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Abstract—A quantal calculation of the continuous absorption coefficient of the hydrogen quasi-molecule for 
the transition \so2so 3Zgl‘ «- \so2po 3X„+ is described. The calculation includes the explicit dependence of the 
matrix element of the electronic dipole transition moment on the rotational state of the molecule.

The detailed summation of the transition probability over all rotational states for temperatures at which 
several states are populated differs significantly from the probability given by the contribution of the rotation­
less (7' = 0) state multiplied by the rotational partition function. The difference is larger than the errors resulting 
from the ^-function approximation to the continuum wave functions used in previously published calculations 
of this absorption coefficient.

1. INTRODU CTI ON

T heoretical  calculations of the strength of continuous molecular spectra have generally 
proceeded from the approximation of G ibson , R ice  and Bayliss* 1 • that the matrix element of 
the electronic dipole transition morrient is independent of the rotational state J of the nuclei. 
The assumption of rotational independence is most likely to fail in the lightest molecules 
(with the widest spacing of the rotational levels), as has been noted by Bu c k in g h a m , 
Reid  and Spen ce .<2) They calculated matrix elements of the 2p<r 2£ + <- ls<r 2Eg+ transi­
tion for a few non-zero J-states in the hydrogen molecular ion H2 and established 
the existence of a variation, but did not investigate it in detail. The present paper reports 
a calculation of the transition probability in the lsa2sa 3£g+ <- 1 salpa 3£* continuum 
of H2 in which we explicitly sum over rotation-dependent matrix elements, and gives a 
comparison of the summation to a rotationless calculation.

The electronic states a 3Zg+ and b 3S„+, and transitions between them, were the subjects 
of an important series of papers by C o olidge  and J ames and their associates*3-10* on the 
calculation of electronic wave functions, potential-energy curves, the dipole moment 
operator, and vibrational wave functions. In 1936(S) they found that the Franck-Condon 
principle (constant dipole moment) was a poor approximation for continuous molecular 
spectra. In 1939(9) they made the first calculation using a variable dipole moment. They 
published mean lifetimes for the first four vibrational states in a 3Zg+, and gave the relative 
(unnormalized) wavelength dependence of the emission intensity from these four states. 
However, they did not explicitly combine these and publish absolute emission or absorp­
tion coefficients.
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In 1960 E r k o v ic h <U) published quantitative calculations of the absorption into the 
first four vibrational states (intrinsically the same information as in the James and Coolidge 
calculations). However, he made an error in estimating the appropriate cross section for 
the number of collisions between ground-state hydrogen atoms in the b 3£„+ state (the 
number of “quasi-molecules”). The wavelength dependence of his result was correct, but 
the absolute strength of his calculation was too large by about two orders of magnitude, 
as was noted by Solom on ' 1 2) and So shnikov . '1 3)

Solomon reported new calculations in which he extended the vibrational sum through 
v' = 7 for possible applications in high-temperature astrophysical problems. His results 
had a slightly different wavelength dependence from those of Erkovich, and were about 
one per cent of the absolute strength of the latter. Soshnikov published similar results, but 
he did not describe his calculation in detail.

Both Erkovich and Solomon used James and Coolidge’s modification'91 of the Condon 
“reflection” method'141 (first used in a calculation by W inans  and Stueckelberg ' 151 and 
sometimes known by their names), in which the continuum wave function is replaced by a 
(5-function located at the classical turning point of the motion. James and Coolidge had 
found that, when modified to include the variable dipole moment, the (5-function approxima­
tion was superior to a Franck-Condon calculation (constant dipole moment) using full 
continuum wave functions.

We compare our rptationless calculation, which uses full continuum wave functions, 
with the (5-function calculation of Solomon and find that the difference is essentially the 
same as that reported in the original work of James and Coolidge. This independently 
confirms the size of the error that can be expected in (5-function calculations and the 
correctness of Solomon’s calculation (to within his approximations).

However, we shall see that the difference between the rotationless calculation and the 
detailed summation over rotational states, for temperatures at which several rotational 
states are populated, is larger than the above difference between the (5-function calcula­
tion and that using full continuum wave functions. The detailed summation varies from 
twice the rotationless calculation at short wavelengths to two-thirds of it at long wave­
lengths. Thus, the neglect of rotational dependence of the matrix element is the major 
source of error at such wavelengths and temperatures.

An examination of the importance of this transition as a source of absorption in stellar 
atmospheres, reported elsewhere,'161 indicates that it is a significant contributor to opacity 
near k = 1700 Ä in the solar atmosphere.

2. THEORY

In the Born-Oppenheimer approximation, the eigensolutions of the Hamiltonian

Hz* = [TN + Te+V(r, R fe  = Ea/ a,

where

T =1e
2 h2
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i=i 2m
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and V(r, R) is the total electrostatic interaction of the electrons and the nuclei, are products 
of an electronic wave function t/t* and a nuclear wave function 4>*:

X«(r, R) = « R ) < m  (2)

The coordinate of the ith electron, with mass m, is r, ; r stands for all electronic coordinates. 
The coordinate of the ;th nucleus, with mass M, is R; ; R is the internuclear distance.

The ij/a are the solutions of the simplified Hamiltonian for R fixed (TN = 0):

[Te+ V ( r, R )]^« =  4 R|«A"- 0 )

The </>“ are the solutions of a Schrödinger equation for the nuclear motion in which 
the electronic coordinates have been averaged over and do not appear explicitly :

( T „ + £ m  R) = E M  R). (4)
The invariance of the Hamiltonian in equation (3) under rotation ensures that the 

eigenvalues 4R) are functions of only R = |R| (the nuclei move in a central potential). The 
nuclear equation (4) therefore separates into radial and angular parts,

<«R) = ^ . J(R)R-1̂ (0 ,0 ) ,  (5)
with the spherical harmonics (eigenfunctions of J 2 and Jz) and 3#avJ the solutions of 
the radial eigenvalue equation,

d2
cLR2

2 u\a _j___

V J h2 E„-ea(R)
J(J + l)h2 

2/<R2 l u.j = 0. ( 6)

Normalization of the angular functions isJ J 4>Wr(d, 0) sin 6 dd d<p = öj r öMM..

Normalization of the radial functions in the bound state is

|  g l i ^ - j d R  = Svv..

In the repulsive state b 3£„+, we seek a solution to the nuclear equation that asymptoti­
cally corresponds to the stationary state of scattering

#(R ) ~ eiK R + f(0 )eiKR/R. (7)

This is normalized to unit density of incident plane waves e‘K R, which are eigenfunctions 
of the linear momentum Kh.

Expanding equation (7) in the spherical harmonics for axes along K, we obtain

^ (R) ~ ^ Z ( 2 J "  + D1/2iJ' s i n j K R - ^ + v ) w #  (8)

It is convenient to identify a radial function associated with the J''th angular state by the 
solution of the nuclear equation for the repulsive state which is regular at zero and 
asymptotically



The probability B ^ a of an electric dipole transition from a state ß to a state a, with 
Eß < Ea, accompanied by absorption of a photon of energy hv = Ex — Eß, averaged over 
all polarization directions is

for an incident beam of one photon crossing unit area per second per unit frequency 
interval.

In our particular case, we are interested in transitions between b = lsolpa 32.„, the 
lowest triplet electronic state of ungerade symmetry (odd in reflection of ij/f about the 
origin), and a = lsa2sa 3Xg+, the lowest triplet gerade state. In this case, the transition 
matrix element in (10) becomes

I  er; = 1 1  Xß(r, R) £  er,%a(r, R) dr dR

= |  <£f(R) |  ^ » l e r ^ W d r « R )d R

= |  4>f(R)DJR)<«R)dR, (ID

where Dba(R) is the electronic dipole moment operator.
Now, since a and b are both X states (zero orbital angular momentum of the electrons 

along the internuclear axis), the cylindrical symmetry ensures that the matrix element of 
the vector operator Xer, can only have a non-zero value along the internuclear axis,

D JR ) = DJR)R. (12)

which establishes its transformation properties under rotation in the space of the nuclei.
The total transition probability per unit incident photon beam at a given frequency 

v results from summing and integrating equation (10) over all initial and final states, 
weighted by the population N(ß) of the initial states and including the d-function behavior 
of at frequencies that conserve the energy:

8?r3v 
3 he Ct*J ßj

dß N(ß) 2ö[v-(Ex- E ß)/h].

In our case, we are summing over the final bound states a = avJ'M' and integrating 
over the initial continuum states ß = b, K :

**- dK N(b, K)

/ \ r  i / K2h2\ 1
( b ,  K ! > - •i

avJ'M' > 2 <5 V E avJ'M' 2p I

Since K is a monotonic function of v, we note that

Jd K flv -v ,.)  = J J K2- —dQ(5(v — Vo 
dv

I dv = 4ttK 2,d K
dv



and the rest of equation (13) is independent of Q so that it becomes, from equations (5), 
(8), (9), (11) and (12),

J <MbK'AR)Dba(R)@°V'AR) dR J J &$(6, <l>)kSfy\e, <f>) sin 0 d0 d</> (14)

with K2h2/2/t = EavJ.M.-hv .
For temperatures at which the population of excited atomic states is negligible, three- 

quarters of all pairs of free atoms are in the b 3X„+ state; the remaining quarter are in the 
continuous part of the X  ground state. The Maxwell-Boltzmann distribution of 
quasi-molecules among states K in the electronic state b 3E„+ is

exp - lK 2h:
\2nkT

Finally, introducing the nuclear spin statistical weights of the rotational levels cbj 
and performing the sums over J" and over the degenerate magnetic substates M', we 
have our complete expression

with

and

8 tt3 v 3 2 ft3 
3he 4nH(2nnkT)312

J  \ 1/2
\EavJ- -  hvj

■j(J' +1) |  ®bK'j.+ l(R)Dba(R)<rvA R )dR

+ J j * k,j' - i(R)Dba(R )^ ,j(R ) dR
] •

x Z I  exP -
V J '

(EavJ- -  hv) 
kT

(15)

K h (Eavj' ~
1/2

c j j '= l \  J'even 

I ; J odd.

* In the 3Zg+ state, symmetric under exchange of the electrons, the symmetric nuclear space wave functions 
(even J ) require antisymmetric spin functions so that c5j. = j, the three symmetric functions being excluded by 
the required antisymmetric character of the total wave function under exchange of all the particles. Note that 
the average value of &j{ = |)  is just the symmetry factor or double counting factor in the number of different 
pairs in a collection of indistinguishable atoms.



3. COMPUTATIONS

In order to determine we need values for the two potential-energy curves ea(R) 
and Eb{R) and values of the electronic dipole moment operator Dba(R).

(a) ea(R) and the bound wave functions
Although the two other calculations of this absorption coefficient for high temperatures 

mentioned above <11,12) used a simple Morse potential to represent the bound state, we 
do not, since there are several simple forms of potential curves that can be numerically 
integrated to give better agreement with the experimental energies than does the Morse 
curve. Moreover, numerical parameters for several other curves are known for a 3£g+ 
since it was used by C oolidge , J ames and Ver n o n (7) in a comparison of the relative 
accuracy of 14 different empirical potential curves. Their “best” curve was a power series 
expansion in terms of the square root of the Morse function which was first suggested by 
D u nh am ,<17) and which we might call the Morse-Dunham function, since it combines 
the inherently appropriate shape of the Morse curve with the flexibility and ease of manipu­
lation of Dunham’s power series approach. It has the general form

sa(R) = D0 £  c„(l -
n = 2

and is used in this computation with the following coefficients :(7)

£>0 = 24459cm“ 1; c2 = 0-72550; c3 = 002948; c4 = 0-10522;

c5 = 005281;- c6 = 005525; c7 = 002573; c8 = 000601;

ß = 1 7104; re = l-8677a0.

(16)

We numerically integrate equation (6) and locate eigenenergies by an iterative pro­
cedure,* finding eigenfunctions that are asymptotic to zero for both increasing and 
decreasing internuclear distance.

The computed vibrational term differences are compared with the observed*18) in 
Table 1. The rotational term differences are compared in Table 2.(18,19) Solutions are 
limited to states with energies less than about 17 500 c m '1 above the minimum of a 3£g+. 
This is approximately vibrational-rotational state v = 8, J' = 0 or v = 0, J' = 25. Above 
this energy, other molecular electronic states of the same symmetry exist (lsan/.o 3Sgl‘), 
which we neglect.

* For a given trial energy £<n) two logarithmic slopes S(?  = (l/3t„r/)(d3?v j/dlt) of the wave function (S7* 
corresponds to a solution of equation (6) that is asymptotic to zero for R -> 0, and S+’ to one asymptotic to zero 
for R -> oo) are determined from the mean value of slopes asymptotically divergent upward and downward. 
The slopes S*"1 and S(+ are equal only for an eigenvalue of the energy £ (n) = Ev J. A second iterative procedure 
linearly interpolates the differences AS1'0 = S+1 — S1"1 at two successive trial energies for a new energy

£<» +1) = £<">_
Ias^ - as'"-1»)AS1”1

until AS,” + 1) is no improvement over AS,n) (generally AS(n) ~  10_7S1”1). The result is essentially the mean of two 
energies, whose wave functions are indistinguishable in the classical region and for the terminal loops but which 
eventually diverge and become infinite in opposite senses, as described by Coolidge, James and P resent.15’ 
Beyond the point of divergence, defined as a change of sign of Stv ] or (d.^1; J/d£), the wave functions are set 
equal to zero.



Table 1. Comparison of the observed“ 81 vibrational energy differences (upper entry) with
COMPUTED (MIDDLE ENTRY); UNITS Cm “ 1

Ar K = 0 K  =  1 K =  2 K =  3 K =  4 K =  5

1-0 2524- 32
2525- 25 

-•93

2521-07
2521-99

-•9 2

2514- 55
2515- 48 

-•9 3

2504- 85
2505- 77 

-•9 2

2492-00
2492-91

-■91

2476-13
2476-98

-•8 5
2-1 2388-26

2388-75
-•4 9

2385-12
2385-57

--4 5

2378- 80
2379- 22 

-•4 2

2369-41
2369-81

-■40

2357-06
2357-23

- 1 7

2341-63
2341-70

— 07
3-2 2256-10 

2254-79 
+  1-31

2253-05 
2251-6 

+  1-45

2246-91 
2245-39 

+  1-52

2237-77 
2236-04 

+  1-73

2225-60 
2223-65 

+  1-95

2210-39 
2208-29 

+  2-10
4-3 2126-86 

2121- 
+  6-

2123-85 
2118-0 

+  5-8

2117-78 
2112- 

+  6-

2108-83 
2103- 

+  6-

2096-57 
2092- 

+  5-
5-4 1996-57 

1983-1 
+  13-5

1990-58 1981-75

6-5 1869-80 
1845-7 
+  24-1

7-6 1742-15 
1705-0 
+  37-2

8-7 1612-5 
1560-5 
+  52-0

Table 2. Comparison of the observed“ 8191 rotational energy differences (upper entry) with
COMPUTED (MIDDLE ENTRY); UNITS c m “ 1

A K V  =  0 V  =  1 V  = 2 V  =  3 V  =  4

2-0 199-51 189-75 180-26 171-05 162-
199-64 189-86 180-34 170-94 162-

- • 1 3 — 11 - • 0 8 +  ■11 0

3-1 330-76 314-54 298-83 283-57 268-5
330-98 314-71 298-95 283-37 269-

— 22 - • 1 7 - • 1 2 +  ■20 — 5

4-2 459-44 436-91 415-05 393-73 372-5
459-75 437-18 415-18 393-45 373-

— 31 - • 2 7 — 13 +  •28 - • 5

5-3 584-64 555-85 528-02 500-9
585-02 556-23 528-17 500-4

-■ 38 - • 3 8 — 15 +  ■5

6-4 705-57 670-91 636-93 604-09
705-94 671-10 637-13 603-49

- • 3 7 — 19 — 20 +  •60

7-5 821-24 780-62 741-29
821-75 781-08 741-36

— 51 — 46 - • 0 7



Table 2 (-continued)

AX V=  0 V = 1 V — 2 V = 3 V=  4

8-6 93117
931-84

-■67
9-7 1035-07

1035-69
-■62

(b) sb(R) and the continuum wave functions
The repulsive interaction potential of two ground-state hydrogen atoms in parallel 

spin states was recently calculated by K olos and W olniew icz ,(20) who gave a table of 
numerical values. We find it more convenient to use an analytic approximation to an 
earlier second-order perturbation theory calculation by D algarno  and L y nn ,<211 which 
differs only slightly from the more recent values:

eb(R) =  109 737-3 R (2- + 2-334R + 0-78K2 +1 036R3

+ 1-728R4) - 00062 0 < R < 2;

109737-3(5-7722R2e“2'35,i + 181\R3e“6 034R); 2 < R < 4:;

109 737-3(20'533e“ 1'77R —13 R“6 — 428-.R“ 8); 4 < R. (17)

The dimensions are cm“ 1; R is in a0 (atomic units).
With this potential curve, the nuclear equation is integrated numerically, this time to 

give wave functions asymptotic to zero for decreasing internuclear distance only. At 
large internuclear distance these continuum wave functions are made asymptotic to 
amplitude unity, in accordance with equation (9).

For each bound state ®, J', a unique set of 20 continuum wave functions is determined, 
10 with J" = J'+ l and 10 with J" = J ' — l. Each continuum function is located below 
the upper state by 1 of 10 standard transition energies, which enables us to sum equation 
(15) without interpolation. Figure 1 shows ea(R) and eb(R) and some typical wave functions. 
Figure 2 illustrates the effect of the addition of rotational potential energy.

(c) The electronic dipole moment Dha(R)
Values of the electronic dipole moment were calculated by James and C oolidge(9) 

for 10 internuclear separations between l-3a0 and 2-9a0- They estimate the probable 
error as “a very few percent”. To interpolate values analytically, we use the following 
polynomial, which fits the 10 points with an accuracy of better than 2 per cent,

Dba(R) = 2-358+0-4857« —0-9268K2+0-3605/?3^004451R4; R < 2-9<j0. (18)



p

Fig. 1. The potential energy curves of 1s<t2s<t and lso2po32.* 
of H 2. Some typical continuum wave functions and the v = 0, v = 5, 
and v = 8 vibrational wave functions in the bound state are shown.



INTERNUCLEAR DISTANCE (atomic units)

Fig. 2. Potential-energy curves of 1kt2s<t 3£g1' and ls<j2pcr 3E* of H2 
showing the effect of the addition of rotational potential energy through 
rotational quantum state J = 40. Arrows indicate minima of bound- 

state curves.

The continuous spectrum
 of the hydrogen quasi-m

olecule 
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From perturbation theory, a series expansion of Dba(R) for large internuclear separation 
in inverse powers of the separation is found to have / T 7 as the leading term. Fitting to 
equation (18) at 2-9a0, we have

Dba(R) = 7031R“7 —17 334/?~8; R > 2-9a0.

The dimensions are ea0(atomic units).

{d) Truncation of the infinite sums and other sources of error
The rotational remainder terms in equation (15) from the cutoff values Jc(v) to J = oo 

are estimated by multiplying the J cth contribution by a rotational partition function for 
the remaining states and replacing the sum by an integral:

00
Z(JC, T) = £  £0,(27 + l)ex p -[J(J  + \)h2/2nr2kT]

J c

= exp -  [JC(JC+ l)h2/2jirjkT], (19)

where rc is the equilibrium internuclear distance of the 7cth rotational state.
We can also make an estimate of the effect of r-truncation by noting that the strong 

exponential decrease usually means that the contribution from a given r-level is the same 
order of magnitude as the sum of contributions from all higher c-levels.

In Table 3 we give the final numerical results, which include the above rotational 
remainder terms. The amount shown in parentheses is the contribution (already included)

Table 3. Continuous absorption coefficient of the hydrogen quasi-molecule*

Wavelength (Ä) 3000°K 5000°K 8000° K

1540 3-40 x 1 0 '42 5-48 x 1 0 '42 618 x 1 0 '12
( +  •04 x 1 0 '42) ( +  •15 x 1 0 '42) ( +  •32 x l O '42)

1750 6-21 x 1 0 '43 2-18 x l O '42 3-92 x 10"42
(+  03 x 1 0 '43) ( +  ■03 x 10"42) ( +  •13 x l O '42)

2000 5-93 x l O '44 4-86 x 1 0 '43 1-49 x 1 0 '42
( +  •0 ) ( +  -04x 1 0 '43) ( +  -02x 1 0 '42)

2222 9.10 x 1 0 '45 1-49 x 1 0 '43 6-75 x 1 0 '43
( +  •0 ) ( +  •0 ) (+  02 x 1 0 '43)

2500 1-128 x 10“ 45 402 x l O '44 2-82 x 1 0 '43
(+-o ) ( +  ■0 ) ( +  •01 x 1 0 '43)

3000 5-50 x 10"47 6-30 x 1 0 '45 8-53 x 1 0 '44
( +  •0 ) ( +  ■0 ) ( +  •07 x l O '44)

3640 2-893 x l O '48 1041 x 1 0 '45 2-65 x 1 0 '44
( +  •0 ) ( +  •0 ) ( +  •01 x 10“ 44)

4500 1-33 x 10” 49 1-47 x 1 0 '46 7-24 x 1 0 '45
( +  •0 ) ( + 0  ) (+-o )

6667 9.79 x 1 0 '52 5-32 x l O '48 6-72 x 1 0 '46
( +  -02x 1 0 '52) ( +  •08 x 10“ 48) ( +  ■28 x 1 0 '46)

* For the ls<r2s<r3Zs+ <- \so2po transition. The upper entry is the double summation of equation (15) 
corrected for rotational truncation. The lower entry is the correction for vibrational truncation. The units are 
cm5 per H atom squared. To get the absorption cross section per H atom, multiply by the density nH. To get 

in cm ' *, multiply by nj).



of the last vibrational level. At 3000°K and 1540Ä the absorption coefficient is 
3-40 x 10~42 cm5 and the last p-term contributes 0-04 x 10~42 to the sum, so that 3-44 x 
10~42 is a slight overestimate of the total contribution from all v. The results in Table 3 
and those for other temperatures are shown in Fig. 3.

WAVELENGTH (A)
1750 22 0 0  3 0 0 0  4 5 0 0

1540 2 0 0 0  25 0 0  36 4 0  6667

7 0  60  50  4 0  30  20

WAVENUMBER (103 cm')

Fig. 3. The total absorption coefficient of the transition from the \so2po state of the hydrogen 
quasi-molecule to the bound ls<r2s<r 3Sg+ state of H2. To get the absorption cross section per 

hydrogen atom, multiply by the density nH. To get Ab~a in cm “ 1 multiply by n2H.

Values of the individual rotational remainder terms for each level v and the fractional 
contribution each vibrational level makes to the total transition probability can be found 
in D oyle.<22) This reference also includes a discussion of the sources of error in the calcula­
tion. The major uncertainty is the electronic dipole moment operator Dba(R), which contri­
butes the bulk of a fixed probable error of +10 per cent below densities of nH = 1021 cm “3 
and temperatures of 8000° K. Above this temperature the errors involved in neglecting 
higher electronic states become of the same order of magnitude (±10 per cent) and 
increase with increasing temperature. Above this density an estimate of the neglect of



three-body collisions indicates that about 10 per cent of the photon absorptions occur 
when a third hydrogen atom is within molecular dimensions (< 5a0) of the quasi-molecule, 
and this too increases with increasing density.

4. COMPARISON WITH PREVIOUS RESULTS

In order to compare our results with those that neglect the rotational dependence of 
the matrix element, let us briefly describe the assumptions needed to derive the rotation­
less result from equation (15).

First, we note that

J ®bK,j-+l(R)DJR)&‘V'AR)dR ä J «i^-1(Ä)Dta(R)«;.J.(R)dR,
and that both of these can be approximated by

|  ^ lA R )D U R )^ A R )d R .

Second, the matrix element must not be taken as independent of J', as is frequently 
assumed; but it must have a specific dependence that cancels the ./'-dependence of the 
square root of the continuum energy in equation (15), viz.,

J ̂ k A W U R W A R )  dR - (~— ĵ '' |  ̂ KAR)Dba(Rmio(R)dR. (20)
C oolidge , J ames and P resent*5* have given rough justification for such a dependence 
by a WKB argument about the average height of the terminal loop of the continuum 
wave function. In this case the entire ./'-dependence of the remaining expression is in the 
terms

X m,-(2J' +1) exp — [(Eavr -  Eav0)/k T] =  Z(T). (21)
J '  = o

If we make the third assumption that the spacing of the rotational levels in the bound 
state is that of a rigid rotator at the equilibrium internuclear separation of the bound 
state,

Eavj' -  Eavo = J ’W  + 1 )h2/2nr20, (22)

then the rotational partition function Z(T) becomes,

2^rlkT fir^kT
Z(T) = ah2

(23)

Note that the symmetry factor a = 2 (Pauli exclusion of half of the nuclear spin states) 
appears explicitly.



If we make these three approximations, equation (15) becomes

vb-*a = 3 2 1,3 2/j.rlkT
3/?c 4 lli(2nnkT)312 ah2

£ e x p -[(Eav0-hv)/kT]2\ 2h
Ea„o-hv

1/2

|  .$bK'0(R)Dba( R ) ^ 0(R)dR (24)

an expression that is approximately equivalent to multiplying the J' = 0 contribution of 
equation (15) by the rotational partition function (23), and which we shall therefore refer 
to as the J' = 0 calculation in Figs. 4, 5, and 6.

Finally, if we use the Condon “reflection method”114151 and replace the continuum 
wave function by a (5-function different from zero only at the classical turning point of 
the motion RT(Eav0 — hv), the matrix element in equation (24) becomes

J 4 ,o(«)Ö JR Ä ,o(R ) dR ~  D JR t )W,0(Rt ). (25)
The calculations by Solomon1 121 using this approximation are also shown in Figs. 4, 5, 
and 6.

The differences between the <5-function calculation and the J' = 0 calculation, which 
uses complete continuum wave functions, are generally the same as those found by 
James and Coolidge(9) (see their Fig. 4), with the (5-function calculation overestimating

1540  1750  2 0 0 0  2 2 2 2  2 5 0 0  3 0 0 0  3 6 4 0  4 5 0 0  6 6 6 7

WAVELENGTH (A)

Fig. 4. The ratio of the 7 = 0  approximation, equation (24), to the detailed summation over 
rotational states, equation (15); and the ratio of Solomon’s (1964) calculation using the (5-function 

approximation, equation (25), to the detailed summation.



the long-wavelength contributions and underestimating those at short wavelengths. The 
strong variations in the difference at long wavelengths are probably caused by the different 
potential-energy curves used by Solomon.

5. CONCLUSIONS

The errors introduced into calculations of continuous molecular spectra with the 
assumption that all rotational states contribute the same as the J' = 0 rotational state 
are of the same order of magnitude as or larger than those introduced by the use of 8- 
functions as continuum wave functions, for temperatures at which several rotational states 
are populated.

For the purposes of a rough calculation, we suggest that a minimum account may be 
taken of the rotational dependence if we use as typical matrix element in equation (24) 
not that for the J' = 0 rotational state but that for the state with the known maximum 
population at the given equilibrium temperature. For the temperatures of Figs. 4 to 6, 
which are typical of stellar surface temperatures, the rotational states with the maximum 
thermal population in the bound state 1s<t2s<t 3 Z *  are J max(3000°K) =  5-0, J max(5000°K) 
= 6-6, and J max(8000°K) = 8-4. The accuracy of this approximation is being investigated.
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