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Matter
James Clerk Maxwell  and Ludwig Boltzmann were 

atomists who accepted the idea that the apparently continuous 
pressure of a gas on the walls of its container is caused by a 
number of atomic collisions so vast that the individual discrete 
bumps against the walls are simply not detectable. 

Maxwell’s great contribution to the kinetic theory of gases was 
to find the velocity (or energy) distribution of the gas particles. 
From simple considerations of symmetry and the assumption that 
motions in the y and z directions are not dependent on motions 
in the x direction, Maxwell in 1860 showed that velocities are 
distributed according to the same normal distribution as the “law 
of errors” found in games of chance.  Boltzmann in 1866 derived 
Maxwell’s velocity distribution dynamically, putting it on a firmer 
ground than Maxwell.

Maxwell derived his velocity distribution law using math that 
he found in a review of Adolph Quételet’s work on social 
statistics, but he did not accept the conclusion of  Quételet and 
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Thomas Henry Buckle that the normal distribution seen in large 
numbers of random events implies that they are determined. 1 

Maxwell’s criticism of his English colleague Buckle was clear.
We thus meet with a new kind of regularity — the regularity of 
averages — a regularity which when we are dealing with millions 
of millions of individuals is so unvarying that we are almost in 
danger of confounding it with absolute uniformity.
Laplace in his theory of Probability has given many examples of 
this kind of statistical regularity and has shown how this regularity 
is consistent with the utmost irregularity among the individual 
instances which are enumerated in making up the results. In the 
hands of Mr Buckle facts of the same kind were brought forward 
as instances of the unalterable character of natural laws. But 
the stability of the averages of large numbers of variable events 
must be carefully distinguished from that absolute uniformity of 
sequence according to which we suppose that every individual 
event is determined by its antecedents. 2

Six years after his derivation of the velocity distribution from 
classical dynamics, Boltzmann found a mathematical expression 
he called H that appears to decrease as particle collisions occur. 
He identified it as the negative of the thermodynamic entropy that 
always increases according to the second law of thermodynamics. 

In 1874, Boltzmann’s mentor Josef Loschmidt criticized his 
younger colleague’s attempt to derive from classical dynamics the 
increasing entropy required by the second law of thermodynamics. 
Loschmidt’s criticism was based on the simple idea that the laws of 
classical dynamics are time reversible. Consequently, if we just turn 
the time around, the time evolution of the system should lead to 
decreasing entropy. 

Of course we cannot turn time around, but a classical dynami-
cal system will evolve in reverse if all the particles could have their 
velocities exactly reversed. Apart from the practical impossibility 
of doing this, Loschmidt had showed that systems could exist for 
which the entropy should decrease instead of increasing. This is 
called Loschmidt’s reversibility objection or “Loschmidt’s paradox.” 

It is also known as the problem of microscopic reversibility. How 
can the macroscopic entropy be irreversibly increasing when micro-
scopic collisions are time reversible?

1 See chapter 2 for such arguments beginning with Immanuel Kant.
2 Draft Lecture on Molecules, 1874 (our italics)

Maxwell too was critical of Boltzmann’s 1872 dynamical result 
based on Newton’s deterministic laws of motion. The kinetic theory 
of gases must be purely statistical, said Maxwell.

In 1877, Boltzmann followed Maxwell’s advice. He counted the 
number of ways W that N particles can be distributed among the 
available cells of “phase-space,” a product of ordinary coordinate 
space and “momentum space.”

Boltzmann showed that some distributions of particles are highly 
improbable, like all the balls in our probability machine landing in 
one of the side bins. In nature, he said, the tendency of transforma-
tions is always to go from less probable to more probable states. 3

There are simply many more ways to distribute particles ran-
domly among cells than to distribute them unevenly. Boltzmann 
counted each unique distribution or arrangement of particles as a 
“microstate” of the system. Arguing from a principle of indifference, 
he assumed that all microstates are equally probable, since we have 
no reasons for any differences. 

Boltzmann then gathered together microstates that produce 
similar macroscopic descriptions into “macrostates.” For example, 
having all the particles in a single cell in a corner of a container 
would be a macrostate with a single microstate, and thus minimum 
entropy. Boltzmann’s idea is that macrostates with few microstates 
will evolve statistically to macrostates with large numbers of micro-
states. For example, taking the top off a bottle of perfume will allow 
the molecules to expand into the room and never return. 

Figure 3-3. Entropy increases when the number of possible microstates W increases. 
The likelihood of all the molecules returning to the bottle is vanishingly small.

3 Boltzmann, 2011, p.74
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In the mid 1890’s, some British scientists suggested that there 
must be some low-level mechanism maintaining what Boltzmann 
had called “molecular chaos” or “molecular disorder.” Since 
classical microscopic dynamical laws of physics are time reversible, 
collisions between material particles can not explain the macroscopic 
irreversibility seen in classical thermodynamics and in the statistical 
mechanical explanations developed by Boltzmann. 

Boltzmann himself did not take the need for microscopic 
irreversibility very seriously, because even his classical dynamical 
analysis showed that collisions quickly randomize a large number of 
gas particles and his calculations indicated it would be astronomical 
times before any departure from randomness would return.

For Boltzmann, microscopic irreversibility is needed only to 
defeat the Loschmidt paradox. See chapter 12.
Boltzmann’s Philosophy

In his 1895 Lectures on Gas Theory, read by Albert Einstein as 
a student, Boltzmann raised questions about the continuum and its 
representation by partial differential equations, which were to be 
questions Einstein struggled with all his life. Boltzmann wrote,

Whence comes the ancient view, that the body does not fill space 
continuously in the mathematical sense, but rather it consists 
of discrete molecules, unobservable because of their small 
size. For this view there are philosophical reasons. An actual 
continuum must consist of an infinite number of parts; but an 
infinite number is undefinable. Furthermore, in assuming a 
continuum one must take the partial differential equations for the 
properties themselves as initially given. However, it is desirable to 
distinguish the partial differential equations, which can be sub-
jected to empirical tests, from their mechanical foundations (as 
Hertz emphasized in particular for the theory of electricity). Thus 
the mechanical foundations of the partial differential equations, 
when based on the coming and going of smaller particles, with 
restricted average values, gain greatly in plausibility; and up to 
now no other mechanical explanation of natural phenomena 
except atomism has been successful...
Once one concedes that the appearance of a continuum is more 
clearly understood by assuming the presence of a large number of 
adjacent discrete particles, assumed to obey the laws of mechanics, 

then he is led to the further assumption that heat is a permanent 
motion of molecules. Then these must be held in their relative 
positions by forces, whose origin one can imagine if he wishes. 
But all forces that act on the visible body but not equally on all the 
molecules must produce motion of the molecules relative to each 
other, and because of the indestructibility of kinetic energy these 
motions cannot stop but must continue indefinitely...
We do not know the nature of the force that holds the molecules 
of a solid body in their relative positions, whether it is action at a 
distance or is transmitted through a medium, and we do not know 
how it is affected by thermal motion. Since it resists compression 
as much as it resists dilatation, we can obviously get a rather rough 
picture by assuming that in a solid body each molecule has a rest 
position...
If each molecule vibrates around a fixed rest position, the body 
will have a fixed form; it is in the solid state of aggregation...
However, when the thermal motion becomes more rapid, one 
gets to the point where a molecule can squeeze between its two 
neighbors... It will no longer then be pulled back to its old rest 
position... When this happens to many molecules, they will crawl 
among each other like earthworms, and the body is molten.
In any case, one will allow that when the motions of the molecules 
increase beyond a definite limit, individual molecules on the 
surface of the body can be torn off and must fly out freely into 
space; the body evaporates. 
A sufficiently large enclosed space, in which only such freely 
moving molecules are found, provides a picture of a gas. If no 
external forces act on the molecules, these move most of the time 
like bullets shot from guns in straight lines with constant velocity. 
Only when a molecule passes very near to another one, or to the 
wall of the vessel, does it deviate from its rectilinear path. The 
pressure of the gas is interpreted as the action of these molecules 
against the wall of the container. 4 

4 Boltzmann, 2011 §1, p.27
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