if  and  —< y are true y is true; and if y and y —<Cz are true z is
true. Hence, the inference is valid

v ey y—<oz
Ve Re

By the principle of (2) this is the same as to say that
ey y-—<x .

is a valid inference. This is the canonical form of the syllogism, Barbara. The

# Tn this connection see De Morgan, On the Syllogism, No. V., 1862.

+ Mr. Hugh McColl (Caleulus of Equivalent Statements, Second Paper, 1878, p. 183) makes use of the sign
of inclusion several times in the same proposition. He does not, however, give any of the formule of this
section.
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PrircE: On the Algebra of Logic. 25

statement of its validity has been called the dictum de omni, the nota notae, ete.;
but it is best regarded, after De Morgan,* as a statement that the relation signified
by the copula is a transitive one.t It may also be considered as implying that
in place of the subject of a proposition of the form A —< B, any subject of that
subject may be substituted, and that in place of its predicate any predicate of
that predicate may be substituted.f The same principle may be algebraically
conceived as a rule for the elimination of y from the two propositions x — ¥
and y —<z§

It is needless to remark that any letters may be substituted for =, y, z; and
that, therefore, Z, 7, z, some or all, may be substituted. Nevertheless, after
these purely extrinsic changes have been made, the argument is no longer called
Buarbara, but is said to be some other universal mood of the first figure. There
are evidently eight such moods.

From (&) we have, by (2), these two forms of valid immediate inference :

S—<P
o (2 —< 8) < (2= P) (6)

S—<P ~
o (P 1) < (S < ). (7)
The latter may be termed the inference of contraposition.
From the transitiveness of the copula, the following inference is valid:

(S —TM) < (S—<TP)
(S—P) <=
But, by (6), from (M —< P) we can infer the first premise immediately ; hence
the inference is valid
M-—<P

(S-<P)<= (8)
o (S < M) < .

* On the Syllogism, No. II., 1850, p. 104.

+ That the validity of syllogism 1s not deducible from the principles of identity, contradiction, and
excluded middle, is capable of strict demonstration. The transitiveness of the copula is, however, implied in
the identification of the copula-relation with illation, because illation is obviously transitive.

I The conception of substitution (already involved in the medizeval doctrine of descent), as well as the
word, was familiar to logicians before the publication of Mr. Jevons’s Substitution of Similars. This book
argues, however, not only that inference is substitution, but that it and induction in particular consist in the
substitution of similars. This doctrine is allied to Mill’s theory of induction.

§ This must have been in Boole’s mind from the first. De Morgan (On the Syllogism, No. I1., 1850, p. 83)
goes too far in saying that “ what is called elimination in algebra is called inference in logic,” if he means, as
he seems to do, that all inference is elimination.

4

and
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26 Prirce: On the Algebra of Logic.

This may be called the wmunor indirect syllogism. The following is an example :
All men are mortal,

If Enoch and Elijah were mortal, the Bible errs;
.. If Enoch and Elijah were men, the Bible errs.

Again we may start with this syllogism in Barbara

(M —P) < (8 D),
(S —<TP) T
So(M—<P) <.
But by the principle of contraposition (7), the first premise immediately follows
from (S —< M), so that we have the inference valid
S <M,
(S = P) w3 (9)
S (M —<7P) <
This may be called the major indirect syllogism.

Lwample : All patriarchs are men,
If all patriarchs are mortal, the Bible errs;
. If all men are mortal, the Bible errs.

In the same way it might be shown that (6) justifies the syllogism

M <P,
v —< (S~ M); (10)
e —<(S—<P).
And (7) justifies the inference
S -—<M,
v~ (M—< P); (11)

e —_(S <P)
But these are only slight modifications of Barbara.
In the form (10), @ may denote a limited universe comprehending some
cases of S. Then we have the syllogism
M- P,
8§ == M; (12)
.S =P
This is called Dari. A line might, of course, be drawn over the S. So, in

the form (11), # may denote a limited universe comprehending some M. Then
we have the syllogism
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Pemrcr: On the Alyebra of Logic. 27
S <7 M,
M P (18)

Here a line might be drawn over the P. DBut the forms (12) and (13) are
deduced from (10) and (11) only by principles of interpretation which require
demonstration.

On the other hand, if in the minor indirect syllogism (8), we put “what does
not occur” for x, we have by definition

(S =< P) < u} = (S—=<_P)

and we then have

M < P,
S < P; (14)
L8 M,

which is the syllogism Baroko. 1If a line is drawn over P, the syllogism is called
Festino ; and by other negations eight essentially identical forms are obtained,
which are called minor-particular moods of the second figure* In the same
way the major indirect syllogism (9) affords the form

S <M,
S < P; (15)
This form is called Bocardo. 1f P is negatived, it is called Disamus. Other
negations give the eight major-particular moods of the third figure.
We have seen that S < P is of the form (S < P) -~ Put A for

S — P, and we find that A is of the form A — 2 Then the principle of
contraposition (7) gives the immediate inference

S—<_P (16)
L P<7S.

Applying this to the unmiversal moods of the first figure justifies six moods.
These are two in the second figure,

x <7 2~y cow < Z (Camestres)

<y 2=y &7
two in the third figure,

TR
A
N

s 7 ] o
y— 7=z 7~z
y—<_x Jj—z ¥~ Z;

* De Morgan, Syllabus, 1860, p. 18,
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28 PEIRCE: On the Algebra of Logic.

and two others which are said to be in the fourth figure,
<y y<z 23

But the negative has two other properties not yet taken into account. These are

x—<T 1mn
or z is not not-X, which is called the principle of contradiction ; and
r—<x (18)

or what is not not-X is x, which is called the principle of excluded middle.
By (17) and (16) we have the immediate inference

S-<P (19)
- PS8
which is called the conversion of E. By (18) and (16) we have

S—<P (20)
- PS8
By (17), (18), and (16), we have

S—<P (21)
- P—<S.

Each of the inferences (19), (20), (21), justifies six universal syllogisms;
namely, two in each of the figures, second, third, and fourth. The result is that
each of these figures has eight universal moods; two depending only on the
principle that A is of the form A — x, two depending also on the principle of
contradiction, two on the principle of excluded middle, and two on all three
principles conjoined.

The same formule (16), (19), (20), (21), applied to the minor-particular
moods of the second figure, will give eight minor-particular moods of the first
figure; and applied to the major-particular moods of the third figure, will give
eight major-particular moods of the first figure.*

The principle of contradiction in the form (19) may be further transformed
thus: —

If (P .. C) is valid, then (C .. P) is valid. (22)

Applying this to the minor-particular moods of the first figure, will give eight
minor-particular moods of the third figure ; and applying it to the major-particu-

* Aristotle and De Morgan have particular conclusions from two universal premises. These are all
rendered illogical by the significations which I attach to —< and —<.
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lar moods of the first figure will give eight major-particular moods of the second

figure.
It is very noticeable that the corresponding formula,

If (P... C) is valid, then (C.-. P) is valid, (23)

has no application in the existing syllogistic, because there are no syllogisms
having a particular premise and universal conclusion. In the same way, in the
Aristotelian system an affirmative conclusion cannot be drawn from' negative
premises, the reason being that negation is only applied to the predicate. So in
De Morgan’s system the subject only is made particular, not the predicate.

In order to develop a system of propositions in which the predicate shall
be modified in the same way in which the subject is modified in particular
propositions, we should consider that to say S <P is the same as to say
(S < &) < (P —< ), whatever  may be. That

(S —P) <8 <) < (P —<T2)
follows at once from Bokardo (15) by means of (2). Moreover, since A may be
put in the form A — x, it follows that A may be put in the form A — , 50
that by the principles of contradiction and excluded middle, A may be put in the
form A = @ On the other hand, to say S — P is the same as to say (S — &)
— (P —< %), whatever & may be; for

(8 < P)~< (8 < 7) < (P =< u)}
is the principle of Ferison, a valid syllogism of the third figure; and if for « we
put S, we have ~
(S —T8) (P —<TH),
which is the same as to say that P — S is true if the principle of contradiction
is true. So that it follows that P — S if S — P from the principle of contra-
diction. Comparing

S <P o (8 a)—< (P < a)

S—P or (8-<3)—<(P—<wm),
we see that they differ by a modification of the .subject. Denoting this by a
short curve over the subject, we may write S <P for S P. We sce then
that while for A we may write A — », where @ is anything whatever, so for A
we may write A < Z. If we attach a similar modification to the predicate

also, we have

with

S—<(P or (8-< &)< (P <),
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30 PeircE: On the Algebra of Logic.

which is the same as to say that you can find an S which is any P you please.
We thus have

(8 << P) < (B—<¥), (24)
a formula of contraposition, similar to (16).
It is obvious that
(5 < P) < (P<8); (25)
for, negating both propositions, this becomes, by (16),

(P—<8) < (8=<P),

which is (19). The inference justified by (25) is called the conversion of I. From
(25) we infer

r —x, (26)
which may be called the principle of particularity. This is obviously true, be-
cause the modification of particularity only consists in changing (A — %) to
(A —< ¥), which is the same as negating the copula and predicate, and a repe-
tition of this will evidently give the first expression again. For the same reason
we have

which may be called the principle of individuality. This gives
(8 < P) < (P <CH), (28)

and (26) and (27) together give
(5 —<B) << (P—<8) (29)

It is doubtful whether the proposition S < P ought to be interpreted as
signifying that S and P are one sole individual, or that there is something be-
sides S and P. T here leave this branch of the subject in an unfinished state.

Corresponding to the formule which we have obtained by the principle (2)
are an equal number obtained by the following principle :

(2) The inference

@
.. Either y or 2
has the same validity as o
z—_y
From (1) we have L
(@ —<Ty) =< (o —<9),
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whence, by (2),

X

() .. Either (x < y) or y.
This gives
x
*. Eitherzx <y or y <z or =
Then, by (2),
) 2
-y or y—< z
which is the canonical form of dialogism. The minor indirect dialogism is
) e < (M= P)
. Either « < (S << P) orS—<M
The major indirect dlaloglsm is
x < (S=<<M)
*. Either x << (S=< P)or M < P.
We have also < 6E=<H
1 *. Either (S—<M) or (M < P) <=z
an
1#) =P =

*. Either (M =< P) or (S << M) < z.
We have A of the form # —<Z A. And we have the inferences
S<P SZP S=P

S
PS8 PS8 PSP

w H

=
==

CaAPTER II.— THE Locic oF NON-RELATIVE TERMS.
§ 1. The Internal Multiplication and the Addition of Logic.

We have seen that the inference
x and y

is of the same validity with the inference
Zr
*. Either 7 or z,
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and the inference x

.. Either y or 2z
with the inference

x and ¥

@ -y
(The possible) — Either & or ¥,

In like manner,
is equivalent to

and to

@ which is ¥ — (The impossible).
To express this algebraically, we need, in the first place, symbols for the two
terms of second intention, the possible and the impossible. Let oo and 0 be the
terms; then we have the definitions

x —~<_ o 0<=w (1)

whatever  may be.*

We need also two operations which may be called non-relative addition and
multiplication. They are defined as follows :

* The symbol 0 is used by Boole ; the symbol oo replaces his 1, according to a suggestion in my Logic of
Relatives, 1870.

+ These forms of definition are original. The algebra of non-relative terms was given by Boole (Mathe-
matical Analysis of Logic, 1847). Boole’s addition was not the same as that in the text, for with him whatever
was common to the two terms added was taken twice over in the sum. The operations in the text were given
as complements of one another, and with appropriate symbols, by De Morgan (On the Syllogism, No. II1., 1858,
p- 185). For addition, sum, parts, he uses aggregation, aggregate, aggregants; for multiplication, produet,
factors, he uses composition, compound, components. Mr. Jevons (Formal Logic, 1864) — I vegret that I can
only speak of this work from having read it many years ago, and therefore cannot be sure of doing it full
justice — improved the algebra of Boole by substituting De Morgan’s aggregation for Boole’s addition. The
present writer, not having seen cither De Morgan’s or Jevons’s writings on the subject, again recommended the
same change (On an Improvement in Boole’s Calculus of Logic, 1867), and showed the perfect balance existing
between the two operations. In another paper, published in 1870, I introduced the sign of inclusion into
the algebra.

In 1872, Robert Grassmann, brother of the author of the Ausdehnungslehre, published a work entitled ¢ Die
Formenlehre oder Mathematik, the second book of which gives an algebra of logic identical with that of Jevons.
The very notation is reproduced, except that the universe is denoted by T instead of U, and a term is negatived
by drawing a line over it, as by Boole, instead of by taking a type from the other case, as Jevons does. Grassmann
also uses a sign equivalent to my —<. In his third book, he has other matter which he might have derived
from my paper of 1870. Grassmann’s treatment of the subject presents inequalities of strength ; and most of
his results had been anticipated. Professor Schroder, of Karlsruhe, in the spring of 1877, produced his
Operationskreis des Logikkalkuls. He had seen the works of Boole and Grassmann, but not those of De Morgan,
Jevons, and me. He gives a fine development of the algebra, adopting the addition of Jevons, and he exhibits
the balance between - and X by printing the theorems in parallel columns, thus imitating a practice of the
geometricians. Schrider gives an original, interesting, and commodious method of working with the algebra.
Later in the same year, Mr, Hugh McColl, apparently having known nothing of logical algebra except from a
jejune account of Boole’s work in Dain’s Logic, published several papers on a Culeulus of Equivalent Statements,
the basis of which is nothing but the Boolian algebra, with Jevons’s addition and a sign of inclusion. Mr.
MeColl adds an exceedingly ingenious application of this algebra to the transformation of definite integrals.
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If e < xand b < x, Ifx < aand 2 <0, (2)
then a + b < x; then + < a X b;
and conversely, and conversely,
ifa+b—<u, if @ <aXb, (3)
then « <2 and b <. then < a and 2 < b.
From these definitions we at once deduce the following formule: —
A a—_a+b a X b—<_a (Peirce, 1870)*
: b—<a+b aXb—<b. (4)
These are proved by substituting @ + b and a X b for x in (38).
B. r=a+x x X x=2a (Jevons, 1864). (5)
By substituting « for « and b in (2), we get
x+ < x—~_xXuw; .
and, by (4),
x—_x+ x X e —<ux.
C. a+b=b+a a X b=0bX a (Boole, Jevons). (6)

These formulse are examples of the commudtative principle. From (4) and (2),
b+a—<a+d aXb—<bXa

and interchanging a and b we get the reciprocal inclusion implied in (6).

D. (a+0b)+ec=a+(b+c) axX(bXec)=(aXb)Xc (Boole, Jevons). (7)

These are cases of the associative principle. By (4), ¢ —<b+cand b X ¢ < ¢;
also b+c¢—<a+(b+c) and a X (b X ¢)—<bXe; so that ¢ < a4 (b-+e¢)
and a X (b X ¢) —<c. In the same way, b < a -+ (b+¢)and a X (b X ¢) —<b,
and, by (4), a <a+(b+¢) and a X (b X ¢) < a. Hence, by (2), a+b—<_
a+ (b+c)and a X (b X ¢) < aXb. And,again by (2), (a+b)+c—<a+
(b+c¢) and a X (b X ¢) < (aXb)Xec Inasimilar way we should prove the
converse propositions to these and so establish (7).

E. (a+bd)yXe=(aXe)+(bXec) (aXb)te=(a+ec)X(b+te)t (8)

These are cases of the distributive principle. They are easily proved by (4) and
(2), but the proof is too tedious to give.

F. (at+b)+c=(a+c)+(b+c) (aXb)X c=(aXc)X(bXec). (9)

* Loyic of Relatives (§ 4); gives & X b —< «. The other formulw, equally obvious, T do not find anywhere.
1 The first of these given by Boole for his addition, was retained by Jevons in changing the addition. The
second was first given by me (1867).

5
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34 PEIRCE: On the Algebra of Logic.

These are other cascs of the distributive principle. They are proved by (5),
(6) and (7). These formulee, which have hitherto escaped notice, are not with-
out interest.

G. at+(axXb)=a aX (a+b)=a (Grassmann, Schroder). (10)
By (4), a—~_a—+(aXDb) aX(a+b) < a.
Again, by (4), (¢ X b) <a and a —<a -+ b; hence, by (2)

a+(aXb)—<a a—_aX (a+ D)
H. (a+b—<a)=(b—<aXb). (11)
This proposition is a transformation of Schrider’s two propositions 21, (p. 25),
one of which was given by Grassmann. DBy (3)

(a+b—<a)—<(b<a) (b —<aXb)—<(b—<a).
Hence, since b—<_b, a—_a
we have, by (2),

(a+b—<a)—<(b—<aXDd) (b—<axXb)—<(a+b—<a)
(4~ )X (2~ y) —< (a4 —<b+y) } (Peirce, 1870).  (12)

I. (¢ <b) X (x—<y)—<(aXx—<bXy)
Readily proved from (2) and (4).
J. (a—<b+x)X(aXax—<b)=(a—<b). . (13)

This is a generalization of a theorem by Grassmann. In stating it, he errone-
ously unites the first two propositions by + instead of X. By (12), (5), and (8),

(a <b+a) < {a—<(aXb)+ (aXa)}
(a X & —<b)—<{(a+b) X (x+0b)—<b}.

a—_a+b a X b-—<_b.
Hence, by (2), it is doubly proved that
(a —<b+z) X (aXx—~<b)—<(a—<b).
The demonstration of the converse is obvious.
We have immediately, from (2) and (3),

K. (a+b—<c)=(a—<e) X (b—<¢) (¢c—<aXb)=(c—<a)X (c—<b) (14)
L. (c—<a+bd)=Z{(p—<a)X(¢q—b)} wherep+g=c 15
(aXb—<e)=Z{(a—<p)X(b—<_q¢)} wherec=p Xyq. (15)

The propositions (15) are new. By (12)

(p—a) X (q—0)} <"(c—<a+0b) wherep+qg=c
(o —<p) X (b—<q)} <(aXb-—<c) wherec=pXy.

But by (4)
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And, since these are true for any set of values of p and ¢, we have by (2)

Z{(p—<a)X(¢g—<b)} <(¢c—<a-+1b), where p+¢g=c.
lla—<p)X(b—<q)} —<(axXb—<c), where c=p X q.
By (4) and (8), we have

(c—<Ca+b)—<{(aXec)+(bXc)=c
. (aXb—<c)—<{(cta)X(c+b)=c].
Hence, putting

aXc=p b Xc=y, where p +g¢=c
atc=p b+c=yq, where p X g=¢,

(0~ a+ ) =< (p—< @) X (g —< b), where p+g=¢
(a X b—<c)<(a—<p)X(b—<gq), where c=p X g,
whence, by (4)
(¢c—<a+0)<Z{(p-—<a)X(¢—<D)} where p+g=c
(aXb—<e)—<Z{(a—<p)X(b—<q)} where c=pXgq.
A formula analogous to (15) will be found below, (35).
From (1) and (2) and (4) we have

r+ 0=z x=x X w. (16)

we have

From (1) and (4),
r+o=ow 0=2Xx0. (17)
The definition of the negative has as we have seen three clauses: first, that @
is of the form a < ; second, ¢ < @; third, @ < a.
From the first we have that if

¢ a
b
is valid, then
¢ b
is valid. Or
(e X a—<b) < (¢Xb~—<a). (18)

Also, that if
b

.. Either c or «
is valid, then

a
.. Either ¢ or b
is valid ; or
(b < c¢+a)—<(a—<c+D). (19)
Combining (18) and (19), we have
(aXb—<c+d)—(axd—~<c+D) (20)
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By the principles of contradiction and excluded middle, this gives
(aXd—<c+b) < (axb—<c+d). (21)
(aXb—<c+d)=(axXd—<c+D) (22)

embodies the essence of the negative.
If in (22) we put, first, a=d b=c=0,and thena=d=x b=c, we
have from the formula of identity
aXa=0 a + a=oo. (23)

p=(pxXe)+(pxi p=(pFe)x(p+7) (24)

by the distributive principle and (23). If we write
i=pH(axa)  j=ptdxs)  b=px(cte) I=px(d+d),
we equally have
p=(@E@Xa)+(GxXz) p={+2)X(k+2). (25)

Now p may be a function of x, and such values may perhaps be assigned to
a, b, ¢, d, that 4, j, k, 7, shall be free from x. It is obvious that if the function
results from any complication of the operations + and X, this is the case.
Supposing, then, i, j, &, 7, to be constant, we have, putting successively, 1, and
0, for x.

Thus the formula

We have

po=1=1£F
$0=j=1
so that
pr=(pooXa)+ (J0XF) do=(40+2) X (hoo+2).  (2)

The first of these formule was given by Boole for his addition. I showed
(1867) that both hold for the modified addition. These formule are real
analogues of mathematical developments; but practically they are not con-
venient. Their connection suggests the general formula

(a-ta) X (b+2Z)=(aXZ)+ (bXux) (27)
a formula of frequent utility.
The distributive principle and (3) applied to (26) give

. POXpoo <o o< doo + 0. (28)
ence
($r=0) < ($0 X poo=0) (dr=co) < ($0+poo=0n).  (20)

Boole gave the former, and I (1867) the latter. These formule are not con-
venient for elimination.

The following formulae (probably given by De Morgan) are of great impor-
tance : —
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aXb=a+0b a+bd=axXxb. (30)
By (23)
(aXb) X (aXb)—=<0 w—<_(a+ b))+ (« + b),
whence by (22) and the associative principle
bX(aXb)y—<_a a—<_b+ (a+0)
axXb—<a+b axXb—a+0.
By (4) and (22)
a—<aXb a+b—<a
b—<aXb a+b—<b,
whence by (2)
a+b—<a+b a+b—<axb.
The application of (22) gives from (11)
(b—=<axb)y=(a+b—< a); (31)

from (12) L L L
(c¢+og<b+g/)—<(a§b)+(w—_<_y)
(ax 5= b X y) < (0= 0) + (2 =< y);

(a=<b)y=(a—=<b+a)+ (axXz-—<_b); (33)

from (13)

from (14)
AV Z =000 (L axh)—< (=L )+ (c=Zb); (34)
from (15)

(¢ a+b)=1{(p =< a)+ (g =< b)} where p + g =2c

(aXb—<c)=T{(a <p)+ (b —<q)} where p X ¢ =rc;
from (22)

(35)

(aXb—<c+d)=(aXd—<c+Db). (36)

§ 2. The Resolution of Problems in Non-relative Logic.

Four different algebraic methods of solving problems in the logic of non-
relative terms have already been proposed by Boole, Jevons, Schroder, and
McColl. I propose here a fifth method which perhaps is simpler and certainly
is more natural than any of the others. It involves the following processes:

First Process. Express all the premises with the copulas —< and —, re-
membering that A = B is the same as A —<7 B and B < A.

Second Process. Separate every predicate into as many factors and every
subject into as many aggregant terms as is possible without increasing the
number of different letters used in any subject or predicate.
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An expression might be separated into such factors or aggregants (let us term
them prine factors and ultimate aggregants) by one or other of these formulee :

br = (poo X ) + (¢0 X )
dr = (poo+ &) X (0 + 2).

But the easiest method is this. To separate an expression into its

ultimate aggregants { product . .
{ prime Bretors }take anyl sum of all the different letters of the

expression, each taken either positively or negatively (that is, with a dash over
it). By means of the fundamental formula

XXY<Y<Y+7Z
. product . subject factor
examine whether the { sum } taken is a { predicate of every aggregant

o
ultimate aggregant

of the given expression. If so, it is a .
prime factor

} of that expression ;

. e . ultimate aggregants
otherwise not. Proceed in this way until as many { ABETOge have

prime factors
been found as the expression possesses. This number is found in the case of a

{ product of sums
| sum of products

letters in the expression (a letter and its negative not being considered different) ;
let » be the total number of letters whether the same or different, and let p be

the number of factors . Then the number of [ ultlmqte aggregants 18
terms 1 prime factors

}of letters, as follows. Let m be the number of difercnt

2" +n —mp — p.

For example, let it be required to separate « + (y X z) into its prime factors.
Here m =3, n =3, p=2. Hence the number of factors is three. Trying
x + y + 2, we have

e —~_x+ty+z yXz—<ax+y+az
so that this is a factor. Trying = + y + %, we have

e —<xz+y+z yXz—<ax+y+t+z,
so that this is also a factor. It is, also, obvious that x + # =+ z is the third factor.
Accordingly,

vt (yX)=(x+y+z)X(x+y+2) X(x+7+2).
Again, let us develop the expression
(@+b+ce)X(a+d+7¢) X (a+b+ec).

Here m = 3, n =9, p = 3; so that the number of ultimate aggregants is five.
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Of the eight possible products of three letters, then, only three are excluded,
namely: (¢ X b X €), (@ X b X ¢) and (@ X b X ¢). We have, then,
(@+b+e)X(a+db+e)X(at+b+c)=
(aXbXe)+(aXbXe)+(aXbXe)+(axXbxXe)+(axXbXec).
Third Process. Separate all complex propositions into simple ones by means
of the following formule from the definitions of 4+ and X :

(X+Y < 2)= (X< %) X (Y < %)
(X< Y X 2)= (X< Y) X (X < Z)
X+Y=Z2)= (X< 2)+ (Y < 2)
X< YXZ)=X=<YV)+X<Z).
In practice, the first three operations will generally be performed off-hand in
writing down the premises.
Fourth Process. 1f we have given two propositions, one of one of the forms
a—<b+u a X & —<_0,
and the other of one of the forms
c—<d+ % ¢ X x—<_d,
we may, by the transitiveness of the copula, eliminate #, and so obtain

aXc¢—<_b+d.

Fifth Process. We may transpose any term from subject to predicate or the
reverse, by changing it from positive to negative or the reverse, and at the same
time its mode of connection from addition to multiplication or the reverse. Thus,

(2 X y < 2) = (w =  +2)
We may, in this way, obtain all the subjects and predicates of any letter; or we

may bring all the letters into the subject, leaving the predicate 0, or all into the
predicate, leaving the subject .

Siwth Process. Any number of propositions having a common{ subject }

predicate

are, taken together, equivalent to their {pr;)i?ft} .

As an example of this method, we may consider a well-known problem given
by Boole. The data are
EXZ—<ovX(yXd+jXw)
v X axXw—<(yXz)+(§ XZ7)
(xXy)+ (v XXy = (2Xd) +(ZXw).

This content downloaded from 128.103.149.52 on Wed, 20 Apr 2016 20:31:13 UTC
All use subject to http://about.jstor.org/terms



40 PeirRcE: On the Alyebra of Logic.

The queesita are: first, to find those predicates of a which involve only v, z,
and w; second, to find any relations which may be implied between ¥, z, w;
third, to find the predicates of y; fourth, to find any relation which may be im-
plied between x, z, and w. By the first three processes, mentally performed, we
resolve the premises as follows: the first into

T Xz—<v
Xz—<y+w
X 7~ i +

XaeXw—~<y+z
XaXw-—<_§+z;

Xy —~<z+w

e Xy —~<z+w
vXaeXy—<z+w
vXaXy—<Z+w
z X w—_ux
z+tw—<v+y
zt+w—<uw

24w —<v+y.

We must first eliminate v, about which we want to know nothing. We have,
on the one hand, the propositions

vXaX§jg—<z+w

vXaeXy§—< 2+ w;
and, on the other, the propositions

EXzZ<lw

vXaeXw—<y+z
XaXw—<_§+=z
X w—~<_v+y
Xw—~<_v+y.

The conclusions from these propositions are obtained by taking one from
each set, multiplying their subjects, adding their predicates, and omitting w.
The result will be a merely empty proposition if the same letter in the same
quality as to being positive or negative be found in the subject and in the predi-
cate, or if it be found twice with opposite qualities either in the subject or in the
predicate. Thus, it will be useless to combine the proposition v X & X §j < z+ w
with any which contains &, ¥, #, or w, in the subject. But all of the second set
do this, so that nothing can be concluded from this proposition. So it will be

] ]|

the second into

Sl S

the third into

[N

Xt
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useless to combine v X @ X § —< Z+ % with any which contains &, y, , @ in
the subject, or z in the predicate. This excludes every proposition of the second
set except v X & X w —< y + %, which, combined with the proposition under
discussion, gives
xXw—<_y+zZ+w

or x X w—<_y+7
which is therefore to be used in place of all the premises containing v.

One of the other propositions, namely, £ X Z < § + @ is obviously con-
tained in another, namely: z X w —< @. Rejecting it, our premises are reduced

to six, namely :
Xz—<y+w
Xy—<z+w
Xy—<Z+w
X 0 <
X w—<_x
Xw—<y+2z
The second, third, and sixth of these give the predicates of . Their product is

v —~(J+z+w) X (J+z2+0) X (y+z+ o)

R W R R R

&

or

e —<yXeXD+yXeZXw+iFgXeXD+FXEZXw+§XEZXD
.
° x—~<_z2zXD+EZXw+jXZXw®
To find whether any relation between y, z, and w can be obtained by the elimi-
nation of x, we find the subjects of a by combining the first, fourth, and fifth
premises. Thus we find

GXEXw+2zXD+2Xw—~<a

Tt is obvious that the conclusion from the last two propositions is a merely identi-
cal proposition, and therefore no independent relation is implied between v, z,
and w.

To find the predicates of y we combine the second and third propositions.
This gives

y—~<(2+z+w) X (Z+2z+ o)

or y—<xXezXd+aeXzZXw+ .

Two relations between z, z, and w are given in the premises, namely:
z X w—~<_xand Z X w —<_2x. To find whether any other is implied, we elimi-
nate y between the above proposition and the first and sixth premises. This gives

TXz—<aeXzXwt+wt+z
X w—<_2xXzXw+IT+Z
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42 Prircr: On the Algebra of Logic.

The first conclusion is empty. The second is equivalent to & X w —< Z, which is
a third relation between x, z, and .

Everything implied in the premises in regard to the relations of =z, y, z, w
may be summed up in the proposition

w —<xtezXw+yXzXw.

Cuartrer III. — Tnr Locic or RELATIVES.
§ 1. Individual and Simple Terms.

Just as we had to begin the study of Logical Addition and Multiplication by
considering e and 0, terms which might have been introduced under the Algebra
of the Copula, being defined in terms of the copula only, without the use of + or
X, but which had not been there introduced, because they had no application
there, so we have to begin the study of relatives by considering the doctrine of
individuals and simples, —a doctrine which makes use only of the conceptions of
non-relative logic, but which is wholly without use in that part of the subject,
while it is the very foundation of the conception of a relative, and the basis of
the method of working with the algebra of relatives.

The germ of the correct theory of individuals and simples is to be found in
Kant's Critic of the Pure Reason, Appendiz to the Transcendenlal Diulectic, where he
lays it down as a regulative principle, that, if

a—<_D> h < a,

then it is always possible to find such a term a, that

a—<w x—_0

v —<_a b —_ .
Kant’s distinction of regulative and constitutive principles is unsound, but this
law of continuity, as he calls it, must be accepted as a fact. The proof of it, which
I have given clsewhere, depends on the continuity of space, time, and the in-
tensities of the qualities which enter into the definition of any term. If, for
instance, we say that Europe, Asia, Africa and North America are continents,
but not all the continents, there remains over only South America. Dut we may
distinguish between South America as it now exists and South America in former
geological times; we may, therefore, take » as including Europe, Asia, Africa,

This content downloaded from 128.103.149.52 on Wed, 20 Apr 2016 20:31:13 UTC
All use subject to http://about.jstor.org/terms



PrircE: On the Algebra of Logic. 43

North America, and South America as it exists now, and every x is a continent,
but not every continent is x.

Just as in mathematics we speak of infinitesinals and infinites, which are
fictitious limits of continuous quantity, and every statement involving these
expressions has its interpretation in the doctrine of limits, so in logic we may
define an mdividual, A, as such a term that

A ~< 0,
but such that if

v < A
then x —~<_ 0.

And in the same way, we may define the sinple, a, as such a term that
1—<a,

a < @
then 1<
The individual and the simple, as here defined, are ideal limits, and every
statement about either is to be interpreted by the doctrine of limits.
Every term may be conceived as a limitless logical sum of individuals, or as
a limitless logical product of simples; thus,

a=A+ A, + A, + A, + A, + ete.
a=A, X A, X A, X A, X A; X ctec.

It will be seen that a simple is the negative of an individual.

but such that if

§ 2. Relatives.

A relative is a term whose definition describes what sort of a system of objects
that is whose first member (which is termed the relufe) is denoted by the term;
and names for the other members of the system (which are termed the correlutes)
are usually appended to limit the denotation still further. In these systems the
order of the members is essential ; so that (A, B, C) and (A, C, B) are different
systems. As an example of a relative, take ‘buyer of —for — from’; we may
append to this three correlates, thus, ‘buyer of every horse of a certain descrip-
tion in the market for a good price from its owner.’

A relative of only ene correlate, so that the system it supposes is a pair, may
be called a dual relative ; a relative of more than one corrclate may be called
plural. A non-relative term may be called a term of singular reference.

Every relative, like every term of singular reference, is general ; its defini-
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44 Prirce: On the Algebra of Logic.

tion describes a system in general terms; and, as general, it may be conceived
either as a logical sum of individual relatives, or as a logical product of simple
relatives.* An individual relative refers to a system all the members of which
are individual. The expressions

(A:B) (A:B:C)

may denote individual relatives. Taking dual individual relatives, for instance,
we may arrange them all in an infinite block, thus,

A:A A:B A:C A:D A:E cte.
B:A B:B B:C B:D B:E ete
C:A C:B Cc:C C:D C:E ete
D:A D:B D:C D:D D:E ete
E: A E:B E:C E:D E:E ete
etc. ete. etc. etc. cte.

In the same way, triple individual relatives may be arranged in a cube, and so
forth. The logical sum of all the relatives in this infinite block will be the rela-

x —<_w,
whatever dual relative  may be. It is needless to distinguish the dual universe,
the triple universe, etc., because, by adding a perfectly indefinite additional mem-
ber to the system, a dual relative may be converted into a triple relative, ete.
Thus, for lver of a woman, we may write lover of a woman coexisting with anything.
In the same way, a term of single reference is equivalent to a relative with an
indefinite correlate ; thus, woman is equivalent to woman coexisting with anything.
Thus, we shall have
A=A:A+A:B+A:C+A:D+A:E+ ete
A:B=A:B:A+A:B:B+A:B:C+A:B:D + ete.

From the definition of a simple term given in the last section, it follows that
every simple relative is the negative of an individual term. DBut while in non-
relative logic negation only divides the universe into two parts, in relative logic
the same operation divides the universe into 2" parts, where » is the number of
objects in the system which the relative supposes; thus,

w=A+A
w=A:B+A:B+A:B+A:B

tive universe, « , where

# In my Logic of Relutives, 1870, T have used this expression to designate what I now call dual relatives.
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w=(A:B:C)+(A:B:C)+(A:B:C)+(A:B:C)
+A:B:0)+(A:B:C)+(A:B:C)+ (A:B:C)

Here, we have
A=A:B+A:B; A=A:B+ A:B;
A:B=A:B:C+A:B:C; A:B=A:B:C+A:DB:
A:B=A:B:C+A:B:C; A:B=A:B:C+A:B:
It will be seen that a term which is individual when considered as n-fold is not
so when considered as more than n-fold ; but an n-fold term when made (m + »)-
fold, is individual as to 7 members of the system, and indefinite as to m members.
Instead of considering the system of a relative as consisting of non-relative
individuals, we may conceive of it as consisting of relative individuals. Thus,

since

A=A:A+A:B+A:C+ A:D -+ ete,
we have
A:B=A:A):B+(A:B):B+(A:C):B+ (A:D): DB+ cte.
But
B=B:A+B:B+B:C+H B:D 4 etc.;

so that
A:B=A:B:A)+A:(B:B)+A:(B:C)+A:(B:D)+ cte.
Here we have evidently
(A:C):B=A:(B:0)
In the same way we find
(A:D):(B:C)=(A:C):(B:D)
=A:[(B:D):C]=A:[B:(C:D)]
=[A:(C:D)]:B=[(A:D):C]:B.

§ 3. Relatives connected by Transposition of Relate and Correlate.

Connected with every dual relative, as

I=2(A:B)=1II(a:P),

is another which is called its converse,
El=2B:A)=1II(B: a),

in which the relate and correlate are transposed. The converse, k, is itself a
relative, being

E=Z[(A:B):(B:A)];
that is, it is the first of any pair which embraces two individual dual relatives,
each of which is the converse of the other. The converse of the converse is
the relation itself, thus
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46 Peirce: On the Algebra of Logic.

k-k-1=1,
or say kk=1.
We have also
k-l = k-l
kX =2k
EIT = I1k.

In the case of triple relatives there are five transpositions possible. Thus, if
b=Z2[A:B):C]=ZX2Z[A:(C:DB)],

ID=Z2[(B:A):C]=Z2[B:(C:A)]
Jo=2[A:(B:C)]=2[(A:0):B]
Kb=2[C:(A:B)]=Z2Z[(C:B):A]
Lb=Z2[(C:A):B]=Z2[C:(B:A)]
Mb=Z2Z[B:(A:C)]=Z2[B:C):A]

Here we have IM=ML=1
MI=JJ=KK=1
IJ=JK=KI=L
JI=KJ=1IK=M
IL=MI=J=KM=1K
JL=MJ=K=IM=1I
KL=MK=1=JM =1J.

If we write a:b to express the operation of putting A in place of B in the

we may write

original relative
b=Z2[(A:B):C]=2Z[A:(C:DB)],
then we have

I=a:04+b:a+c:c
J=a:a+b:c+c:b
K=a:c+b:04+c¢c:a
L=a:0+b:c+c:a
M=a:¢ce+b:a+c:0D
l=a:a+b:04+c:ec.

I+T+K=1+L+M,
A+T+K)l=(1+TL+M)L

In a similar way the n-fold relative will have (n!—1) transposition-functions,

"Then we have

which does not imply
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§ 4. COlassification of Lelatives.

Individual relatives are of one or other of the two forms
A:A A:B,

and simple relatives are negatives of one or other of these two forms.

The forms of general relatives are of infinite variety, but the following may
be particularly noticed.

Relatives may be divided into those all whose individual aggregants are of
the form A:A and those which contain individuals of the form A:B. The
former may be called concurrents, the latter opponeils. Concurrents express a
mere agreement among objects. Such, for instance, is the relative “man that
is —, and a similar relative may be formed from any term of singular reference.
We may denote such a relative by the symbol for the term of singular reference
with a comma after it; thus (m,) will denote ‘man that is —’if (1) denotes
‘man.” In the same way a comma affixed to an n-fold rclative will convert it
into an (n+ 1)-fold relative. Thus, (/) being “lover of —,; (4) will be “lover
that 1s — of —.’

The negative of a concurrent relative will be one each of whose simple com-
ponents is of the form A : A, and the negative of an opponent relative will he
one which has components of the form A : B.

We may also divide relatives into those which contain individual aggregants
of the form A : A and those which contain only aggregants of the form A : B.
The former may be called sel/~relatives, the latter alio-relutives.  We also have ncg-
atives of self-relatives and negatives of alio-relatives.

These different classes have the following relations. Every negative of a
concurrent and every alio-relative is both an opponent and the negative of a
self-relative. Every concurrent and every negative of an alio-relative is both
a self-relative and the negative of an opponent. There is only one relative
which is both a concurrent and the negative of an alio-relative ; this is ¢ identical
with — There is only one relative which is at once an alio-relative and the
negative of a concurrent; this is the negative of the last, namely, ¢other
than —’ The following pairs of classes are mutually exclusive, and divide all
relatives between them :

Alio-relatives and self-relatives,

Concurrents and opponents,

Negatives of alio-relatives and negatives of self-relatives,
Negatives of concurrents and negatives of opponents.
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48 Pemrce: On the Algebra of Logic.

No relative can be at once either an alio-relative or the negative of a con-
current, and at the same time either a concurrent or the negative of an alio-
relative.

We may append to the symbol of any relative a semicolon to convert it
into an alio-relative of a higher order. Thus (/;) will denote a ¢ lover of — that
is not—.

This completes the classification of dual relatives founded on the difference
of the fundamental forms A: A and A:DB. Similar considerations applied to
triple relatives would give rise to a highly complicated development, inasmuch
as here we have no less than five fundamental forms of individuals, namely,

(A:A):A (A:A):B (A:B):A (B:A):A (A:B):C.

The number of individual forms for the (n + 2)-fold relative is

24 @ =13+ {E—D—2@ Dl @ —n-sE -1
+3(2n—1)} ..-5—!—41—!{(5"—1)——4(4"——1)~|—G(8"—1)——4(2"'~1)}.G
+5 {(6”—1)—5(5”—1)-}—10(4"—1)—10(8"—-1)+5(2"—1)} T+ ete.

If this number be called fn, we have

A" f0=f(n—1)

Jo=1.
The form of calculation is
1
2 1
5t 3 2
15 10 7 5

52 37 27 20 15
203 151 114 87 67 52

where the diagonal line is copied number by number from the vertical line,
as fast as the latter is computed.

Relatives may also be classified according to the general amount of filling up
of the above-mentioned block, cube, etec. they present. In the first place, we
have such relatives in whose block, cube, ete. every line in a certain direction
in which there is a single individual is completely filled up. Such relatives may
be called complete in regard to the relate, or first, second, third, ete. correlate.
The dual relatives which are equivalent to terms of singular reference are com-
plete as to their correlate.
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A relative may be incomplete with reference to a certain correlate or to its
relate, and yet every individual of the universe may in some way enter into that
correlate or relate. Such a relative may be called unlinited in reference to the
correlate or relate in question. Thus, the relative

A:A+A:B+C:C+C:D+E:E+E:F4+G:G+ G: HH ete.

is unlimited as to its correlate. The negative of an unlimited relative will be
unlimited unless the relative has as an integrant a relative which is complete
with regard to every other relate and correlate than that with reference to
which the given relative is unlimited.

A totally unlimited relative is one which is unlimited in reference to the
relate and all the correlates. A totally unlimited relative in which each letter
enters only once into the relate and once into the correlate is termed a substi-
tution.

Certain classes of relatives are characterized by the occurrence or non-
occurrence of certain individual aggregants related in a definite way to others
which occur. A set of individual dual relatives each of which has for its relate
the correlate of the last, the last of all being eonsidered as preceding the first
of all, may be called a cycle. 1f there are n individuals in the cycle it may be
called a cycle of the ™ order. For instance,

A:B B:C C:D D:E E:A

may be called the cycle of the fifth order. Now,if a certain relative be such

™ order of which it contains any m terms, it also con-

that of any cycle of the n
tains the remaining (»—m) terms, it may be called a cyclic relative of the
n™ order and m™ degree. If. on the other hand, of any cycle of the »™ order of
which it contains m terms the remaining (» — m) are wanting, the relative may
be called an anticyclic relative of the »™ order and m™ degree.

A cyclic relative of the first order and first degree contains all individual
components of the form A:A. A cyclic relative of the second order and
first degree is called an equiparant in opposition to a disquiparant.

A highly important class of relatives is that of #ransitives ; that is to say, those
which for every two individual terms of the forms (A:B) and (B:C) also

possess a term of the form (A :C).

§ 5. The Composition of Relatives.

Suppose two relatives either individual or simple, and having the relate or
correlate of the first identical with the relate or correlate of the second or of

{

This content downloaded from 128.103.149.52 on Wed, 20 Apr 2016 20:31:13 UTC
All use subject to http://about.jstor.org/terms



00 PrircE: On the Algebra of Logic.

its negative. This pair of relatives will then be of one or other of sixteen

forms, viz. :
(A:B) (B:C) (A:B) (B:C) (A:B) (B:C) (A:B) (B:C)
(A:B) (C:B) (A:B) (C:B) (A:B)(C:B) (A:B) (C:B)

(B:A) (B:C) (B:A) (B:C) (B:A) (B:C) (B:A) (B:C)
(B:A) (C:B) (B:A) (C:B) (B:A) (C:B) (B:A) (C:B).
Now we may conceive an operation upon any one of these sixteen pairs of
relatives of such a nature that it will produce one or other of the four forms
(A:C), (A:C), (C:A), (C:A). Thus, we shall have sixty-four operations

in all.

We may symbolize them as follows: Let
A:B (]]|) B:C=A:C;

that is, let (|||) signify such an operation that this formula necessarily holds.
The three lines in the sign of this operation are to refer respectively to the first
relative operated upon, the second relative operated upon, and to the result.
When either of these lines is replaced by a hyphen (-), let the operation sig-
nified be such that the negative of the corresponding relative must be substituted

in the above formula. Thus,

A:B (-]|) B:C=A:C.
In the same way, let a semicircle (V) signify that the converse of the correspond-
ing relative is to be taken. The hyphen and the semicircle may be used
together. If, then, we write the symbol of a relative with a semicircle or curve
over it to denote the converse of that relative, we shall have, for example,

s
A:B(v)B:C=A:C.
Then any combination of the relatives @ and e, in this order, is equivalent
to others formed from this by making any of the following changes:

First. Putting a straight or curved mark over @ and changing the first
mark of the sign of operation in the corresponding way ; that is,
for @, from | to v or from — to v or conversely,
for @, from | to — or from v to » or conversely,
for @, from | to v or from — to  or conversely.

C

Second. Making similar simultaneous modifications of e and of the second
mark.

Third. Changing the third mark from | to — or from o to » or conversely,
and simultaneously writing the mark of negation over the whole expression.
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Fourth. Changing the third mark from | to o or from — to v or conversely,
and interchanging @ and e and also the first and second marks.

We have thus far defined the effect of the sixty-four operations when certain
members of the individual relatives operated upon are identical. When these
members are not identical, we may suppose either that the operation ||| pro-
duces either the first or second relative or 0. We cannot suppose that it
produces « for a reason which will appear further on. Let us elect the formula

A:B(|I) C:D=0.

The other excluded operations will be included in a certain manner, as we
shall see below. From this formula, by means of the rules of equivalence, it
will follow that all operations in whose symbol there is no hyphen in the third
place will also give 0 in like circumstances, while all others will give 0 or w.

We have thus far only defined the effect of the sixty-four operations upon
individual or simple terms. To extend the definitions to other cases, let us
suppose first that the rules of equivalence are generally valid, and sccond, that

It o —<7band ¢ < dthena (||])¢—~<"0(]]) d
(@ —<0) X (¢ =< d) =< Ha (|[) e =0 ([l]) ¢f.

Then, this rule will hold good in all operations in whose symbols the first and
second places agree with the third in respect to having or not having hyphens.

or

For operations, in whose symbols the {sef(i:l;;u d} mark disagrees with the third

in this respect we must write {Z:fi} mstead of {Zé?l} in this rule.

Thus, the sixty-four operations are divisible into four classes according to which
one of the four rules so produced they follow.

It now appears that only the hyphens and not the curved marks are of
significance in reference to the rule which an opcration follows. Let us
accordingly reject all operations whose symbols contain curved marks, and there
remain only eight. For these eight the following formula hold:

A:B (||])) B:C=A:C A:B (|-) B:C=A:C
A:B (-) B:C=A:C A:B (-|]-) B:¢=A:C
A:B (-) B:C=A:C A:B (--) B:C=A:C
A:B(--)B:C=A:C A:B(---)B:C=A:C
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A:B (]|]]) C:D=0 A:B (j]]-) C:D=w
A:B (-|)) C:D=0 A:B (-]-) C:D=w
A:B (]-]) C:D=0 A:B (]--) C:D=w
A:B(--])C:D=0 A:B(---)C: D=

(a—0) X (e <) —a (I[[) ¢—=Tb ([I]) d}
(a—0) X (¢ <{d) <{a(---) ¢ =<V (---) d}

(b —a) X (e —d)—{a (=]) ¢—=T0 (-]]) d}
(b —a) X (¢ —<d)—Ha (|--) ¢e=<Tb (|--)d}
{ }

(a—<b) X (A< o)~ fa (|=]) e~<b (|=]) d
(a—<b) X (d—< ) < fa (=] =) e—<b (-]-) d]

(b —a) X (d—¢e)—<H{a (--]) ¢=b (--]) d}
(b —a) X (d—e)—Ha (J[-) =0 (I[-) d.

As it is inconvenient to consider so many as eight distinct operations, we
may reject one-half of these so as to retain one under each of the four rules.
We may reject all those whose symbols contain an odd number of hyphens (as
being negative). We then retain four, to which we may assign the following
names and symbols:

a (|||) e=ae Relative or external multiplication.
a(|-=)e="%%  Regressive involution.

a (—|=) e=a*  Progressive involution.

a(—=|) e = aoce Transaddition.*

We have then the following table of equivalents, negatives, and converses: t

- o | o
x x X 5

- = - - (2} v I~ s

ae = Goe ac = % el = ¢éod & =
a0 =% Ge = @o@ o o=ea e = ¢oll
a — = - = P A— Yo v Y
e = a e = @oée et =cq €q = ¢éoq

S & a v v o M -3 2o

o€ = (i€ a® = % ol = ¢ et = °q

* The first three of these were studied by De Morgan (On the Syllogism, No. IV.) ; the last is new. The
above names for the first three (except the adjective internal suggested by Grassmann’s operation) are given in

my Logic of Relatives.
1 A similar table is given by De Morgan. Of course, it lacks the symmetry of this, because he had not

the fourth operation.
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If 7 denote ‘lover’ and s ¢ servant,” then
ls denotes whatever is lover of a servant of —,
I whatever is lover of every servant of —,
Is whatever is in every way (in which it loves at all) lover of a servant, .
los whatever is not a non-lover only of a servant of —
or whatever is not a lover of everything but servants of —
or whatever is some way a non-lover of some thing besides servants of —.

§ 6. Methods in the Algebra of Relatives.

The universal method in this algebra is the method of limits. For certain
letters are to be substituted an infinite sum of individuals or product of simples ;
whereupon certain transformations become possible which could not otherwise
be effected.

The following theorems are indispensable for the application of this method :
1st. % =[(A:B)+ kB.

Since B is equivalent to the relative term which comprises all individual
relatives whose relates are not B, so £ B may be conveniently used, as it is here,

to express the aggregate of all individual relatives whose correlate is B. To
prove this proposition, we observe that

I*B=17(A:B)

Now /(A : B) contains only individual relatives whose correlate is B, and of
these it contains those which are not included in /(A :B). Hence the nega-
tive of /(A :B) contains all individual relatives whose correlates are not B,
together with all contained in /(A:B). Q. E.D.

2d. 4Bl = (A:B)+ A.

Here A is used to denote the aggregate of all individual relatives whose re-
lates are not A. This proposition is proved like the last.

3d. A:B'=(A:B)I+A.

This is evident from the second proposition, because
KB =wn]

4th, ‘AB=1(A:B)+ iB.

Another method of working with the algebra is by means of negations. 'This
becomes quite indispensable when the operations are defined by negations, as in
this paper.
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To illustrate the use of these methods, let us investigate the relations of
' and P to b when [ and b are totally unlimited relatives.

Then, by the rules of the last section,
B LM P <m0y
whence, by the second and third propositions above,
lb --< (L@:M@)b_'_ii Zb'—<l(BJ: CJ)+kEJ.
But by the first rule of the last section
(Li: M) 0 —< b I(B;:C)—<1b;
b-<I+L, P—<1+LiB,.

There will be propositions like these for all the different values of ¢ and j.
Multiplying together all those of the several sets, we have

hence,

But o o
ILL,=Z,L; ILAB, = ZkB;,
and since the relatives are unlimited,
ZLi=w ZkB=w
ZL=0 EB;=0;

ho<  P-<Db

In the same way it is easy to show that, if the negatives of 7/ and b are totally

unlimited,
lb—<lob lb—<lob,

hence

§ 7. The General Formulee for Relatives.

The principal formulee of this algebra may be divided into distribution formulce
and association formule. The distribution formulae are those which give the equiv-
alent of a relative compounded with a sum or product of two relatives in such
terms as to separate the latter two relatives. The association formule are those
which give the equivalent of a relative A compounded with a compound of B
and C in terms of a compound of A and B compounded with C.
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<
(X}

I. DISTRIBUTION FORMULA.
1. AFFIRMATIVE.

i. Simple Formule.

(a+0b)c=ac+ bc a(b+c)=ab+ ac
(a X b)Y =a X0b° abte =a X«
a-l—bc = XbC a(b X C) = a}, X %e

(a X b)oc={(aoc)+ (boc) ao(b X ¢)=(aob)+ («oc)

iL. Developments.
(aXb)e=IL{a(cXp)+b(cXp)} a@®Xe)=IL {(aXp)b+(aXp)c}
(a+by=2,{ a2 X x| a*e =3, {(a+p) X (a+p)|
CHe=Z, ((ep) X kD)) M=, [ X
(a+b)ec=1L,{ac(c+p)+bo(c+p)} ao(b+c)=1IL,}(a+ p)ob+ (a+ p)oc|

2. NEGATIVE.

i. Simple Formule.

@Fbye = @ X be “OTo) =@+ a
(aXbyY = a + b ate =d +
“tte = + e “bXec) =% + %
(@ X b)oc=aoc X boc ao(b X €)= aob X aoc

il. Developments.

@XD)e=3, [aeXp) X IEXp)| a@Xe)=5,| @Xp)bx (@Xp)el
@F0F =1L,| @7+ 57| @ =T, | () + @
e =L H )] O =1, [
(a+b)oc=Z,{ac(c+p) X bo(c+p)} a(b+ c¢)=Z,{(a+p)ebX(a+p)oc}
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II. ASSOCIATION FORMULAZ.

1. AFFIRMATIVE.

i Simple Formule.
“(be) = a(be) = (ab)e = (ab) a(b) =) =(by =()ec

ao(boc) = a°® = @he = (qob)oc alle) = ao(*c) = (a’)oc = (@)

ao(ﬁ) = g% = (Y = (?)C a (l;c) = (%) = — (ab)oc
W(boc) = a (boc) = (“b)oc = (¢ aw) = qo(b?) = (aob) c = (aob)’

it. Developments.

(A and E are individual aggregants, and o and e simple components of «
and e. The summations and products are relative to all such aggregants and
components. The formule are of four classes; and for any relative ¢ either
all formule of Class 1 or all of Class 2, and also either all of Class 3 or all of
Class 4 hold good.

CLASS 1. CLASS 2.
a(be) = “(be) = TL{(*D)e} = TL{("by | (cod)e=(cod)y =TI {co(dE)}=TI{c™}
" =qo(bc)=2{(aob)| =Z{(aob)c| ody = (¢od)oe = S{c] = E}Co “€) |
wo) = a* = I{(a")c} = I{(@)y}  ()oe=" "= {co(doc)} = IT{c")
(%) = a(b°) = Z{(ADY} = Z{(Ab)e| () = (¢Ne = T{¢} = { °(d%)}

tli

CLASS 3. CLASS 4.
= 0o(be)) =S((“e} = S| (d)e} o= (ed)oe=((doc)} = Z{c(do0)]
(Boe)="(boc)=T1}(Ab)eci=T1} "} (ed)e = (ed) = I{e(d)} = T}(d")}
a(%) = () = S{*e] = ${(D)oc)  (d) = (d)e = S|(dR)} = S{e(dB)}
}

ao(%e) = @' =TT {(ac)oc}) = I[{=V}  (d)oe = Do = M{c("e)} = T{*(%e)}

The negative formulee are derived from the affirmative by simply drawing
or erasing lines over the whole of each member of every equation.

In order to see the general rules which these formulse follow, we must im-
agine the operations symbolized by three marks, as in the commencement of this
chapter. We may term the operation uniting the two letters within the paren-
thesis the énferior operation, and that which unites the whole parenthesis to the
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third letter the exterior operation. By junction-marks will be meant, in case the

| follows } the third letter, the | fiwst mark of the symbol of the

parenthesis ,
1 precedes | second |

S . second .
interior operation and the { first } mark of the symbol of the exterior opera-

tion. Using these terms, we may say that the exterior junction-mark and the
third mark of the interior operation may always be changed together. When
they are the same theve is a simple association formula. This formula consists
in the possibility of simultaneously interchanging the junction-marks, the third
marks, and the exteriority or interiority of the two operations. When the ex-
terior junction-mark and the third mark of the interior operation are unlike,
there is a developmental association formula. The general term of this formula
is obtained by making the same interchanges as in the simple formule, and then
changing « to A when after these interchanges ab or “) oceurs in parenthesis,
changing ¢ to a when «” or @b occurs in parenthesis, changing ¢ to & when
de or d° occurs in parenthesis, and changing ¢ to e when ‘¢ or doe occurs in
parenthesis. When the third mark in the symbol of the exterior operation is
affirmative the development is a summation ; when this mark is negative there
is a continued product.

In the first column of formulwe, the second mark in the sign of the interior
operation is a line in Class 1 and a hyphen in Class 3. In the second column,
the first mark in the sign of the interior operation is a hyphen in Class 2 and a
line in Class 4.

(70 be Continued.)

NOTE TO PAGE 47.

The relative O ought to be considered as at once a concurrent and an alio-relative, and the relative was at
once the negative of a concurrent and the negative of an alio-relative. The statements in the text require to
be modified to this extent.
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